Abstract

The fluorescence intensity ratio (FIR) method is a non-contact temperature (T) measurement technique based on thermally coupled levels of rare earth ions in a doped host. Green fluorescence originating from 2H11/2 and 4S3/2 states of Er3+ doped K0.5Na0.5NbO3 (KNN) ceramic are studied in the temperature range of 300 K to 720 K. The fluorescence intensities change dramatically around phase transition points where the crystal symmetry changes, inducing deviation of the FIR from Boltzmann’s law. The temperature determined by the FIR method deviates from thermocouple measurements by 7 K at the orthorhombic to tetragonal phase transition (TO-T) point and 13 K at the Curie point (TC). This finding gives guidance for developing fluorescent T sensors with ferroelectrics and may also provide a fluorescent method to detect phase transitions in ferroelectric materials.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Color-tunable upconversion emission and optical temperature sensing behaviour in Er-Yb-Mo codoped Bi7Ti4NbO21 multifunctional ferroelectric oxide

Hua Zou, Jun Li, Xusheng Wang, Dengfeng Peng, Yanxia Li, and Xi Yao
Opt. Mater. Express 4(8) 1545-1554 (2014)

Fixing of a photorefractive grating in KTa1−xNbxO3 by cooling through the ferroelectric phase transition

Victor Leyva, Aharon Agranat, and Amnon Yariv
Opt. Lett. 16(8) 554-556 (1991)

References

  • View by:
  • |
  • |
  • |

  1. I. D. Hughes, M. Däne, A. Ernst, W. Hergert, M. Lüders, J. Poulter, J. B. Staunton, A. Svane, Z. Szotek, and W. M. Temmerman, “Lanthanide contraction and magnetism in the heavy rare earth elements,” Nature 446(7136), 650–653 (2007).
    [Crossref] [PubMed]
  2. A. Volpi, A. Di Lieto, and M. Tonelli, “Novel approach for solid state cryocoolers,” Opt. Express 23(7), 8216–8226 (2015).
    [Crossref] [PubMed]
  3. A. Rosenflanz, M. Frey, B. Endres, T. Anderson, E. Richards, and C. Schardt, “Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides,” Nature 430(7001), 761–764 (2004).
    [Crossref] [PubMed]
  4. J. F. Scott, “Applications of Modern Ferroelectrics,” Science 315(5814), 954–959 (2007).
    [Crossref] [PubMed]
  5. C. M. Krowne, S. W. Kirchoefer, W. Chang, J. M. Pond, and L. M. B. Alldredge, “Examination of the possibility of negative capacitance using ferroelectric materials in solid state electronic devices,” Nano Lett. 11(3), 988–992 (2011).
    [Crossref] [PubMed]
  6. D. Niermann, C. P. Grams, P. Becker, L. Bohatý, H. Schenck, and J. Hemberger, “Critical slowing down near the multiferroic phase transition in MnWO4.,” Phys. Rev. Lett. 114(3), 037204 (2015).
    [Crossref] [PubMed]
  7. J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
    [Crossref] [PubMed]
  8. X. Wang, C. Xu, H. Yamada, K. Nishikubo, and X. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3–CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
    [Crossref]
  9. Z. Liang, F. Qin, Y. Zheng, Z. Zhang, and W. Cao, “Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal,” Sensor. Actuat. A-Phys. 238, 215–219 (2016).
  10. P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
    [Crossref]
  11. P. Du, L. Luo, W. Li, and Q. Yue, “Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application,” Appl. Phys. Lett. 116(1), 014102 (2014).
  12. P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: Sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
    [Crossref]
  13. J. Wu, W. Mao, Z. Wu, and Y. Jia, “The photoluminescence indicating the Curie transition of Er3+-doped (Ba0.97Ca0.03)(Sn0.06Ti0.94)O3 ferroelectric ceramic,” Mater. Lett. 166, 75–77 (2016).
    [Crossref]
  14. D. K. Khatua, A. Kalaskar, and R. Ranjan, “Tuning photoluminescence response by electric field in electrically soft ferroelectrics,” Phys. Rev. Lett. 116(11), 117601 (2016).
    [Crossref] [PubMed]
  15. J. Wang, L. Luo, Y. Huang, W. Li, and F. Wang, “Strong correlation of the electrical properties, up-conversion photoluminescence, and phase structure in Er3+/Yb3+ co-doped (1−x)K0.5Na0.5NbO3-xLiNbO3 ceramic,” Appl. Phys. Lett. 107(19), 192901 (2015).
    [Crossref]
  16. L. Li, L. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. Zhang, and W. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
    [Crossref] [PubMed]
  17. M. Ding, Y. Mizuno, and K. Nakamura, “Discriminative strain and temperature measurement using Brillouin scattering and fluorescence in erbium-doped optical fiber,” Opt. Express 22(20), 24706–24712 (2014).
    [Crossref] [PubMed]
  18. K. Zheng, W. Song, G. He, Z. Yuan, and W. Qin, “Five-photon UV upconversion emissions of Er3+ for temperature sensing,” Opt. Express 23(6), 7653–7658 (2015).
    [Crossref] [PubMed]
  19. X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
    [Crossref] [PubMed]
  20. J. Koruza, B. Rožič, G. Cordoyiannis, B. Malič, and Z. Kutnjak, “Large electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics,” Appl. Phys. Lett. 106(20), 202905 (2015).
    [Crossref]
  21. M. Senna, J. Pavlic, T. Rojac, B. Malic, and M. Kosec, “Preparation of phase pure K0.5Na0.5NbO3 fine powders by a solid state reaction at 625 °C from a precursor comprising Nb2O5 and K, Na acetates,” J. Am. Ceram. Soc. 97(2), 413–419 (2014).
    [Crossref]
  22. R. Reisfeld and Y. Eckstein, “Dependence of spontaneous emission and nonradiative relaxtions of Tm3+ and Er3+ on glass host and temperature,” J. Chem. Phys. 63(9), 4001 (1975).
    [Crossref]

2016 (4)

Z. Liang, F. Qin, Y. Zheng, Z. Zhang, and W. Cao, “Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal,” Sensor. Actuat. A-Phys. 238, 215–219 (2016).

J. Wu, W. Mao, Z. Wu, and Y. Jia, “The photoluminescence indicating the Curie transition of Er3+-doped (Ba0.97Ca0.03)(Sn0.06Ti0.94)O3 ferroelectric ceramic,” Mater. Lett. 166, 75–77 (2016).
[Crossref]

D. K. Khatua, A. Kalaskar, and R. Ranjan, “Tuning photoluminescence response by electric field in electrically soft ferroelectrics,” Phys. Rev. Lett. 116(11), 117601 (2016).
[Crossref] [PubMed]

L. Li, L. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. Zhang, and W. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
[Crossref] [PubMed]

2015 (5)

K. Zheng, W. Song, G. He, Z. Yuan, and W. Qin, “Five-photon UV upconversion emissions of Er3+ for temperature sensing,” Opt. Express 23(6), 7653–7658 (2015).
[Crossref] [PubMed]

J. Wang, L. Luo, Y. Huang, W. Li, and F. Wang, “Strong correlation of the electrical properties, up-conversion photoluminescence, and phase structure in Er3+/Yb3+ co-doped (1−x)K0.5Na0.5NbO3-xLiNbO3 ceramic,” Appl. Phys. Lett. 107(19), 192901 (2015).
[Crossref]

D. Niermann, C. P. Grams, P. Becker, L. Bohatý, H. Schenck, and J. Hemberger, “Critical slowing down near the multiferroic phase transition in MnWO4.,” Phys. Rev. Lett. 114(3), 037204 (2015).
[Crossref] [PubMed]

A. Volpi, A. Di Lieto, and M. Tonelli, “Novel approach for solid state cryocoolers,” Opt. Express 23(7), 8216–8226 (2015).
[Crossref] [PubMed]

J. Koruza, B. Rožič, G. Cordoyiannis, B. Malič, and Z. Kutnjak, “Large electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics,” Appl. Phys. Lett. 106(20), 202905 (2015).
[Crossref]

2014 (4)

M. Senna, J. Pavlic, T. Rojac, B. Malic, and M. Kosec, “Preparation of phase pure K0.5Na0.5NbO3 fine powders by a solid state reaction at 625 °C from a precursor comprising Nb2O5 and K, Na acetates,” J. Am. Ceram. Soc. 97(2), 413–419 (2014).
[Crossref]

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

P. Du, L. Luo, W. Li, and Q. Yue, “Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application,” Appl. Phys. Lett. 116(1), 014102 (2014).

M. Ding, Y. Mizuno, and K. Nakamura, “Discriminative strain and temperature measurement using Brillouin scattering and fluorescence in erbium-doped optical fiber,” Opt. Express 22(20), 24706–24712 (2014).
[Crossref] [PubMed]

2013 (1)

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

2011 (2)

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

C. M. Krowne, S. W. Kirchoefer, W. Chang, J. M. Pond, and L. M. B. Alldredge, “Examination of the possibility of negative capacitance using ferroelectric materials in solid state electronic devices,” Nano Lett. 11(3), 988–992 (2011).
[Crossref] [PubMed]

2008 (1)

P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: Sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
[Crossref]

2007 (2)

I. D. Hughes, M. Däne, A. Ernst, W. Hergert, M. Lüders, J. Poulter, J. B. Staunton, A. Svane, Z. Szotek, and W. M. Temmerman, “Lanthanide contraction and magnetism in the heavy rare earth elements,” Nature 446(7136), 650–653 (2007).
[Crossref] [PubMed]

J. F. Scott, “Applications of Modern Ferroelectrics,” Science 315(5814), 954–959 (2007).
[Crossref] [PubMed]

2005 (1)

X. Wang, C. Xu, H. Yamada, K. Nishikubo, and X. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3–CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]

2004 (1)

A. Rosenflanz, M. Frey, B. Endres, T. Anderson, E. Richards, and C. Schardt, “Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides,” Nature 430(7001), 761–764 (2004).
[Crossref] [PubMed]

1975 (1)

R. Reisfeld and Y. Eckstein, “Dependence of spontaneous emission and nonradiative relaxtions of Tm3+ and Er3+ on glass host and temperature,” J. Chem. Phys. 63(9), 4001 (1975).
[Crossref]

Alldredge, L. M. B.

C. M. Krowne, S. W. Kirchoefer, W. Chang, J. M. Pond, and L. M. B. Alldredge, “Examination of the possibility of negative capacitance using ferroelectric materials in solid state electronic devices,” Nano Lett. 11(3), 988–992 (2011).
[Crossref] [PubMed]

Anderson, T.

A. Rosenflanz, M. Frey, B. Endres, T. Anderson, E. Richards, and C. Schardt, “Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides,” Nature 430(7001), 761–764 (2004).
[Crossref] [PubMed]

Becker, P.

D. Niermann, C. P. Grams, P. Becker, L. Bohatý, H. Schenck, and J. Hemberger, “Critical slowing down near the multiferroic phase transition in MnWO4.,” Phys. Rev. Lett. 114(3), 037204 (2015).
[Crossref] [PubMed]

Bohatý, L.

D. Niermann, C. P. Grams, P. Becker, L. Bohatý, H. Schenck, and J. Hemberger, “Critical slowing down near the multiferroic phase transition in MnWO4.,” Phys. Rev. Lett. 114(3), 037204 (2015).
[Crossref] [PubMed]

Cao, W.

Z. Liang, F. Qin, Y. Zheng, Z. Zhang, and W. Cao, “Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal,” Sensor. Actuat. A-Phys. 238, 215–219 (2016).

L. Li, L. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. Zhang, and W. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
[Crossref] [PubMed]

Chang, W.

C. M. Krowne, S. W. Kirchoefer, W. Chang, J. M. Pond, and L. M. B. Alldredge, “Examination of the possibility of negative capacitance using ferroelectric materials in solid state electronic devices,” Nano Lett. 11(3), 988–992 (2011).
[Crossref] [PubMed]

Chen, H.

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: Sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
[Crossref]

Cordoyiannis, G.

J. Koruza, B. Rožič, G. Cordoyiannis, B. Malič, and Z. Kutnjak, “Large electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics,” Appl. Phys. Lett. 106(20), 202905 (2015).
[Crossref]

Däne, M.

I. D. Hughes, M. Däne, A. Ernst, W. Hergert, M. Lüders, J. Poulter, J. B. Staunton, A. Svane, Z. Szotek, and W. M. Temmerman, “Lanthanide contraction and magnetism in the heavy rare earth elements,” Nature 446(7136), 650–653 (2007).
[Crossref] [PubMed]

Di Lieto, A.

Ding, M.

Du, P.

P. Du, L. Luo, W. Li, and Q. Yue, “Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application,” Appl. Phys. Lett. 116(1), 014102 (2014).

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

Eckstein, Y.

R. Reisfeld and Y. Eckstein, “Dependence of spontaneous emission and nonradiative relaxtions of Tm3+ and Er3+ on glass host and temperature,” J. Chem. Phys. 63(9), 4001 (1975).
[Crossref]

Endres, B.

A. Rosenflanz, M. Frey, B. Endres, T. Anderson, E. Richards, and C. Schardt, “Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides,” Nature 430(7001), 761–764 (2004).
[Crossref] [PubMed]

Ernst, A.

I. D. Hughes, M. Däne, A. Ernst, W. Hergert, M. Lüders, J. Poulter, J. B. Staunton, A. Svane, Z. Szotek, and W. M. Temmerman, “Lanthanide contraction and magnetism in the heavy rare earth elements,” Nature 446(7136), 650–653 (2007).
[Crossref] [PubMed]

Fang, L.

P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: Sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
[Crossref]

Frey, M.

A. Rosenflanz, M. Frey, B. Endres, T. Anderson, E. Richards, and C. Schardt, “Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides,” Nature 430(7001), 761–764 (2004).
[Crossref] [PubMed]

Grams, C. P.

D. Niermann, C. P. Grams, P. Becker, L. Bohatý, H. Schenck, and J. Hemberger, “Critical slowing down near the multiferroic phase transition in MnWO4.,” Phys. Rev. Lett. 114(3), 037204 (2015).
[Crossref] [PubMed]

Hao, J.

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

He, G.

Hemberger, J.

D. Niermann, C. P. Grams, P. Becker, L. Bohatý, H. Schenck, and J. Hemberger, “Critical slowing down near the multiferroic phase transition in MnWO4.,” Phys. Rev. Lett. 114(3), 037204 (2015).
[Crossref] [PubMed]

Hergert, W.

I. D. Hughes, M. Däne, A. Ernst, W. Hergert, M. Lüders, J. Poulter, J. B. Staunton, A. Svane, Z. Szotek, and W. M. Temmerman, “Lanthanide contraction and magnetism in the heavy rare earth elements,” Nature 446(7136), 650–653 (2007).
[Crossref] [PubMed]

Huang, Y.

J. Wang, L. Luo, Y. Huang, W. Li, and F. Wang, “Strong correlation of the electrical properties, up-conversion photoluminescence, and phase structure in Er3+/Yb3+ co-doped (1−x)K0.5Na0.5NbO3-xLiNbO3 ceramic,” Appl. Phys. Lett. 107(19), 192901 (2015).
[Crossref]

Hughes, I. D.

I. D. Hughes, M. Däne, A. Ernst, W. Hergert, M. Lüders, J. Poulter, J. B. Staunton, A. Svane, Z. Szotek, and W. M. Temmerman, “Lanthanide contraction and magnetism in the heavy rare earth elements,” Nature 446(7136), 650–653 (2007).
[Crossref] [PubMed]

Jia, Y.

J. Wu, W. Mao, Z. Wu, and Y. Jia, “The photoluminescence indicating the Curie transition of Er3+-doped (Ba0.97Ca0.03)(Sn0.06Ti0.94)O3 ferroelectric ceramic,” Mater. Lett. 166, 75–77 (2016).
[Crossref]

Kalaskar, A.

D. K. Khatua, A. Kalaskar, and R. Ranjan, “Tuning photoluminescence response by electric field in electrically soft ferroelectrics,” Phys. Rev. Lett. 116(11), 117601 (2016).
[Crossref] [PubMed]

Khatua, D. K.

D. K. Khatua, A. Kalaskar, and R. Ranjan, “Tuning photoluminescence response by electric field in electrically soft ferroelectrics,” Phys. Rev. Lett. 116(11), 117601 (2016).
[Crossref] [PubMed]

Kirchoefer, S. W.

C. M. Krowne, S. W. Kirchoefer, W. Chang, J. M. Pond, and L. M. B. Alldredge, “Examination of the possibility of negative capacitance using ferroelectric materials in solid state electronic devices,” Nano Lett. 11(3), 988–992 (2011).
[Crossref] [PubMed]

Koruza, J.

J. Koruza, B. Rožič, G. Cordoyiannis, B. Malič, and Z. Kutnjak, “Large electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics,” Appl. Phys. Lett. 106(20), 202905 (2015).
[Crossref]

Kosec, M.

M. Senna, J. Pavlic, T. Rojac, B. Malic, and M. Kosec, “Preparation of phase pure K0.5Na0.5NbO3 fine powders by a solid state reaction at 625 °C from a precursor comprising Nb2O5 and K, Na acetates,” J. Am. Ceram. Soc. 97(2), 413–419 (2014).
[Crossref]

Krowne, C. M.

C. M. Krowne, S. W. Kirchoefer, W. Chang, J. M. Pond, and L. M. B. Alldredge, “Examination of the possibility of negative capacitance using ferroelectric materials in solid state electronic devices,” Nano Lett. 11(3), 988–992 (2011).
[Crossref] [PubMed]

Kutnjak, Z.

J. Koruza, B. Rožič, G. Cordoyiannis, B. Malič, and Z. Kutnjak, “Large electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics,” Appl. Phys. Lett. 106(20), 202905 (2015).
[Crossref]

Li, L.

Li, W.

J. Wang, L. Luo, Y. Huang, W. Li, and F. Wang, “Strong correlation of the electrical properties, up-conversion photoluminescence, and phase structure in Er3+/Yb3+ co-doped (1−x)K0.5Na0.5NbO3-xLiNbO3 ceramic,” Appl. Phys. Lett. 107(19), 192901 (2015).
[Crossref]

P. Du, L. Luo, W. Li, and Q. Yue, “Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application,” Appl. Phys. Lett. 116(1), 014102 (2014).

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

Liang, Z.

Z. Liang, F. Qin, Y. Zheng, Z. Zhang, and W. Cao, “Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal,” Sensor. Actuat. A-Phys. 238, 215–219 (2016).

L. Li, L. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. Zhang, and W. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
[Crossref] [PubMed]

Lüders, M.

I. D. Hughes, M. Däne, A. Ernst, W. Hergert, M. Lüders, J. Poulter, J. B. Staunton, A. Svane, Z. Szotek, and W. M. Temmerman, “Lanthanide contraction and magnetism in the heavy rare earth elements,” Nature 446(7136), 650–653 (2007).
[Crossref] [PubMed]

Luo, L.

J. Wang, L. Luo, Y. Huang, W. Li, and F. Wang, “Strong correlation of the electrical properties, up-conversion photoluminescence, and phase structure in Er3+/Yb3+ co-doped (1−x)K0.5Na0.5NbO3-xLiNbO3 ceramic,” Appl. Phys. Lett. 107(19), 192901 (2015).
[Crossref]

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

P. Du, L. Luo, W. Li, and Q. Yue, “Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application,” Appl. Phys. Lett. 116(1), 014102 (2014).

Malic, B.

J. Koruza, B. Rožič, G. Cordoyiannis, B. Malič, and Z. Kutnjak, “Large electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics,” Appl. Phys. Lett. 106(20), 202905 (2015).
[Crossref]

M. Senna, J. Pavlic, T. Rojac, B. Malic, and M. Kosec, “Preparation of phase pure K0.5Na0.5NbO3 fine powders by a solid state reaction at 625 °C from a precursor comprising Nb2O5 and K, Na acetates,” J. Am. Ceram. Soc. 97(2), 413–419 (2014).
[Crossref]

Mao, W.

J. Wu, W. Mao, Z. Wu, and Y. Jia, “The photoluminescence indicating the Curie transition of Er3+-doped (Ba0.97Ca0.03)(Sn0.06Ti0.94)O3 ferroelectric ceramic,” Mater. Lett. 166, 75–77 (2016).
[Crossref]

Meier, R. J.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Mizuno, Y.

Nakamura, K.

Niermann, D.

D. Niermann, C. P. Grams, P. Becker, L. Bohatý, H. Schenck, and J. Hemberger, “Critical slowing down near the multiferroic phase transition in MnWO4.,” Phys. Rev. Lett. 114(3), 037204 (2015).
[Crossref] [PubMed]

Nishikubo, K.

X. Wang, C. Xu, H. Yamada, K. Nishikubo, and X. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3–CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]

Pavlic, J.

M. Senna, J. Pavlic, T. Rojac, B. Malic, and M. Kosec, “Preparation of phase pure K0.5Na0.5NbO3 fine powders by a solid state reaction at 625 °C from a precursor comprising Nb2O5 and K, Na acetates,” J. Am. Ceram. Soc. 97(2), 413–419 (2014).
[Crossref]

Pond, J. M.

C. M. Krowne, S. W. Kirchoefer, W. Chang, J. M. Pond, and L. M. B. Alldredge, “Examination of the possibility of negative capacitance using ferroelectric materials in solid state electronic devices,” Nano Lett. 11(3), 988–992 (2011).
[Crossref] [PubMed]

Poulter, J.

I. D. Hughes, M. Däne, A. Ernst, W. Hergert, M. Lüders, J. Poulter, J. B. Staunton, A. Svane, Z. Szotek, and W. M. Temmerman, “Lanthanide contraction and magnetism in the heavy rare earth elements,” Nature 446(7136), 650–653 (2007).
[Crossref] [PubMed]

Qin, F.

Z. Liang, F. Qin, Y. Zheng, Z. Zhang, and W. Cao, “Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal,” Sensor. Actuat. A-Phys. 238, 215–219 (2016).

Qin, W.

Ranjan, R.

D. K. Khatua, A. Kalaskar, and R. Ranjan, “Tuning photoluminescence response by electric field in electrically soft ferroelectrics,” Phys. Rev. Lett. 116(11), 117601 (2016).
[Crossref] [PubMed]

Reisfeld, R.

R. Reisfeld and Y. Eckstein, “Dependence of spontaneous emission and nonradiative relaxtions of Tm3+ and Er3+ on glass host and temperature,” J. Chem. Phys. 63(9), 4001 (1975).
[Crossref]

Richards, E.

A. Rosenflanz, M. Frey, B. Endres, T. Anderson, E. Richards, and C. Schardt, “Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides,” Nature 430(7001), 761–764 (2004).
[Crossref] [PubMed]

Rojac, T.

M. Senna, J. Pavlic, T. Rojac, B. Malic, and M. Kosec, “Preparation of phase pure K0.5Na0.5NbO3 fine powders by a solid state reaction at 625 °C from a precursor comprising Nb2O5 and K, Na acetates,” J. Am. Ceram. Soc. 97(2), 413–419 (2014).
[Crossref]

Rosenflanz, A.

A. Rosenflanz, M. Frey, B. Endres, T. Anderson, E. Richards, and C. Schardt, “Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides,” Nature 430(7001), 761–764 (2004).
[Crossref] [PubMed]

Rožic, B.

J. Koruza, B. Rožič, G. Cordoyiannis, B. Malič, and Z. Kutnjak, “Large electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics,” Appl. Phys. Lett. 106(20), 202905 (2015).
[Crossref]

Schardt, C.

A. Rosenflanz, M. Frey, B. Endres, T. Anderson, E. Richards, and C. Schardt, “Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides,” Nature 430(7001), 761–764 (2004).
[Crossref] [PubMed]

Schenck, H.

D. Niermann, C. P. Grams, P. Becker, L. Bohatý, H. Schenck, and J. Hemberger, “Critical slowing down near the multiferroic phase transition in MnWO4.,” Phys. Rev. Lett. 114(3), 037204 (2015).
[Crossref] [PubMed]

Scott, J. F.

J. F. Scott, “Applications of Modern Ferroelectrics,” Science 315(5814), 954–959 (2007).
[Crossref] [PubMed]

Senna, M.

M. Senna, J. Pavlic, T. Rojac, B. Malic, and M. Kosec, “Preparation of phase pure K0.5Na0.5NbO3 fine powders by a solid state reaction at 625 °C from a precursor comprising Nb2O5 and K, Na acetates,” J. Am. Ceram. Soc. 97(2), 413–419 (2014).
[Crossref]

Shen, J.

P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: Sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
[Crossref]

Shen, M.

P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: Sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
[Crossref]

Song, W.

Staunton, J. B.

I. D. Hughes, M. Däne, A. Ernst, W. Hergert, M. Lüders, J. Poulter, J. B. Staunton, A. Svane, Z. Szotek, and W. M. Temmerman, “Lanthanide contraction and magnetism in the heavy rare earth elements,” Nature 446(7136), 650–653 (2007).
[Crossref] [PubMed]

Svane, A.

I. D. Hughes, M. Däne, A. Ernst, W. Hergert, M. Lüders, J. Poulter, J. B. Staunton, A. Svane, Z. Szotek, and W. M. Temmerman, “Lanthanide contraction and magnetism in the heavy rare earth elements,” Nature 446(7136), 650–653 (2007).
[Crossref] [PubMed]

Szotek, Z.

I. D. Hughes, M. Däne, A. Ernst, W. Hergert, M. Lüders, J. Poulter, J. B. Staunton, A. Svane, Z. Szotek, and W. M. Temmerman, “Lanthanide contraction and magnetism in the heavy rare earth elements,” Nature 446(7136), 650–653 (2007).
[Crossref] [PubMed]

Temmerman, W. M.

I. D. Hughes, M. Däne, A. Ernst, W. Hergert, M. Lüders, J. Poulter, J. B. Staunton, A. Svane, Z. Szotek, and W. M. Temmerman, “Lanthanide contraction and magnetism in the heavy rare earth elements,” Nature 446(7136), 650–653 (2007).
[Crossref] [PubMed]

Tonelli, M.

Volpi, A.

Wang, F.

J. Wang, L. Luo, Y. Huang, W. Li, and F. Wang, “Strong correlation of the electrical properties, up-conversion photoluminescence, and phase structure in Er3+/Yb3+ co-doped (1−x)K0.5Na0.5NbO3-xLiNbO3 ceramic,” Appl. Phys. Lett. 107(19), 192901 (2015).
[Crossref]

Wang, J.

J. Wang, L. Luo, Y. Huang, W. Li, and F. Wang, “Strong correlation of the electrical properties, up-conversion photoluminescence, and phase structure in Er3+/Yb3+ co-doped (1−x)K0.5Na0.5NbO3-xLiNbO3 ceramic,” Appl. Phys. Lett. 107(19), 192901 (2015).
[Crossref]

Wang, X.

X. Wang, C. Xu, H. Yamada, K. Nishikubo, and X. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3–CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]

Wang, X. D.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Wei, X.

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

Wolfbeis, O. S.

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

Wu, J.

J. Wu, W. Mao, Z. Wu, and Y. Jia, “The photoluminescence indicating the Curie transition of Er3+-doped (Ba0.97Ca0.03)(Sn0.06Ti0.94)O3 ferroelectric ceramic,” Mater. Lett. 166, 75–77 (2016).
[Crossref]

Wu, X.

P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: Sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
[Crossref]

Wu, Z.

J. Wu, W. Mao, Z. Wu, and Y. Jia, “The photoluminescence indicating the Curie transition of Er3+-doped (Ba0.97Ca0.03)(Sn0.06Ti0.94)O3 ferroelectric ceramic,” Mater. Lett. 166, 75–77 (2016).
[Crossref]

Xu, C.

X. Wang, C. Xu, H. Yamada, K. Nishikubo, and X. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3–CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]

Xu, W.

Yamada, H.

X. Wang, C. Xu, H. Yamada, K. Nishikubo, and X. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3–CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]

Yuan, Z.

Yue, Q.

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

P. Du, L. Luo, W. Li, and Q. Yue, “Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application,” Appl. Phys. Lett. 116(1), 014102 (2014).

Zhang, P.

P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: Sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
[Crossref]

Zhang, Y.

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

Zhang, Z.

Z. Liang, F. Qin, Y. Zheng, Z. Zhang, and W. Cao, “Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal,” Sensor. Actuat. A-Phys. 238, 215–219 (2016).

L. Li, L. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. Zhang, and W. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
[Crossref] [PubMed]

Zheng, F.

P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: Sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
[Crossref]

Zheng, K.

Zheng, L.

Zheng, X.

X. Wang, C. Xu, H. Yamada, K. Nishikubo, and X. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3–CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]

Zheng, Y.

Z. Liang, F. Qin, Y. Zheng, Z. Zhang, and W. Cao, “Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal,” Sensor. Actuat. A-Phys. 238, 215–219 (2016).

Zhou, Y.

Adv. Mater. (1)

X. Wang, C. Xu, H. Yamada, K. Nishikubo, and X. Zheng, “Electro-mechano-optical conversions in Pr3+-doped BaTiO3–CaTiO3 ceramics,” Adv. Mater. 17(10), 1254–1258 (2005).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

J. Hao, Y. Zhang, and X. Wei, “Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films,” Angew. Chem. Int. Ed. Engl. 50(30), 6876–6880 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

J. Koruza, B. Rožič, G. Cordoyiannis, B. Malič, and Z. Kutnjak, “Large electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics,” Appl. Phys. Lett. 106(20), 202905 (2015).
[Crossref]

P. Du, L. Luo, W. Li, Q. Yue, and H. Chen, “Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic,” Appl. Phys. Lett. 104(15), 152902 (2014).
[Crossref]

P. Du, L. Luo, W. Li, and Q. Yue, “Upconversion emission in Er-doped and Er/Yb-codoped ferroelectric Na0.5Bi0.5TiO3 and its temperature sensing application,” Appl. Phys. Lett. 116(1), 014102 (2014).

P. Zhang, M. Shen, L. Fang, F. Zheng, X. Wu, J. Shen, and H. Chen, “Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: Sensitive to polarization and phase transitions,” Appl. Phys. Lett. 92(22), 222908 (2008).
[Crossref]

J. Wang, L. Luo, Y. Huang, W. Li, and F. Wang, “Strong correlation of the electrical properties, up-conversion photoluminescence, and phase structure in Er3+/Yb3+ co-doped (1−x)K0.5Na0.5NbO3-xLiNbO3 ceramic,” Appl. Phys. Lett. 107(19), 192901 (2015).
[Crossref]

Chem. Soc. Rev. (1)

X. D. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref] [PubMed]

J. Am. Ceram. Soc. (1)

M. Senna, J. Pavlic, T. Rojac, B. Malic, and M. Kosec, “Preparation of phase pure K0.5Na0.5NbO3 fine powders by a solid state reaction at 625 °C from a precursor comprising Nb2O5 and K, Na acetates,” J. Am. Ceram. Soc. 97(2), 413–419 (2014).
[Crossref]

J. Chem. Phys. (1)

R. Reisfeld and Y. Eckstein, “Dependence of spontaneous emission and nonradiative relaxtions of Tm3+ and Er3+ on glass host and temperature,” J. Chem. Phys. 63(9), 4001 (1975).
[Crossref]

Mater. Lett. (1)

J. Wu, W. Mao, Z. Wu, and Y. Jia, “The photoluminescence indicating the Curie transition of Er3+-doped (Ba0.97Ca0.03)(Sn0.06Ti0.94)O3 ferroelectric ceramic,” Mater. Lett. 166, 75–77 (2016).
[Crossref]

Nano Lett. (1)

C. M. Krowne, S. W. Kirchoefer, W. Chang, J. M. Pond, and L. M. B. Alldredge, “Examination of the possibility of negative capacitance using ferroelectric materials in solid state electronic devices,” Nano Lett. 11(3), 988–992 (2011).
[Crossref] [PubMed]

Nature (2)

I. D. Hughes, M. Däne, A. Ernst, W. Hergert, M. Lüders, J. Poulter, J. B. Staunton, A. Svane, Z. Szotek, and W. M. Temmerman, “Lanthanide contraction and magnetism in the heavy rare earth elements,” Nature 446(7136), 650–653 (2007).
[Crossref] [PubMed]

A. Rosenflanz, M. Frey, B. Endres, T. Anderson, E. Richards, and C. Schardt, “Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides,” Nature 430(7001), 761–764 (2004).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

D. K. Khatua, A. Kalaskar, and R. Ranjan, “Tuning photoluminescence response by electric field in electrically soft ferroelectrics,” Phys. Rev. Lett. 116(11), 117601 (2016).
[Crossref] [PubMed]

D. Niermann, C. P. Grams, P. Becker, L. Bohatý, H. Schenck, and J. Hemberger, “Critical slowing down near the multiferroic phase transition in MnWO4.,” Phys. Rev. Lett. 114(3), 037204 (2015).
[Crossref] [PubMed]

Science (1)

J. F. Scott, “Applications of Modern Ferroelectrics,” Science 315(5814), 954–959 (2007).
[Crossref] [PubMed]

Sensor. Actuat. A-Phys. (1)

Z. Liang, F. Qin, Y. Zheng, Z. Zhang, and W. Cao, “Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal,” Sensor. Actuat. A-Phys. 238, 215–219 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 XRD pattern of Er3+ doped KNN ceramic.
Fig. 2
Fig. 2 Polarization hysteresis loop vs. electric field of Er3+ doped KNN ceramic.
Fig. 3
Fig. 3 Temperature dependence of relative dielectric constant of Er3+ doped KNN ceramic at 0.1 MHz.
Fig. 4
Fig. 4 (a). Fluorescence spectrum originated from 2H11/2 and 4S3/2 states to ground state in Er3+ doped BCT ceramic excited with a 980 nm diode laser at 373 K; (b) Upconversion mechanism of 2H11/2 and 4S3/2 states of the sample excited with a 980 nm diode laser.
Fig. 5
Fig. 5 FIR variation of 525 nm and 555 nm peak fluorescence in wide temperature range of 300 K to 750 K.
Fig. 6
Fig. 6 (a)FIR variation of 525 nm and 555 nm peak fluorescence around TO-T; (b) Intensity variation of 525 nm and 555 nm peak fluorescence around TO-T.
Fig. 7
Fig. 7 (a). FIR variation of 525 nm and 555 nm peak fluorescence around TC; (b) Intensity of 525 nm and 555 nm peak fluorescence around TC.

Tables (1)

Tables Icon

Table 1 Deviant temperature value from Boltzmann law around TO-T and TC.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FIR= I 525nm I 555nm =A*exp(ΔE/ k B T)+B
S r = dFIR dT 1 FIR

Metrics