Abstract

In this paper, we demonstrate high power, dual-wavelength (dual-λ) lasing stemming from bimodal-sized InGaAs/GaAs quantum dots (QDs). The device exhibits simultaneous dual-λ lasing at 1015.2 nm and 1023.0 nm with total power of 165.6 mW at 700 mA under room temperature continuous wave (CW) mode. Gaussian fitting analyses of the electroluminescence (EL) spectrum attribute the excellent performance to independent carrier transitions from the first excited states of large dot ensemble (LD ES1) and small dot ensemble (SD ES1), respectively. This formation provides a new possibility to achieve high power dual-λ operation only using Fabry-Pérot (FP) cavity, which is significant for compact size and low fabrication cost.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bimodal-sized quantum dots for broad spectral bandwidth emitter

Yinli Zhou, Jian Zhang, Yongqiang Ning, Yugang Zeng, Jianwei Zhang, Xing Zhang, Li Qin, and Lijun Wang
Opt. Express 23(25) 32230-32237 (2015)

InAs/GaAs quantum dot semiconductor saturable absorber for controllable dual-wavelength passively Q-switched fiber laser

X. Wang, Y. J. Zhu, C. Jiang, Y. X. Guo, X. T. Ge, H. M. Chen, J. Q. Ning, C. C. Zheng, Y. Peng, X. H. Li, and Z. Y. Zhang
Opt. Express 27(15) 20649-20658 (2019)

Ground-state lasing in high-power InAs/GaAs quantum dots-in-a-well laser using active multimode interference structure

Yuanbing Cheng, Jian Wu, Lingjuan Zhao, Xianshu Luo, and Qi Jie Wang
Opt. Lett. 40(1) 69-72 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. Shang, X. Ye, L. Cao, P. Song, and J. Feng, “Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings,” Sci. Rep. 6, 25993 (2016).
    [Crossref] [PubMed]
  2. J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105(16), 161109 (2014).
    [Crossref]
  3. J. Mei, K. Zhong, M. Wang, Y. Liu, D. Xu, W. Shi, Y. Wang, J. Yao, R. A. Norwood, and N. Peyghambarian, “Widely-tunable high-repetition-rate terahertz generation in GaSe with a compact dual-wavelength KTP OPO around 2 μm,” Opt. Express 24(20), 23368–23375 (2016).
    [Crossref] [PubMed]
  4. K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003 (2002).
    [Crossref]
  5. S. Shutts, P. M. Smowton, and A. B. Krysa, “Dual-wavelength InP quantum dot lasers,” Appl. Phys. Lett. 104(24), 241106 (2014).
    [Crossref]
  6. R. Paquet, S. Blin, M. Myara, L. L. Gratiet, M. Sellahi, B. Chomet, G. Beaudoin, I. Sagnes, and A. Garnache, “Coherent continuous-wave dual-frequency high-Q external-cavity semiconductor laser for GHz-THz applications,” Opt. Lett. 41(16), 3751–3754 (2016).
    [Crossref] [PubMed]
  7. R. K. Price, V. B. Verma, K. E. Tobin, V. C. Elarde, and J. J. Coleman, “Y-Branch Surface-Etched Distributed Bragg Reflector Lasers at 850 nm for Optical Heterodyning,” IEEE Photonics Technol. Lett. 19(20), 1610–1612 (2007).
    [Crossref]
  8. A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
    [Crossref]
  9. M. Gioannini, “Ground-state power quenching in two-state lasing quantum dot lasers,” J. Appl. Phys. 111(4), 043108 (2012).
    [Crossref]
  10. J. Liu, Z. Lu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “Dual-wavelength 92.5 GHz self-mode-locked InP-based quantum dot laser,” Opt. Lett. 33(15), 1702–1704 (2008).
    [Crossref] [PubMed]
  11. S. G. Li, Q. Gong, Y. F. Lao, H. D. Yang, S. Gao, P. Chen, Y. G. Zhang, S. L. Feng, and H. L. Wang, “Two-color quantum dot laser with tunable wavelength gap,” Appl. Phys. Lett. 95(25), 251111 (2009).
    [Crossref]
  12. C. Mesaritakis, C. Simos, H. Simos, I. Krestnikov, and D. Syvridis, “Dual ground-state pulse generation from a passively mode-locked InAs/InGaAs quantum dot laser,” Appl. Phys. Lett. 99(14), 141109 (2011).
    [Crossref]
  13. L. Chusseau, F. Philippe, and F. Disanto, “Monte Carlo modeling of the dual-mode regime in quantum-well and quantum-dot semiconductor lasers,” Opt. Express 22(5), 5312–5324 (2014).
    [Crossref] [PubMed]
  14. L. Höglund, E. Petrini, C. Asplund, H. Malm, J. Y. Andersson, and P. O. Holtz, “Optimising uniformity of InAs/(InGaAs)/GaAs quantum dots grown by metal organic vapor phase epitaxy,” Appl. Surf. Sci. 252(15), 5525–5529 (2006).
    [Crossref]
  15. G. Saint-Girons, G. Patriarche, A. Mereuta, and I. Sagnes, “Origin of the bimodal distribution of low-pressure metal-organic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” J. Appl. Phys. 91(6), 3859–3863 (2002).
    [Crossref]
  16. H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
    [Crossref]
  17. J. Johansson and W. Seifert, “Kinetics of self-assembled island formation: Part II–Island size,” J. Cryst. Growth 234(1), 139–144 (2002).
    [Crossref]
  18. I. O’Driscoll, P. M. Smowton, and P. Blood, “Two state lasing in InAsGaAs dots; the role of the bimodal size distribution, ” in 22nd IEEE International Semiconductor Laser Conference, Kyoto, Japan, 26–30 September.
  19. Y. Zhou, J. Zhang, Y. Ning, Y. Zeng, J. Zhang, X. Zhang, L. Qin, and L. Wang, “Bimodal-sized quantum dots for broad spectral bandwidth emitter,” Opt. Express 23(25), 32230–32237 (2015).
    [Crossref] [PubMed]
  20. A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
    [Crossref]
  21. H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A. L. Holmes, and C. K. Shih, “Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots,” Phys. Rev. Lett. 88(8), 087401 (2002).
    [Crossref] [PubMed]
  22. H. Jiang and J. Singh, “Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study,” Phys. Rev. B 56(8), 4696–4701 (1997).
    [Crossref]

2016 (3)

2015 (1)

2014 (3)

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105(16), 161109 (2014).
[Crossref]

L. Chusseau, F. Philippe, and F. Disanto, “Monte Carlo modeling of the dual-mode regime in quantum-well and quantum-dot semiconductor lasers,” Opt. Express 22(5), 5312–5324 (2014).
[Crossref] [PubMed]

S. Shutts, P. M. Smowton, and A. B. Krysa, “Dual-wavelength InP quantum dot lasers,” Appl. Phys. Lett. 104(24), 241106 (2014).
[Crossref]

2012 (1)

M. Gioannini, “Ground-state power quenching in two-state lasing quantum dot lasers,” J. Appl. Phys. 111(4), 043108 (2012).
[Crossref]

2011 (1)

C. Mesaritakis, C. Simos, H. Simos, I. Krestnikov, and D. Syvridis, “Dual ground-state pulse generation from a passively mode-locked InAs/InGaAs quantum dot laser,” Appl. Phys. Lett. 99(14), 141109 (2011).
[Crossref]

2009 (1)

S. G. Li, Q. Gong, Y. F. Lao, H. D. Yang, S. Gao, P. Chen, Y. G. Zhang, S. L. Feng, and H. L. Wang, “Two-color quantum dot laser with tunable wavelength gap,” Appl. Phys. Lett. 95(25), 251111 (2009).
[Crossref]

2008 (2)

J. Liu, Z. Lu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “Dual-wavelength 92.5 GHz self-mode-locked InP-based quantum dot laser,” Opt. Lett. 33(15), 1702–1704 (2008).
[Crossref] [PubMed]

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[Crossref]

2007 (1)

R. K. Price, V. B. Verma, K. E. Tobin, V. C. Elarde, and J. J. Coleman, “Y-Branch Surface-Etched Distributed Bragg Reflector Lasers at 850 nm for Optical Heterodyning,” IEEE Photonics Technol. Lett. 19(20), 1610–1612 (2007).
[Crossref]

2006 (1)

L. Höglund, E. Petrini, C. Asplund, H. Malm, J. Y. Andersson, and P. O. Holtz, “Optimising uniformity of InAs/(InGaAs)/GaAs quantum dots grown by metal organic vapor phase epitaxy,” Appl. Surf. Sci. 252(15), 5525–5529 (2006).
[Crossref]

2003 (1)

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

2002 (4)

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003 (2002).
[Crossref]

G. Saint-Girons, G. Patriarche, A. Mereuta, and I. Sagnes, “Origin of the bimodal distribution of low-pressure metal-organic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” J. Appl. Phys. 91(6), 3859–3863 (2002).
[Crossref]

J. Johansson and W. Seifert, “Kinetics of self-assembled island formation: Part II–Island size,” J. Cryst. Growth 234(1), 139–144 (2002).
[Crossref]

H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A. L. Holmes, and C. K. Shih, “Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots,” Phys. Rev. Lett. 88(8), 087401 (2002).
[Crossref] [PubMed]

2000 (1)

H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
[Crossref]

1997 (1)

H. Jiang and J. Singh, “Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study,” Phys. Rev. B 56(8), 4696–4701 (1997).
[Crossref]

Andersson, J. Y.

L. Höglund, E. Petrini, C. Asplund, H. Malm, J. Y. Andersson, and P. O. Holtz, “Optimising uniformity of InAs/(InGaAs)/GaAs quantum dots grown by metal organic vapor phase epitaxy,” Appl. Surf. Sci. 252(15), 5525–5529 (2006).
[Crossref]

Asplund, C.

L. Höglund, E. Petrini, C. Asplund, H. Malm, J. Y. Andersson, and P. O. Holtz, “Optimising uniformity of InAs/(InGaAs)/GaAs quantum dots grown by metal organic vapor phase epitaxy,” Appl. Surf. Sci. 252(15), 5525–5529 (2006).
[Crossref]

Baklenov, O.

H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A. L. Holmes, and C. K. Shih, “Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots,” Phys. Rev. Lett. 88(8), 087401 (2002).
[Crossref] [PubMed]

Barrios, P. J.

Bauer, T.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003 (2002).
[Crossref]

Beaudoin, G.

Beck, M.

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105(16), 161109 (2014).
[Crossref]

Blin, S.

Blood, P.

I. O’Driscoll, P. M. Smowton, and P. Blood, “Two state lasing in InAsGaAs dots; the role of the bimodal size distribution, ” in 22nd IEEE International Semiconductor Laser Conference, Kyoto, Japan, 26–30 September.

Cao, L.

Y. Shang, X. Ye, L. Cao, P. Song, and J. Feng, “Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings,” Sci. Rep. 6, 25993 (2016).
[Crossref] [PubMed]

Chen, J. X.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Chen, P.

S. G. Li, Q. Gong, Y. F. Lao, H. D. Yang, S. Gao, P. Chen, Y. G. Zhang, S. L. Feng, and H. L. Wang, “Two-color quantum dot laser with tunable wavelength gap,” Appl. Phys. Lett. 95(25), 251111 (2009).
[Crossref]

Chomet, B.

Chusseau, L.

Coleman, J. J.

R. K. Price, V. B. Verma, K. E. Tobin, V. C. Elarde, and J. J. Coleman, “Y-Branch Surface-Etched Distributed Bragg Reflector Lasers at 850 nm for Optical Heterodyning,” IEEE Photonics Technol. Lett. 19(20), 1610–1612 (2007).
[Crossref]

Czasch, S.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003 (2002).
[Crossref]

Disanto, F.

Elarde, V. C.

R. K. Price, V. B. Verma, K. E. Tobin, V. C. Elarde, and J. J. Coleman, “Y-Branch Surface-Etched Distributed Bragg Reflector Lasers at 850 nm for Optical Heterodyning,” IEEE Photonics Technol. Lett. 19(20), 1610–1612 (2007).
[Crossref]

Emmenegger, L.

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105(16), 161109 (2014).
[Crossref]

Erbert, G.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[Crossref]

Faist, J.

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105(16), 161109 (2014).
[Crossref]

Feng, J.

Y. Shang, X. Ye, L. Cao, P. Song, and J. Feng, “Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings,” Sci. Rep. 6, 25993 (2016).
[Crossref] [PubMed]

Feng, S. L.

S. G. Li, Q. Gong, Y. F. Lao, H. D. Yang, S. Gao, P. Chen, Y. G. Zhang, S. L. Feng, and H. L. Wang, “Two-color quantum dot laser with tunable wavelength gap,” Appl. Phys. Lett. 95(25), 251111 (2009).
[Crossref]

Fiore, A.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Fricke, J.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[Crossref]

Gao, S.

S. G. Li, Q. Gong, Y. F. Lao, H. D. Yang, S. Gao, P. Chen, Y. G. Zhang, S. L. Feng, and H. L. Wang, “Two-color quantum dot laser with tunable wavelength gap,” Appl. Phys. Lett. 95(25), 251111 (2009).
[Crossref]

Garnache, A.

Gauthier-Lafaye, O.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Gioannini, M.

M. Gioannini, “Ground-state power quenching in two-state lasing quantum dot lasers,” J. Appl. Phys. 111(4), 043108 (2012).
[Crossref]

Gong, Q.

S. G. Li, Q. Gong, Y. F. Lao, H. D. Yang, S. Gao, P. Chen, Y. G. Zhang, S. L. Feng, and H. L. Wang, “Two-color quantum dot laser with tunable wavelength gap,” Appl. Phys. Lett. 95(25), 251111 (2009).
[Crossref]

Gratiet, L. L.

Höglund, L.

L. Höglund, E. Petrini, C. Asplund, H. Malm, J. Y. Andersson, and P. O. Holtz, “Optimising uniformity of InAs/(InGaAs)/GaAs quantum dots grown by metal organic vapor phase epitaxy,” Appl. Surf. Sci. 252(15), 5525–5529 (2006).
[Crossref]

Holmes, A. L.

H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A. L. Holmes, and C. K. Shih, “Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots,” Phys. Rev. Lett. 88(8), 087401 (2002).
[Crossref] [PubMed]

Holtz, P. O.

L. Höglund, E. Petrini, C. Asplund, H. Malm, J. Y. Andersson, and P. O. Holtz, “Optimising uniformity of InAs/(InGaAs)/GaAs quantum dots grown by metal organic vapor phase epitaxy,” Appl. Surf. Sci. 252(15), 5525–5529 (2006).
[Crossref]

Htoon, H.

H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A. L. Holmes, and C. K. Shih, “Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots,” Phys. Rev. Lett. 88(8), 087401 (2002).
[Crossref] [PubMed]

Hugi, A.

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105(16), 161109 (2014).
[Crossref]

Jágerská, J.

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105(16), 161109 (2014).
[Crossref]

Jiang, H.

H. Jiang and J. Singh, “Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study,” Phys. Rev. B 56(8), 4696–4701 (1997).
[Crossref]

Johansson, J.

J. Johansson and W. Seifert, “Kinetics of self-assembled island formation: Part II–Island size,” J. Cryst. Growth 234(1), 139–144 (2002).
[Crossref]

Jouy, P.

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105(16), 161109 (2014).
[Crossref]

Kissel, H.

H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
[Crossref]

Klehr, A.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[Crossref]

Knauer, A.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[Crossref]

Koch, M.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[Crossref]

Krestnikov, I.

C. Mesaritakis, C. Simos, H. Simos, I. Krestnikov, and D. Syvridis, “Dual ground-state pulse generation from a passively mode-locked InAs/InGaAs quantum dot laser,” Appl. Phys. Lett. 99(14), 141109 (2011).
[Crossref]

Krysa, A. B.

S. Shutts, P. M. Smowton, and A. B. Krysa, “Dual-wavelength InP quantum dot lasers,” Appl. Phys. Lett. 104(24), 241106 (2014).
[Crossref]

Kulik, D.

H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A. L. Holmes, and C. K. Shih, “Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots,” Phys. Rev. Lett. 88(8), 087401 (2002).
[Crossref] [PubMed]

Lao, Y. F.

S. G. Li, Q. Gong, Y. F. Lao, H. D. Yang, S. Gao, P. Chen, Y. G. Zhang, S. L. Feng, and H. L. Wang, “Two-color quantum dot laser with tunable wavelength gap,” Appl. Phys. Lett. 95(25), 251111 (2009).
[Crossref]

Leonhardt, R.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003 (2002).
[Crossref]

Li, S. G.

S. G. Li, Q. Gong, Y. F. Lao, H. D. Yang, S. Gao, P. Chen, Y. G. Zhang, S. L. Feng, and H. L. Wang, “Two-color quantum dot laser with tunable wavelength gap,” Appl. Phys. Lett. 95(25), 251111 (2009).
[Crossref]

Lisitsa, M. P.

H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
[Crossref]

Liu, J.

Liu, Y.

Löffler, T.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003 (2002).
[Crossref]

Looser, H.

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105(16), 161109 (2014).
[Crossref]

Lu, Z.

Malm, H.

L. Höglund, E. Petrini, C. Asplund, H. Malm, J. Y. Andersson, and P. O. Holtz, “Optimising uniformity of InAs/(InGaAs)/GaAs quantum dots grown by metal organic vapor phase epitaxy,” Appl. Surf. Sci. 252(15), 5525–5529 (2006).
[Crossref]

Mangold, M.

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105(16), 161109 (2014).
[Crossref]

Markus, A.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Masselink, W. T.

H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
[Crossref]

Mazur, Y. I.

H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
[Crossref]

Mei, J.

Mereuta, A.

G. Saint-Girons, G. Patriarche, A. Mereuta, and I. Sagnes, “Origin of the bimodal distribution of low-pressure metal-organic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” J. Appl. Phys. 91(6), 3859–3863 (2002).
[Crossref]

Mesaritakis, C.

C. Mesaritakis, C. Simos, H. Simos, I. Krestnikov, and D. Syvridis, “Dual ground-state pulse generation from a passively mode-locked InAs/InGaAs quantum dot laser,” Appl. Phys. Lett. 99(14), 141109 (2011).
[Crossref]

Mikulics, M.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[Crossref]

Müller, U.

H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
[Crossref]

Myara, M.

Ning, Y.

Norwood, R. A.

O’Driscoll, I.

I. O’Driscoll, P. M. Smowton, and P. Blood, “Two state lasing in InAsGaAs dots; the role of the bimodal size distribution, ” in 22nd IEEE International Semiconductor Laser Conference, Kyoto, Japan, 26–30 September.

Paquet, R.

Paranthoën, C.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Patriarche, G.

G. Saint-Girons, G. Patriarche, A. Mereuta, and I. Sagnes, “Origin of the bimodal distribution of low-pressure metal-organic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” J. Appl. Phys. 91(6), 3859–3863 (2002).
[Crossref]

Petrini, E.

L. Höglund, E. Petrini, C. Asplund, H. Malm, J. Y. Andersson, and P. O. Holtz, “Optimising uniformity of InAs/(InGaAs)/GaAs quantum dots grown by metal organic vapor phase epitaxy,” Appl. Surf. Sci. 252(15), 5525–5529 (2006).
[Crossref]

Peyghambarian, N.

Philippe, F.

Platz, C.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Poitras, D.

Poole, P. J.

Price, R. K.

R. K. Price, V. B. Verma, K. E. Tobin, V. C. Elarde, and J. J. Coleman, “Y-Branch Surface-Etched Distributed Bragg Reflector Lasers at 850 nm for Optical Heterodyning,” IEEE Photonics Technol. Lett. 19(20), 1610–1612 (2007).
[Crossref]

Qin, L.

Quast, H.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003 (2002).
[Crossref]

Raymond, S.

Roskos, H. G.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003 (2002).
[Crossref]

Sagnes, I.

R. Paquet, S. Blin, M. Myara, L. L. Gratiet, M. Sellahi, B. Chomet, G. Beaudoin, I. Sagnes, and A. Garnache, “Coherent continuous-wave dual-frequency high-Q external-cavity semiconductor laser for GHz-THz applications,” Opt. Lett. 41(16), 3751–3754 (2016).
[Crossref] [PubMed]

G. Saint-Girons, G. Patriarche, A. Mereuta, and I. Sagnes, “Origin of the bimodal distribution of low-pressure metal-organic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” J. Appl. Phys. 91(6), 3859–3863 (2002).
[Crossref]

Saint-Girons, G.

G. Saint-Girons, G. Patriarche, A. Mereuta, and I. Sagnes, “Origin of the bimodal distribution of low-pressure metal-organic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” J. Appl. Phys. 91(6), 3859–3863 (2002).
[Crossref]

Seifert, W.

J. Johansson and W. Seifert, “Kinetics of self-assembled island formation: Part II–Island size,” J. Cryst. Growth 234(1), 139–144 (2002).
[Crossref]

Sellahi, M.

Shang, Y.

Y. Shang, X. Ye, L. Cao, P. Song, and J. Feng, “Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings,” Sci. Rep. 6, 25993 (2016).
[Crossref] [PubMed]

Shi, W.

Shih, C. K.

H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A. L. Holmes, and C. K. Shih, “Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots,” Phys. Rev. Lett. 88(8), 087401 (2002).
[Crossref] [PubMed]

Shutts, S.

S. Shutts, P. M. Smowton, and A. B. Krysa, “Dual-wavelength InP quantum dot lasers,” Appl. Phys. Lett. 104(24), 241106 (2014).
[Crossref]

Siebert, K. J.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003 (2002).
[Crossref]

Simos, C.

C. Mesaritakis, C. Simos, H. Simos, I. Krestnikov, and D. Syvridis, “Dual ground-state pulse generation from a passively mode-locked InAs/InGaAs quantum dot laser,” Appl. Phys. Lett. 99(14), 141109 (2011).
[Crossref]

Simos, H.

C. Mesaritakis, C. Simos, H. Simos, I. Krestnikov, and D. Syvridis, “Dual ground-state pulse generation from a passively mode-locked InAs/InGaAs quantum dot laser,” Appl. Phys. Lett. 99(14), 141109 (2011).
[Crossref]

Singh, J.

H. Jiang and J. Singh, “Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study,” Phys. Rev. B 56(8), 4696–4701 (1997).
[Crossref]

Smowton, P. M.

S. Shutts, P. M. Smowton, and A. B. Krysa, “Dual-wavelength InP quantum dot lasers,” Appl. Phys. Lett. 104(24), 241106 (2014).
[Crossref]

I. O’Driscoll, P. M. Smowton, and P. Blood, “Two state lasing in InAsGaAs dots; the role of the bimodal size distribution, ” in 22nd IEEE International Semiconductor Laser Conference, Kyoto, Japan, 26–30 September.

Song, P.

Y. Shang, X. Ye, L. Cao, P. Song, and J. Feng, “Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings,” Sci. Rep. 6, 25993 (2016).
[Crossref] [PubMed]

Syvridis, D.

C. Mesaritakis, C. Simos, H. Simos, I. Krestnikov, and D. Syvridis, “Dual ground-state pulse generation from a passively mode-locked InAs/InGaAs quantum dot laser,” Appl. Phys. Lett. 99(14), 141109 (2011).
[Crossref]

Takagahara, T.

H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A. L. Holmes, and C. K. Shih, “Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots,” Phys. Rev. Lett. 88(8), 087401 (2002).
[Crossref] [PubMed]

Tarasov, G. G.

H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
[Crossref]

Thomson, M.

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003 (2002).
[Crossref]

Tobin, K. E.

R. K. Price, V. B. Verma, K. E. Tobin, V. C. Elarde, and J. J. Coleman, “Y-Branch Surface-Etched Distributed Bragg Reflector Lasers at 850 nm for Optical Heterodyning,” IEEE Photonics Technol. Lett. 19(20), 1610–1612 (2007).
[Crossref]

Tuzson, B.

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105(16), 161109 (2014).
[Crossref]

Verma, V. B.

R. K. Price, V. B. Verma, K. E. Tobin, V. C. Elarde, and J. J. Coleman, “Y-Branch Surface-Etched Distributed Bragg Reflector Lasers at 850 nm for Optical Heterodyning,” IEEE Photonics Technol. Lett. 19(20), 1610–1612 (2007).
[Crossref]

Walther, C.

H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
[Crossref]

Walther, M.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[Crossref]

Wang, H. L.

S. G. Li, Q. Gong, Y. F. Lao, H. D. Yang, S. Gao, P. Chen, Y. G. Zhang, S. L. Feng, and H. L. Wang, “Two-color quantum dot laser with tunable wavelength gap,” Appl. Phys. Lett. 95(25), 251111 (2009).
[Crossref]

Wang, L.

Wang, M.

Wang, Y.

Wilk, R.

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[Crossref]

Xu, D.

Yang, H. D.

S. G. Li, Q. Gong, Y. F. Lao, H. D. Yang, S. Gao, P. Chen, Y. G. Zhang, S. L. Feng, and H. L. Wang, “Two-color quantum dot laser with tunable wavelength gap,” Appl. Phys. Lett. 95(25), 251111 (2009).
[Crossref]

Yao, J.

Ye, X.

Y. Shang, X. Ye, L. Cao, P. Song, and J. Feng, “Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings,” Sci. Rep. 6, 25993 (2016).
[Crossref] [PubMed]

Zeng, Y.

Zhang, J.

Zhang, X.

Zhang, Y. G.

S. G. Li, Q. Gong, Y. F. Lao, H. D. Yang, S. Gao, P. Chen, Y. G. Zhang, S. L. Feng, and H. L. Wang, “Two-color quantum dot laser with tunable wavelength gap,” Appl. Phys. Lett. 95(25), 251111 (2009).
[Crossref]

Zhong, K.

Zhou, Y.

Appl. Phys. Lett. (6)

J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, “Dual-wavelength quantum cascade laser for trace gas spectroscopy,” Appl. Phys. Lett. 105(16), 161109 (2014).
[Crossref]

K. J. Siebert, H. Quast, R. Leonhardt, T. Löffler, M. Thomson, T. Bauer, H. G. Roskos, and S. Czasch, “Continuous-wave all-optoelectronic terahertz imaging,” Appl. Phys. Lett. 80(16), 3003 (2002).
[Crossref]

S. Shutts, P. M. Smowton, and A. B. Krysa, “Dual-wavelength InP quantum dot lasers,” Appl. Phys. Lett. 104(24), 241106 (2014).
[Crossref]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

S. G. Li, Q. Gong, Y. F. Lao, H. D. Yang, S. Gao, P. Chen, Y. G. Zhang, S. L. Feng, and H. L. Wang, “Two-color quantum dot laser with tunable wavelength gap,” Appl. Phys. Lett. 95(25), 251111 (2009).
[Crossref]

C. Mesaritakis, C. Simos, H. Simos, I. Krestnikov, and D. Syvridis, “Dual ground-state pulse generation from a passively mode-locked InAs/InGaAs quantum dot laser,” Appl. Phys. Lett. 99(14), 141109 (2011).
[Crossref]

Appl. Surf. Sci. (1)

L. Höglund, E. Petrini, C. Asplund, H. Malm, J. Y. Andersson, and P. O. Holtz, “Optimising uniformity of InAs/(InGaAs)/GaAs quantum dots grown by metal organic vapor phase epitaxy,” Appl. Surf. Sci. 252(15), 5525–5529 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diode for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. K. Price, V. B. Verma, K. E. Tobin, V. C. Elarde, and J. J. Coleman, “Y-Branch Surface-Etched Distributed Bragg Reflector Lasers at 850 nm for Optical Heterodyning,” IEEE Photonics Technol. Lett. 19(20), 1610–1612 (2007).
[Crossref]

J. Appl. Phys. (2)

M. Gioannini, “Ground-state power quenching in two-state lasing quantum dot lasers,” J. Appl. Phys. 111(4), 043108 (2012).
[Crossref]

G. Saint-Girons, G. Patriarche, A. Mereuta, and I. Sagnes, “Origin of the bimodal distribution of low-pressure metal-organic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” J. Appl. Phys. 91(6), 3859–3863 (2002).
[Crossref]

J. Cryst. Growth (1)

J. Johansson and W. Seifert, “Kinetics of self-assembled island formation: Part II–Island size,” J. Cryst. Growth 234(1), 139–144 (2002).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (2)

H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
[Crossref]

H. Jiang and J. Singh, “Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study,” Phys. Rev. B 56(8), 4696–4701 (1997).
[Crossref]

Phys. Rev. Lett. (1)

H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A. L. Holmes, and C. K. Shih, “Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots,” Phys. Rev. Lett. 88(8), 087401 (2002).
[Crossref] [PubMed]

Sci. Rep. (1)

Y. Shang, X. Ye, L. Cao, P. Song, and J. Feng, “Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings,” Sci. Rep. 6, 25993 (2016).
[Crossref] [PubMed]

Other (1)

I. O’Driscoll, P. M. Smowton, and P. Blood, “Two state lasing in InAsGaAs dots; the role of the bimodal size distribution, ” in 22nd IEEE International Semiconductor Laser Conference, Kyoto, Japan, 26–30 September.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The epitaxial structure of the dual-λ QD LD. (b) AFM picture of uncapped QD sample. (c) The device structure of the dual-λ QD laser.
Fig. 2
Fig. 2 Bimodal-sized distribution and Electroluminescence of the QDs. (a) Height distribution of uncapped QD sample. The insert is the base area distribution. (b) and (c) EL spectrum with resolution of 3nm at 20 mA and 160 mA (white circles) under CW mode, with the fitted Gaussian components for emission from the large dot ensemble (blue lines) and small dot ensemble (red lines). The black line is the peak sum of Gaussian fitting. (d) Variation of the peak wavelengths obtained from Gaussian fitting as a function of injection current.
Fig. 3
Fig. 3 Room-temperature CW output of the dual wavelength QD laser versus injection current. Inset (a) and (b) are the lasing spectrum of the device with resolution of 1nm at 340 mA and 700 mA, respectively.
Fig. 4
Fig. 4 Measured (a) electroluminescence with resolution of 3nm and (b) Lasing spectrum of the dual-λ QD laser with resolution of 1nm at different injection currents under CW mode. (c) Dependence of the lasing wavelengths on the injection current
Fig. 5
Fig. 5 Temperature dependence of lasing spectrum at (a) 300 mA and (b) 700 mA with resolution of 1 nm under CW mode.

Tables (1)

Tables Icon

Table 1 Fitted peaks of Gaussian components

Metrics