Abstract

We propose and numerically investigate a gate-controlled on-chip graphene metasurface consisting of a monolayer graphene sheet and silicon photonic crystal-like substrate, to achieve an electrically-tunable induced transparency. The operation mechanism of the induced transparency of the on-chip graphene metasurface is analyzed. The tunable optical properties with different gate-voltages and polarizations have been discussed. Additionally, the spectral feature of the on-chip graphene metasurface as a function of the refractive index of the local environment is also investigated. The result shows that the on-chip graphene metasurface as a refractive index sensor can achieve an overall figure of merit of 8.89 in infrared wavelength range. Our study suggests that the proposed structure is potentially attractive as optoelectronic modulators and refractive index sensors.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic electromagnetically induced transparency based on a metal-graphene hybrid metamaterial

Chenxi Liu, Peiguo Liu, Cheng Yang, Yue Lin, and Song Zha
Opt. Mater. Express 8(5) 1132-1142 (2018)

Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial

Baihui Zhang, Hongjian Li, Hui Xu, Mingzhuo Zhao, Cuixiu Xiong, Chao Liu, and Kuan Wu
Opt. Express 27(3) 3598-3608 (2019)

Tunable multispectral plasmon induced transparency based on graphene metamaterials

Chen Sun, Jiangnan Si, Zhewei Dong, and Xiaoxu Deng
Opt. Express 24(11) 11466-11474 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref] [PubMed]
  2. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  3. G. Manzacca, G. Cincotti, and K. Hingerl, “Ultrafast switching by controlling Rabi splitting,” Appl. Phys. Lett. 91(23), 231920 (2007).
    [Crossref]
  4. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [Crossref] [PubMed]
  5. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
    [Crossref]
  6. N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
    [Crossref]
  7. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
    [Crossref] [PubMed]
  8. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission reponse mimicking electromagnetically induced transparenc,” Appl. Phys. Lett. 94(21), 211902 (2009).
    [Crossref]
  9. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  10. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref] [PubMed]
  11. G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. Reno, and E. A. Shaner, “Induced transparency by coupling of tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
    [Crossref]
  12. Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
    [Crossref] [PubMed]
  13. R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(22), 201107 (2011).
    [Crossref]
  14. S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
    [Crossref] [PubMed]
  15. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
    [Crossref] [PubMed]
  16. E. Y. Andrei, G. Li, and X. Du, “Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport,” Rep. Prog. Phys. 75(5), 056501 (2012).
    [Crossref] [PubMed]
  17. N. O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, and X. Duan, “Graphene: an emerging electronic material,” Adv. Mater. 24(43), 5782–5825 (2012).
    [Crossref] [PubMed]
  18. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  19. J. Lao, J. Tao, Q. J. Wang, and X. G. Huang, “Tunable graphene-based plasmonic waveguides: nano modulators and attenuators,” Laser Photonics Rev. 8(4), 569–574 (2014).
    [Crossref]
  20. X. He, Z. Y. Zhao, and W. Shi, “Graphene-supported tunable near-IR metamaterials,” Opt. Lett. 40(2), 178–181 (2015).
    [Crossref] [PubMed]
  21. X. He, X. Zhong, F. Lin, and W. Shi, “Investigation of graphene assisted tunable terahertz metamaterials absorber,” Opt. Mater. Express 6(2), 331–342 (2016).
    [Crossref]
  22. F. F. Lu, B. A. Liu, and S. Shen, “Infrared wavefront control based on graphene metasurfaces,” Adv. Opt. Mater. 2(8), 794–799 (2014).
    [Crossref]
  23. A. Fallahi and J. P. Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2015).
    [Crossref]
  24. X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
    [Crossref] [PubMed]
  25. Z. H. Chen, Q. L. Tan, J. Lao, Y. Liang, and X. G. Huang, “Reconfigurable and tunable flat graphene photonic crystal circuits,” Nanoscale 7(25), 10912–10917 (2015).
    [Crossref] [PubMed]
  26. J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
    [Crossref] [PubMed]
  27. C. Zeng, Y. Cui, and X. Liu, “Tunable multiple phase-coupled plasmon-induced transparencies in graphene metamaterials,” Opt. Express 23(1), 545–551 (2015).
    [Crossref] [PubMed]
  28. H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
    [Crossref] [PubMed]
  29. X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21(23), 28438–28443 (2013).
    [Crossref] [PubMed]
  30. H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
    [Crossref]
  31. L. Wang, W. Li, and X. Jiang, “Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide,” Opt. Lett. 40(10), 2325–2328 (2015).
    [Crossref] [PubMed]
  32. Z. X. Chen, J. H. Chen, Z. J. Wu, W. Hu, X. J. Zhang, and Y. Q. Lu, “Tunable Fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104(16), 161114 (2014).
    [Crossref]
  33. A. Manjavacas, P. Nordlander, F. J. García de Abajo, and G. D. Abajo, “Plasmon blockade in nanostructured graphene,” ACS Nano 6(2), 1724–1731 (2012).
    [Crossref] [PubMed]
  34. L. A. Falkovsky and S. S. Pershoguba, “Optical far–infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B. 76(15), 154310 (2007).
  35. L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129(1), 012004 (2008).
    [Crossref]
  36. Z. Li, E. Henriksen, Z. Jiang, Z. Hao, M. Martin, P. Kim, H. Stormer, and D. N. Basov, “Charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
    [Crossref]
  37. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
    [Crossref]
  38. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
    [Crossref] [PubMed]
  39. L. A. Falkovsky, “Modeling methodology” https://kb.lumerical.com/en/index.html?applications.html .
  40. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
    [Crossref] [PubMed]
  41. Y. Zhan, D. Y. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
    [Crossref] [PubMed]

2016 (1)

2015 (6)

A. Fallahi and J. P. Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2015).
[Crossref]

X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
[Crossref] [PubMed]

Z. H. Chen, Q. L. Tan, J. Lao, Y. Liang, and X. G. Huang, “Reconfigurable and tunable flat graphene photonic crystal circuits,” Nanoscale 7(25), 10912–10917 (2015).
[Crossref] [PubMed]

X. He, Z. Y. Zhao, and W. Shi, “Graphene-supported tunable near-IR metamaterials,” Opt. Lett. 40(2), 178–181 (2015).
[Crossref] [PubMed]

C. Zeng, Y. Cui, and X. Liu, “Tunable multiple phase-coupled plasmon-induced transparencies in graphene metamaterials,” Opt. Express 23(1), 545–551 (2015).
[Crossref] [PubMed]

L. Wang, W. Li, and X. Jiang, “Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide,” Opt. Lett. 40(10), 2325–2328 (2015).
[Crossref] [PubMed]

2014 (7)

Y. Zhan, D. Y. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
[Crossref] [PubMed]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

Z. X. Chen, J. H. Chen, Z. J. Wu, W. Hu, X. J. Zhang, and Y. Q. Lu, “Tunable Fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104(16), 161114 (2014).
[Crossref]

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
[Crossref] [PubMed]

J. Lao, J. Tao, Q. J. Wang, and X. G. Huang, “Tunable graphene-based plasmonic waveguides: nano modulators and attenuators,” Laser Photonics Rev. 8(4), 569–574 (2014).
[Crossref]

F. F. Lu, B. A. Liu, and S. Shen, “Infrared wavefront control based on graphene metasurfaces,” Adv. Opt. Mater. 2(8), 794–799 (2014).
[Crossref]

2013 (4)

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21(23), 28438–28443 (2013).
[Crossref] [PubMed]

G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. Reno, and E. A. Shaner, “Induced transparency by coupling of tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

2012 (5)

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

A. Manjavacas, P. Nordlander, F. J. García de Abajo, and G. D. Abajo, “Plasmon blockade in nanostructured graphene,” ACS Nano 6(2), 1724–1731 (2012).
[Crossref] [PubMed]

E. Y. Andrei, G. Li, and X. Du, “Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport,” Rep. Prog. Phys. 75(5), 056501 (2012).
[Crossref] [PubMed]

N. O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, and X. Duan, “Graphene: an emerging electronic material,” Adv. Mater. 24(43), 5782–5825 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

2011 (3)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(22), 201107 (2011).
[Crossref]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

2010 (1)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

2009 (3)

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission reponse mimicking electromagnetically induced transparenc,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

2008 (6)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129(1), 012004 (2008).
[Crossref]

Z. Li, E. Henriksen, Z. Jiang, Z. Hao, M. Martin, P. Kim, H. Stormer, and D. N. Basov, “Charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

2007 (3)

G. Manzacca, G. Cincotti, and K. Hingerl, “Ultrafast switching by controlling Rabi splitting,” Appl. Phys. Lett. 91(23), 231920 (2007).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

L. A. Falkovsky and S. S. Pershoguba, “Optical far–infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B. 76(15), 154310 (2007).

1991 (1)

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Abajo, G. D.

A. Manjavacas, P. Nordlander, F. J. García de Abajo, and G. D. Abajo, “Plasmon blockade in nanostructured graphene,” ACS Nano 6(2), 1724–1731 (2012).
[Crossref] [PubMed]

Aizin, G. R.

G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. Reno, and E. A. Shaner, “Induced transparency by coupling of tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Allen, S. J.

G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. Reno, and E. A. Shaner, “Induced transparency by coupling of tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Al-Naib, I. A. I.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(22), 201107 (2011).
[Crossref]

Andrei, E. Y.

E. Y. Andrei, G. Li, and X. Du, “Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport,” Rep. Prog. Phys. 75(5), 056501 (2012).
[Crossref] [PubMed]

Arigong, B.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Avouris, P.

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Basov, D. N.

Z. Li, E. Henriksen, Z. Jiang, Z. Hao, M. Martin, P. Kim, H. Stormer, and D. N. Basov, “Charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Bethke, D.

G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. Reno, and E. A. Shaner, “Induced transparency by coupling of tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Boller, K.-J.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Cao, W.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(22), 201107 (2011).
[Crossref]

Carrier, J. P.

A. Fallahi and J. P. Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2015).
[Crossref]

Chai, Y.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Chang, D. E.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Chen, H.

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Chen, J. H.

Z. X. Chen, J. H. Chen, Z. J. Wu, W. Hu, X. J. Zhang, and Y. Q. Lu, “Tunable Fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104(16), 161114 (2014).
[Crossref]

Chen, Q.

X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
[Crossref] [PubMed]

Chen, S. Q.

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Chen, Z. H.

Z. H. Chen, Q. L. Tan, J. Lao, Y. Liang, and X. G. Huang, “Reconfigurable and tunable flat graphene photonic crystal circuits,” Nanoscale 7(25), 10912–10917 (2015).
[Crossref] [PubMed]

Chen, Z. X.

Z. X. Chen, J. H. Chen, Z. J. Wu, W. Hu, X. J. Zhang, and Y. Q. Lu, “Tunable Fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104(16), 161114 (2014).
[Crossref]

Cheng, H.

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Chowdhury, D. R.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(22), 201107 (2011).
[Crossref]

Cincotti, G.

G. Manzacca, G. Cincotti, and K. Hingerl, “Ultrafast switching by controlling Rabi splitting,” Appl. Phys. Lett. 91(23), 231920 (2007).
[Crossref]

Crommie, M.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Cui, Y.

Dai, Y.

Ding, J.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Du, X.

E. Y. Andrei, G. Li, and X. Du, “Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport,” Rep. Prog. Phys. 75(5), 056501 (2012).
[Crossref] [PubMed]

Duan, X.

N. O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, and X. Duan, “Graphene: an emerging electronic material,” Adv. Mater. 24(43), 5782–5825 (2012).
[Crossref] [PubMed]

Duan, X. Y.

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Dyer, G. C.

G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. Reno, and E. A. Shaner, “Induced transparency by coupling of tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Falkovsky, L. A.

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129(1), 012004 (2008).
[Crossref]

L. A. Falkovsky and S. S. Pershoguba, “Optical far–infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B. 76(15), 154310 (2007).

Fallahi, A.

A. Fallahi and J. P. Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2015).
[Crossref]

Fedotov, V. A.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission reponse mimicking electromagnetically induced transparenc,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Fu, Y. H.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission reponse mimicking electromagnetically induced transparenc,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

Gao, W.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

García de Abajo, F. J.

A. Manjavacas, P. Nordlander, F. J. García de Abajo, and G. D. Abajo, “Plasmon blockade in nanostructured graphene,” ACS Nano 6(2), 1724–1731 (2012).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[Crossref]

Girit, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Gong, Q.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
[Crossref] [PubMed]

Grine, A. D.

G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. Reno, and E. A. Shaner, “Induced transparency by coupling of tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Guinea, F.

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

Han, D.

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Hao, Z.

Z. Li, E. Henriksen, Z. Jiang, Z. Hao, M. Martin, P. Kim, H. Stormer, and D. N. Basov, “Charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Harris, S. E.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

He, X.

Henriksen, E.

Z. Li, E. Henriksen, Z. Jiang, Z. Hao, M. Martin, P. Kim, H. Stormer, and D. N. Basov, “Charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Hingerl, K.

G. Manzacca, G. Cincotti, and K. Hingerl, “Ultrafast switching by controlling Rabi splitting,” Appl. Phys. Lett. 91(23), 231920 (2007).
[Crossref]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Hu, W.

Z. X. Chen, J. H. Chen, Z. J. Wu, W. Hu, X. J. Zhang, and Y. Q. Lu, “Tunable Fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104(16), 161114 (2014).
[Crossref]

Hu, X.

X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
[Crossref] [PubMed]

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
[Crossref] [PubMed]

Huang, X. G.

Z. H. Chen, Q. L. Tan, J. Lao, Y. Liang, and X. G. Huang, “Reconfigurable and tunable flat graphene photonic crystal circuits,” Nanoscale 7(25), 10912–10917 (2015).
[Crossref] [PubMed]

J. Lao, J. Tao, Q. J. Wang, and X. G. Huang, “Tunable graphene-based plasmonic waveguides: nano modulators and attenuators,” Laser Photonics Rev. 8(4), 569–574 (2014).
[Crossref]

Huang, Y.

N. O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, and X. Duan, “Graphene: an emerging electronic material,” Adv. Mater. 24(43), 5782–5825 (2012).
[Crossref] [PubMed]

Imamoglu, A.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Jenkins, S. D.

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

Jiang, S.

N. O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, and X. Duan, “Graphene: an emerging electronic material,” Adv. Mater. 24(43), 5782–5825 (2012).
[Crossref] [PubMed]

Jiang, X.

Jiang, Z.

Z. Li, E. Henriksen, Z. Jiang, Z. Hao, M. Martin, P. Kim, H. Stormer, and D. N. Basov, “Charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Kaiser, S.

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[Crossref]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Kim, P.

Z. Li, E. Henriksen, Z. Jiang, Z. Hao, M. Martin, P. Kim, H. Stormer, and D. N. Basov, “Charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Koppens, F. H. L.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Lao, J.

Z. H. Chen, Q. L. Tan, J. Lao, Y. Liang, and X. G. Huang, “Reconfigurable and tunable flat graphene photonic crystal circuits,” Nanoscale 7(25), 10912–10917 (2015).
[Crossref] [PubMed]

J. Lao, J. Tao, Q. J. Wang, and X. G. Huang, “Tunable graphene-based plasmonic waveguides: nano modulators and attenuators,” Laser Photonics Rev. 8(4), 569–574 (2014).
[Crossref]

Lei, D. Y.

Y. Zhan, D. Y. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
[Crossref] [PubMed]

Li, G.

E. Y. Andrei, G. Li, and X. Du, “Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport,” Rep. Prog. Phys. 75(5), 056501 (2012).
[Crossref] [PubMed]

Li, W.

Li, X.

Y. Zhan, D. Y. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
[Crossref] [PubMed]

Li, Z.

Z. Li, E. Henriksen, Z. Jiang, Z. Hao, M. Martin, P. Kim, H. Stormer, and D. N. Basov, “Charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Liang, Y.

Z. H. Chen, Q. L. Tan, J. Lao, Y. Liang, and X. G. Huang, “Reconfigurable and tunable flat graphene photonic crystal circuits,” Nanoscale 7(25), 10912–10917 (2015).
[Crossref] [PubMed]

Liao, L.

N. O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, and X. Duan, “Graphene: an emerging electronic material,” Adv. Mater. 24(43), 5782–5825 (2012).
[Crossref] [PubMed]

Lin, F.

Lin, Y.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Liu, B. A.

F. F. Lu, B. A. Liu, and S. Shen, “Infrared wavefront control based on graphene metasurfaces,” Adv. Opt. Mater. 2(8), 794–799 (2014).
[Crossref]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[Crossref]

Liu, X.

Liu, Y.

N. O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, and X. Duan, “Graphene: an emerging electronic material,” Adv. Mater. 24(43), 5782–5825 (2012).
[Crossref] [PubMed]

Low, T.

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

Lu, F. F.

F. F. Lu, B. A. Liu, and S. Shen, “Infrared wavefront control based on graphene metasurfaces,” Adv. Opt. Mater. 2(8), 794–799 (2014).
[Crossref]

Lu, M.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Lu, Y. Q.

Z. X. Chen, J. H. Chen, Z. J. Wu, W. Hu, X. J. Zhang, and Y. Q. Lu, “Tunable Fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104(16), 161114 (2014).
[Crossref]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Maier, S. A.

Y. Zhan, D. Y. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Manjavacas, A.

A. Manjavacas, P. Nordlander, F. J. García de Abajo, and G. D. Abajo, “Plasmon blockade in nanostructured graphene,” ACS Nano 6(2), 1724–1731 (2012).
[Crossref] [PubMed]

Manzacca, G.

G. Manzacca, G. Cincotti, and K. Hingerl, “Ultrafast switching by controlling Rabi splitting,” Appl. Phys. Lett. 91(23), 231920 (2007).
[Crossref]

Martin, M.

Z. Li, E. Henriksen, Z. Jiang, Z. Hao, M. Martin, P. Kim, H. Stormer, and D. N. Basov, “Charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Morandotti, R.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(22), 201107 (2011).
[Crossref]

Nordlander, P.

A. Manjavacas, P. Nordlander, F. J. García de Abajo, and G. D. Abajo, “Plasmon blockade in nanostructured graphene,” ACS Nano 6(2), 1724–1731 (2012).
[Crossref] [PubMed]

Ozaki, T.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(22), 201107 (2011).
[Crossref]

Papasimakis, N.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission reponse mimicking electromagnetically induced transparenc,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Pershoguba, S. S.

L. A. Falkovsky and S. S. Pershoguba, “Optical far–infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B. 76(15), 154310 (2007).

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Prosvirnin, S. L.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission reponse mimicking electromagnetically induced transparenc,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Qiu, C.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Ren, H.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Reno, J.

G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. Reno, and E. A. Shaner, “Induced transparency by coupling of tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Rockstuhl, C.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(22), 201107 (2011).
[Crossref]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Ruostekoski, J.

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

Shaner, E. A.

G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. Reno, and E. A. Shaner, “Induced transparency by coupling of tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

Shao, J.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Shen, S.

F. F. Lu, B. A. Liu, and S. Shen, “Infrared wavefront control based on graphene metasurfaces,” Adv. Opt. Mater. 2(8), 794–799 (2014).
[Crossref]

Shen, Y. R.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Shi, W.

Shi, X.

Shu, J.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(22), 201107 (2011).
[Crossref]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Song, S.

X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
[Crossref] [PubMed]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Stormer, H.

Z. Li, E. Henriksen, Z. Jiang, Z. Hao, M. Martin, P. Kim, H. Stormer, and D. N. Basov, “Charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Sun, Y.

Tan, Q. L.

Z. H. Chen, Q. L. Tan, J. Lao, Y. Liang, and X. G. Huang, “Reconfigurable and tunable flat graphene photonic crystal circuits,” Nanoscale 7(25), 10912–10917 (2015).
[Crossref] [PubMed]

Tao, J.

J. Lao, J. Tao, Q. J. Wang, and X. G. Huang, “Tunable graphene-based plasmonic waveguides: nano modulators and attenuators,” Laser Photonics Rev. 8(4), 569–574 (2014).
[Crossref]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Tian, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Tian, J. G.

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Tsai, D. P.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission reponse mimicking electromagnetically induced transparenc,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Wang, F.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Wang, L.

Wang, Q. J.

J. Lao, J. Tao, Q. J. Wang, and X. G. Huang, “Tunable graphene-based plasmonic waveguides: nano modulators and attenuators,” Laser Photonics Rev. 8(4), 569–574 (2014).
[Crossref]

Weiss, N. O.

N. O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, and X. Duan, “Graphene: an emerging electronic material,” Adv. Mater. 24(43), 5782–5825 (2012).
[Crossref] [PubMed]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Wen, L.

X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
[Crossref] [PubMed]

Wu, Z. J.

Z. X. Chen, J. H. Chen, Z. J. Wu, W. Hu, X. J. Zhang, and Y. Q. Lu, “Tunable Fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104(16), 161114 (2014).
[Crossref]

Xia, F.

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

Xie, B. Y.

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Xu, Q.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Yan, H.

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

Yang, H.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
[Crossref] [PubMed]

Yang, Y. P.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(22), 201107 (2011).
[Crossref]

Yu, P.

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

Yu, Z.

Zeng, C.

Zettl, A.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Zhan, Y.

Y. Zhan, D. Y. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
[Crossref] [PubMed]

Zhang, H.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Zhang, W.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Zhang, W. L.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(22), 201107 (2011).
[Crossref]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Zhang, X. J.

Z. X. Chen, J. H. Chen, Z. J. Wu, W. Hu, X. J. Zhang, and Y. Q. Lu, “Tunable Fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104(16), 161114 (2014).
[Crossref]

Zhang, Y.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Zhao, Z. Y.

Zheludev, N. I.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission reponse mimicking electromagnetically induced transparenc,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Zhong, X.

Zhou, H.

N. O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, and X. Duan, “Graphene: an emerging electronic material,” Adv. Mater. 24(43), 5782–5825 (2012).
[Crossref] [PubMed]

Zhou, M.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Zhu, Y.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
[Crossref] [PubMed]

Zi, J.

ACS Nano (2)

A. Manjavacas, P. Nordlander, F. J. García de Abajo, and G. D. Abajo, “Plasmon blockade in nanostructured graphene,” ACS Nano 6(2), 1724–1731 (2012).
[Crossref] [PubMed]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Adv. Mater. (2)

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008).
[Crossref]

N. O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, and X. Duan, “Graphene: an emerging electronic material,” Adv. Mater. 24(43), 5782–5825 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

F. F. Lu, B. A. Liu, and S. Shen, “Infrared wavefront control based on graphene metasurfaces,” Adv. Opt. Mater. 2(8), 794–799 (2014).
[Crossref]

Appl. Phys. Lett. (5)

H. Cheng, S. Q. Chen, P. Yu, X. Y. Duan, B. Y. Xie, and J. G. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103(20), 203112 (2013).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(22), 201107 (2011).
[Crossref]

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission reponse mimicking electromagnetically induced transparenc,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

G. Manzacca, G. Cincotti, and K. Hingerl, “Ultrafast switching by controlling Rabi splitting,” Appl. Phys. Lett. 91(23), 231920 (2007).
[Crossref]

Z. X. Chen, J. H. Chen, Z. J. Wu, W. Hu, X. J. Zhang, and Y. Q. Lu, “Tunable Fano resonance in hybrid graphene-metal gratings,” Appl. Phys. Lett. 104(16), 161114 (2014).
[Crossref]

J. Phys. Conf. Ser. (1)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129(1), 012004 (2008).
[Crossref]

Laser Photonics Rev. (1)

J. Lao, J. Tao, Q. J. Wang, and X. G. Huang, “Tunable graphene-based plasmonic waveguides: nano modulators and attenuators,” Laser Photonics Rev. 8(4), 569–574 (2014).
[Crossref]

Nano Lett. (3)

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14(8), 4581–4586 (2014).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Nanoscale (2)

Y. Zhan, D. Y. Lei, X. Li, and S. A. Maier, “Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing,” Nanoscale 6(9), 4705–4715 (2014).
[Crossref] [PubMed]

Z. H. Chen, Q. L. Tan, J. Lao, Y. Liang, and X. G. Huang, “Reconfigurable and tunable flat graphene photonic crystal circuits,” Nanoscale 7(25), 10912–10917 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

X. Hu, L. Wen, S. Song, and Q. Chen, “Tunable graphene metasurfaces by discontinuous Pancharatnam-Berry phase shift,” Nanotechnology 26(50), 505203 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Nat. Photonics (2)

G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. Reno, and E. A. Shaner, “Induced transparency by coupling of tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

Nat. Phys. (1)

Z. Li, E. Henriksen, Z. Jiang, Z. Hao, M. Martin, P. Kim, H. Stormer, and D. N. Basov, “Charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B (2)

A. Fallahi and J. P. Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2015).
[Crossref]

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Phys. Rev. B. (1)

L. A. Falkovsky and S. S. Pershoguba, “Optical far–infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B. 76(15), 154310 (2007).

Phys. Rev. Lett. (4)

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

E. Y. Andrei, G. Li, and X. Du, “Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport,” Rep. Prog. Phys. 75(5), 056501 (2012).
[Crossref] [PubMed]

Sci. Rep. (2)

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
[Crossref] [PubMed]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref] [PubMed]

Science (2)

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Other (1)

L. A. Falkovsky, “Modeling methodology” https://kb.lumerical.com/en/index.html?applications.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) 3D schematic of the on-chip graphene metasurface, H1 = H2 = 50 nm. (b) The unit cell structure of our design, the periods of the x and y direction are Px = 1.1 μm and Py = 0.6 μm, respectively. The radius of circular Si is R = 0.25 µm.
Fig. 2
Fig. 2 (a) The unit cell structure of the SGNM; the periods in the x and y directions of Px = Py = 0.6 μm, R = 0.25 µm. (b) Calculated transmission spectra for single graphene nanodisk metasurface, with Ef(I) = 0.9 eV, Ef(II) = 0.3 eV.
Fig. 3
Fig. 3 (a) The unit cell structure of the SGNM. (b) Transmission spectra of numerical calculations by FDTD for single/double graphene nanodisk metasurfaces. (c)(d) Real part of the normal component of the electric field (Ex) distributions and the electric field intensity distributions (|E|2) at the transmittance dip λ = 7.44 µm for the unit cell structure of the SGNM. (e)(f) Real part of the normal component of the electric field (Ex) distributions and the electric field intensity distributions (|E|2) at the transmittance dip λ = 7.43 µm for the unit cell structure of the DGNM. (g) (h) The calculated Ex distributions for the DGNM at 7.32 µm and 7.63 µm wavelengths. The black arrows indicate the directions of the currents along the nanodisk edge.
Fig. 4
Fig. 4 The energy diagram for typical three-level atomic system. |0〉, |1〉, and |2〉 are the ground state, excited state, metastable state, respectively. The two possible pathways, namely, |0〉→|1〉 and |0〉→|1〉→|2〉→|1〉, interfere destructively and lead to the EIT-like phenomena.
Fig. 5
Fig. 5 (a) Transmission spectra of the DGNM with various the external voltages. (b) Evolution of the transmission response of the DGNM with different polarization angles, given Ef(I) = 0.9 eV and Ef(II) = 0.3 eV.
Fig. 6
Fig. 6 (a) Transmission spectra of the DGNM with different refractive indices of local environment, given Ef(I) = 0.9 eV and Ef(II) = 0.3 eV, (b) Position of the first transmittance peak versus the refractive index (red solid circles). The inset shows the resonance wavelength versus the refractive index (black solid circles).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ ( ω ) = σ int e r b a n d + σ int r a b a n d
σ int e r b a n d ( ω ) = e 2 4 { 1 2 i 2 π ln ( ( ω + 2 E f ) 2 ( ω 2 E f ) 2 + ( 2 k B T ) 2 ) + 1 π arc tan ( ω 2 E f 2 k B T ) }
σ int r a b a n d ( ω ) = 2 i e 2 k B T π 2 ( ω + i τ 1 ) ln ( 2 cos h ( E f 2 k B T ) )
ε = 1 + i σ ( ω ) t ω ε 0 ,
k s p = k 0 π 2 ω 2 ε 0 ( ε 1 + ε 2 ) ( 1 + i π 1 τ 1 ) e 2 E f
E 1 ( ω ω 01 + i r 1 ) + k E 2 = g E 0 , k E 1 = E 2 ( ω ω 02 + i r 2 ) ,

Metrics