Abstract

We demonstrate and characterize an all-optical self-homodyne (SH) frequency superchannel enabled by comb regeneration at the receiver. In order to generate the superchannel, we use a frequency comb with 26 carriers spaced by 25 GHz at the transmitter, from which 24 carriers are modulated with polarization-multiplexed 32 quadrature amplitude modulation (PM 32-QAM) data. To enable comb regeneration at the receiver side, the two central carriers remain unmodulated. High fidelity comb regeneration is achieved by filtering the two unmodulated carriers with an approximately 25 MHz wide optical filter based on Brillouin amplification before a parametric mixer. The carriers from the regenerated comb are then used as local oscillator for SH detection. We demonstrate that all 24 carriers can be detected with an optical signal-to-noise ratio (OSNR) penalty lower than 2.5 dB in a back-to-back scenario. We also demonstrate that the whole superchannel can be transmitted through 120 km of single-mode fiber (SMF) and be detected with bit-error rate (BER) below 0.015.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nyquist WDM superchannel using offset-16QAM and receiver-side digital spectral shaping

Meng Xiang, Songnian Fu, Ming Tang, Haoyuan Tang, Perry Shum, and Deming Liu
Opt. Express 22(14) 17448-17457 (2014)

Ultra-high capacity WDM-SDM optical access network with self-homodyne detection downstream and 32QAM-FBMC upstream

Zhenhua Feng, Liang Xu, Qiong Wu, Ming Tang, Songnian Fu, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 25(6) 5951-5961 (2017)

All-optical wavelength conversion for mode division multiplexed superchannels

Jiaxin Gong, Jing Xu, Ming Luo, Xiang Li, Ying Qiu, Qi Yang, Xinliang Zhang, and Shaohua Yu
Opt. Express 24(8) 8926-8939 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224x 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), paper PDP5C.3.
    [Crossref]
  2. B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in 2015 European Conference on Optical Communications (ECOC) (2015), paper PD3.1.
    [Crossref]
  3. S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. Burrows, G. Raybon, and P. Winzer, “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” 2016 European Conference on Optical Communications (ECOC) (2016), paper Th.3.C.1.
  4. T. Miyazaki and F. Kubota, “PSK self-homodyne detection using a pilot carrier for multibit/symbol transmission with inverse-RZ signal,” IEEE Photon. Technol. Lett. 17, 1334–1336 (2005).
    [Crossref]
  5. T. Miyazaki, “Linewidth-tolerant QPSK homodyne transmission using a polarization-multiplexed pilot carrier,” IEEE Photon. Technol. Lett. 18, 388–390 (2006).
    [Crossref]
  6. M. Sjödin, P. Johannisson, M. Karlsson, Z. Tong, and P. A. Andrekson, “OSNR requirements for self-homodyne coherent systems,” IEEE Photon. Technol. Lett. 22, 91–93 (2010).
    [Crossref]
  7. R. S. Luís, B. J. Puttnam, J. M. D. Mendinueta, S. Shinada, M. Nakamura, Y. Kamio, and N. Wada, “Digital self-homodyne detection,” IEEE Photon. Technol. Lett. 27, 608–611 (2015).
    [Crossref]
  8. M. Sjödin, E. Agrell, P. Johannisson, G.-W. Lu, P. A. Andrekson, and M. Karlsson, “Filter optimization for self-homodyne coherent WDM systems using interleaved polarization division multiplexing,” J. Lightwave Technol. 29, 1219–1226 (2011).
    [Crossref]
  9. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23, 4960–4969 (2015).
    [Crossref] [PubMed]
  10. K. Kasai, Y. Wang, S. Beppu, M. Yoshida, and M. Nakazawa, “80 Gbit/s, 256 QAM coherent transmission over 150 km with an injection-locked homodyne receiver,” Opt. Express 23, 29174–29183 (2015).
    [Crossref] [PubMed]
  11. Y. Cao, A. Almaiman, M. Ziyadi, P. Liao, A. M. Ariaei, F. Alishah, C. Bao, A. Fallahpour, B. Shamee, A. Willner, A. Youichi, T. Ikeuchi, S. Wilkinson, J. Touch, M. Tur, and A. Willner, “Demonstration of automatically phase-locked self-homodyne detection with a low-power pilot tone based on Brillouin amplification and optical frequency combs,” in 2016 Optical Fiber Communication Conference, paper M2A.6 2016).
  12. L. Xu, J. Hu, D. Qian, and T. Wang, “Coherent optical OFDM systems using self optical carrier extraction,” in 2008 Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2008), paper OMU4.
  13. S. Adhikari, S. Sygletos, A. D. Ellis, B. Inan, S. L. Jansen, and W. Rosenkranz, “Enhanced self-coherent OFDM by the use of injection locked laser,” in 2012 Optical Fiber Communication Conference (2012), paper JW2A.64.
  14. Z. Liu, J.-Y. Kim, D. S. Wu, D. J. Richardson, and R. Slavík, “Homodyne OFDM with optical injection locking for carrier recovery,” J. Lightwave Technol. 33, 34–41 (2015).
    [Crossref]
  15. B. J. Puttnam, J. Sakaguchi, J. M. D. Mendinueta, W. Klaus, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link,” Opt. Express 21, 1561–1566 (2013).
    [Crossref] [PubMed]
  16. P. J. Delfyett, S. Gee, M.-T. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Technol. 24, 2701–2719 (2006).
    [Crossref]
  17. A. C. Bordonalli, M. J. Fice, and A. J. Seeds, “Optical injection locking to optical frequency combs for superchannel coherent detection,” Opt. Express 23, 1547–1557 (2015).
    [Crossref] [PubMed]
  18. A. Lorences-Riesgo, T. A. Eriksson, A. Fülöp, P. A. Andrekson, and M. Karlsson, “Frequency-comb regeneration for self-homodyne superchannels,” J. Lightwave Technol. 34, 1800–1806 (2016).
    [Crossref]
  19. M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37, 967–968 (2001).
    [Crossref]
  20. W. Mao, P. A. Andrekson, and J. Toulouse, “Investigation of a spectrally flat multi-wavelength DWDM source based on optical phase- and intensity-modulation,” in Optical Fiber Communication Conference (OFC) (2004), paper MF78.
  21. G. Agrawal, Nonlinear Fiber Optics, 5th ed. Optics and Photonics (Elsevier Science, Chapter 10, 2013).
  22. E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20, 3331–3344 (2012).
    [Crossref] [PubMed]
  23. B. P. P. Kuo, E. Myslivets, V. Ataie, E. G. Temprana, N. Alic, and S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightwave Technol. 31, 3414–3419 (2013).
    [Crossref]
  24. M. Pelusi, A. Choudhary, T. Inoue, D. Marpaung, B. Eggleton, H. N. Tan, K. Solis-Trapala, and S. Namiki, “Low noise, regeneration of optical frequency comb-lines for 64QAM enabled by SBS gain,” 2016 OptoElectronics and Communications Conference (OECC) (2016), paper PD1-3.
  25. B. J. Puttnam, R. S. Luís, J. M. Delgado Mendinueta, J. Sakaguchi, W. Klaus, Y. Kamio, M. Nakamura, N. Wada, Y. Awaji, A. Kanno, T. Kawanishi, and T. Miyazaki, “Self-homodyne detection in optical communication systems,” Photonics 1, 110–130 (2014).
    [Crossref]
  26. E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nature Photon. 10, 463–467 (2016).
    [Crossref]
  27. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature Photon. 441, 960–963 (2006).
  28. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
    [Crossref]
  29. “Reset-free polarization tracker PolaStay,” http://www.generalphotonics.com/wp-content/uploads/2015/04/POS-002.pdf , Visited: 11/11/2016.
  30. F. C. Cruz, “Optical frequency combs generated by four-wave mixing in optical fibers for astrophysical spectrometer calibration and metrology,” Opt. Express 16, 13267–13275 (2008).
    [Crossref] [PubMed]

2016 (2)

2015 (5)

2014 (2)

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

B. J. Puttnam, R. S. Luís, J. M. Delgado Mendinueta, J. Sakaguchi, W. Klaus, Y. Kamio, M. Nakamura, N. Wada, Y. Awaji, A. Kanno, T. Kawanishi, and T. Miyazaki, “Self-homodyne detection in optical communication systems,” Photonics 1, 110–130 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (1)

2010 (1)

M. Sjödin, P. Johannisson, M. Karlsson, Z. Tong, and P. A. Andrekson, “OSNR requirements for self-homodyne coherent systems,” IEEE Photon. Technol. Lett. 22, 91–93 (2010).
[Crossref]

2008 (1)

2006 (3)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature Photon. 441, 960–963 (2006).

T. Miyazaki, “Linewidth-tolerant QPSK homodyne transmission using a polarization-multiplexed pilot carrier,” IEEE Photon. Technol. Lett. 18, 388–390 (2006).
[Crossref]

P. J. Delfyett, S. Gee, M.-T. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Technol. 24, 2701–2719 (2006).
[Crossref]

2005 (1)

T. Miyazaki and F. Kubota, “PSK self-homodyne detection using a pilot carrier for multibit/symbol transmission with inverse-RZ signal,” IEEE Photon. Technol. Lett. 17, 1334–1336 (2005).
[Crossref]

2001 (1)

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37, 967–968 (2001).
[Crossref]

Adhikari, S.

S. Adhikari, S. Sygletos, A. D. Ellis, B. Inan, S. L. Jansen, and W. Rosenkranz, “Enhanced self-coherent OFDM by the use of injection locked laser,” in 2012 Optical Fiber Communication Conference (2012), paper JW2A.64.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 5th ed. Optics and Photonics (Elsevier Science, Chapter 10, 2013).

Agrell, E.

Alic, N.

Alishah, F.

Y. Cao, A. Almaiman, M. Ziyadi, P. Liao, A. M. Ariaei, F. Alishah, C. Bao, A. Fallahpour, B. Shamee, A. Willner, A. Youichi, T. Ikeuchi, S. Wilkinson, J. Touch, M. Tur, and A. Willner, “Demonstration of automatically phase-locked self-homodyne detection with a low-power pilot tone based on Brillouin amplification and optical frequency combs,” in 2016 Optical Fiber Communication Conference, paper M2A.6 2016).

Almaiman, A.

Y. Cao, A. Almaiman, M. Ziyadi, P. Liao, A. M. Ariaei, F. Alishah, C. Bao, A. Fallahpour, B. Shamee, A. Willner, A. Youichi, T. Ikeuchi, S. Wilkinson, J. Touch, M. Tur, and A. Willner, “Demonstration of automatically phase-locked self-homodyne detection with a low-power pilot tone based on Brillouin amplification and optical frequency combs,” in 2016 Optical Fiber Communication Conference, paper M2A.6 2016).

Andrekson, P. A.

A. Lorences-Riesgo, T. A. Eriksson, A. Fülöp, P. A. Andrekson, and M. Karlsson, “Frequency-comb regeneration for self-homodyne superchannels,” J. Lightwave Technol. 34, 1800–1806 (2016).
[Crossref]

M. Sjödin, E. Agrell, P. Johannisson, G.-W. Lu, P. A. Andrekson, and M. Karlsson, “Filter optimization for self-homodyne coherent WDM systems using interleaved polarization division multiplexing,” J. Lightwave Technol. 29, 1219–1226 (2011).
[Crossref]

M. Sjödin, P. Johannisson, M. Karlsson, Z. Tong, and P. A. Andrekson, “OSNR requirements for self-homodyne coherent systems,” IEEE Photon. Technol. Lett. 22, 91–93 (2010).
[Crossref]

W. Mao, P. A. Andrekson, and J. Toulouse, “Investigation of a spectrally flat multi-wavelength DWDM source based on optical phase- and intensity-modulation,” in Optical Fiber Communication Conference (OFC) (2004), paper MF78.

Araya, K.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37, 967–968 (2001).
[Crossref]

Ariaei, A. M.

Y. Cao, A. Almaiman, M. Ziyadi, P. Liao, A. M. Ariaei, F. Alishah, C. Bao, A. Fallahpour, B. Shamee, A. Willner, A. Youichi, T. Ikeuchi, S. Wilkinson, J. Touch, M. Tur, and A. Willner, “Demonstration of automatically phase-locked self-homodyne detection with a low-power pilot tone based on Brillouin amplification and optical frequency combs,” in 2016 Optical Fiber Communication Conference, paper M2A.6 2016).

Ataie, V.

Awaji, Y.

B. J. Puttnam, R. S. Luís, J. M. Delgado Mendinueta, J. Sakaguchi, W. Klaus, Y. Kamio, M. Nakamura, N. Wada, Y. Awaji, A. Kanno, T. Kawanishi, and T. Miyazaki, “Self-homodyne detection in optical communication systems,” Photonics 1, 110–130 (2014).
[Crossref]

B. J. Puttnam, J. Sakaguchi, J. M. D. Mendinueta, W. Klaus, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link,” Opt. Express 21, 1561–1566 (2013).
[Crossref] [PubMed]

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in 2015 European Conference on Optical Communications (ECOC) (2015), paper PD3.1.
[Crossref]

Bao, C.

Y. Cao, A. Almaiman, M. Ziyadi, P. Liao, A. M. Ariaei, F. Alishah, C. Bao, A. Fallahpour, B. Shamee, A. Willner, A. Youichi, T. Ikeuchi, S. Wilkinson, J. Touch, M. Tur, and A. Willner, “Demonstration of automatically phase-locked self-homodyne detection with a low-power pilot tone based on Brillouin amplification and optical frequency combs,” in 2016 Optical Fiber Communication Conference, paper M2A.6 2016).

Beppu, S.

Bordonalli, A. C.

Brasch, V.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

Burrows, E.

S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. Burrows, G. Raybon, and P. Winzer, “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” 2016 European Conference on Optical Communications (ECOC) (2016), paper Th.3.C.1.

Cao, Y.

Y. Cao, A. Almaiman, M. Ziyadi, P. Liao, A. M. Ariaei, F. Alishah, C. Bao, A. Fallahpour, B. Shamee, A. Willner, A. Youichi, T. Ikeuchi, S. Wilkinson, J. Touch, M. Tur, and A. Willner, “Demonstration of automatically phase-locked self-homodyne detection with a low-power pilot tone based on Brillouin amplification and optical frequency combs,” in 2016 Optical Fiber Communication Conference, paper M2A.6 2016).

Chandrasekhar, S.

S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. Burrows, G. Raybon, and P. Winzer, “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” 2016 European Conference on Optical Communications (ECOC) (2016), paper Th.3.C.1.

Chen, X.

S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. Burrows, G. Raybon, and P. Winzer, “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” 2016 European Conference on Optical Communications (ECOC) (2016), paper Th.3.C.1.

Cho, J.

S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. Burrows, G. Raybon, and P. Winzer, “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” 2016 European Conference on Optical Communications (ECOC) (2016), paper Th.3.C.1.

Choi, M.-T.

Choudhary, A.

M. Pelusi, A. Choudhary, T. Inoue, D. Marpaung, B. Eggleton, H. N. Tan, K. Solis-Trapala, and S. Namiki, “Low noise, regeneration of optical frequency comb-lines for 64QAM enabled by SBS gain,” 2016 OptoElectronics and Communications Conference (OECC) (2016), paper PD1-3.

Cruz, F. C.

Delfyett, P. J.

Delgado Mendinueta, J. M.

B. J. Puttnam, R. S. Luís, J. M. Delgado Mendinueta, J. Sakaguchi, W. Klaus, Y. Kamio, M. Nakamura, N. Wada, Y. Awaji, A. Kanno, T. Kawanishi, and T. Miyazaki, “Self-homodyne detection in optical communication systems,” Photonics 1, 110–130 (2014).
[Crossref]

Eggleton, B.

M. Pelusi, A. Choudhary, T. Inoue, D. Marpaung, B. Eggleton, H. N. Tan, K. Solis-Trapala, and S. Namiki, “Low noise, regeneration of optical frequency comb-lines for 64QAM enabled by SBS gain,” 2016 OptoElectronics and Communications Conference (OECC) (2016), paper PD1-3.

Ellis, A. D.

S. Adhikari, S. Sygletos, A. D. Ellis, B. Inan, S. L. Jansen, and W. Rosenkranz, “Enhanced self-coherent OFDM by the use of injection locked laser,” in 2012 Optical Fiber Communication Conference (2012), paper JW2A.64.

Eriksson, T. A.

Fallahpour, A.

Y. Cao, A. Almaiman, M. Ziyadi, P. Liao, A. M. Ariaei, F. Alishah, C. Bao, A. Fallahpour, B. Shamee, A. Willner, A. Youichi, T. Ikeuchi, S. Wilkinson, J. Touch, M. Tur, and A. Willner, “Demonstration of automatically phase-locked self-homodyne detection with a low-power pilot tone based on Brillouin amplification and optical frequency combs,” in 2016 Optical Fiber Communication Conference, paper M2A.6 2016).

Fice, M. J.

Foster, M. A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature Photon. 441, 960–963 (2006).

Freude, W.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

Fujiwara, M.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37, 967–968 (2001).
[Crossref]

Fülöp, A.

Gaeta, A. L.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature Photon. 441, 960–963 (2006).

Gee, S.

Hartinger, K.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

Hayashi, T.

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in 2015 European Conference on Optical Communications (ECOC) (2015), paper PD3.1.
[Crossref]

Herr, T.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

Hillerkuss, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

Hirano, M.

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in 2015 European Conference on Optical Communications (ECOC) (2015), paper PD3.1.
[Crossref]

Holzwarth, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

Hu, J.

L. Xu, J. Hu, D. Qian, and T. Wang, “Coherent optical OFDM systems using self optical carrier extraction,” in 2008 Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2008), paper OMU4.

Ikeuchi, T.

Y. Cao, A. Almaiman, M. Ziyadi, P. Liao, A. M. Ariaei, F. Alishah, C. Bao, A. Fallahpour, B. Shamee, A. Willner, A. Youichi, T. Ikeuchi, S. Wilkinson, J. Touch, M. Tur, and A. Willner, “Demonstration of automatically phase-locked self-homodyne detection with a low-power pilot tone based on Brillouin amplification and optical frequency combs,” in 2016 Optical Fiber Communication Conference, paper M2A.6 2016).

Inan, B.

S. Adhikari, S. Sygletos, A. D. Ellis, B. Inan, S. L. Jansen, and W. Rosenkranz, “Enhanced self-coherent OFDM by the use of injection locked laser,” in 2012 Optical Fiber Communication Conference (2012), paper JW2A.64.

Inoue, T.

M. Pelusi, A. Choudhary, T. Inoue, D. Marpaung, B. Eggleton, H. N. Tan, K. Solis-Trapala, and S. Namiki, “Low noise, regeneration of optical frequency comb-lines for 64QAM enabled by SBS gain,” 2016 OptoElectronics and Communications Conference (OECC) (2016), paper PD1-3.

Ishihara, K.

A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224x 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), paper PDP5C.3.
[Crossref]

Izadpanah, H.

Jansen, S. L.

S. Adhikari, S. Sygletos, A. D. Ellis, B. Inan, S. L. Jansen, and W. Rosenkranz, “Enhanced self-coherent OFDM by the use of injection locked laser,” in 2012 Optical Fiber Communication Conference (2012), paper JW2A.64.

Johannisson, P.

M. Sjödin, E. Agrell, P. Johannisson, G.-W. Lu, P. A. Andrekson, and M. Karlsson, “Filter optimization for self-homodyne coherent WDM systems using interleaved polarization division multiplexing,” J. Lightwave Technol. 29, 1219–1226 (2011).
[Crossref]

M. Sjödin, P. Johannisson, M. Karlsson, Z. Tong, and P. A. Andrekson, “OSNR requirements for self-homodyne coherent systems,” IEEE Photon. Technol. Lett. 22, 91–93 (2010).
[Crossref]

Kamio, Y.

R. S. Luís, B. J. Puttnam, J. M. D. Mendinueta, S. Shinada, M. Nakamura, Y. Kamio, and N. Wada, “Digital self-homodyne detection,” IEEE Photon. Technol. Lett. 27, 608–611 (2015).
[Crossref]

B. J. Puttnam, R. S. Luís, J. M. Delgado Mendinueta, J. Sakaguchi, W. Klaus, Y. Kamio, M. Nakamura, N. Wada, Y. Awaji, A. Kanno, T. Kawanishi, and T. Miyazaki, “Self-homodyne detection in optical communication systems,” Photonics 1, 110–130 (2014).
[Crossref]

Kani, J.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37, 967–968 (2001).
[Crossref]

Kanno, A.

B. J. Puttnam, R. S. Luís, J. M. Delgado Mendinueta, J. Sakaguchi, W. Klaus, Y. Kamio, M. Nakamura, N. Wada, Y. Awaji, A. Kanno, T. Kawanishi, and T. Miyazaki, “Self-homodyne detection in optical communication systems,” Photonics 1, 110–130 (2014).
[Crossref]

B. J. Puttnam, J. Sakaguchi, J. M. D. Mendinueta, W. Klaus, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link,” Opt. Express 21, 1561–1566 (2013).
[Crossref] [PubMed]

Karlsson, M.

Kasai, K.

Kawakami, H.

A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224x 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), paper PDP5C.3.
[Crossref]

Kawanishi, T.

B. J. Puttnam, R. S. Luís, J. M. Delgado Mendinueta, J. Sakaguchi, W. Klaus, Y. Kamio, M. Nakamura, N. Wada, Y. Awaji, A. Kanno, T. Kawanishi, and T. Miyazaki, “Self-homodyne detection in optical communication systems,” Photonics 1, 110–130 (2014).
[Crossref]

B. J. Puttnam, J. Sakaguchi, J. M. D. Mendinueta, W. Klaus, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link,” Opt. Express 21, 1561–1566 (2013).
[Crossref] [PubMed]

Kim, J.-Y.

Kippenberg, T. J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

Kittlaus, E. A.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nature Photon. 10, 463–467 (2016).
[Crossref]

Klaus, W.

B. J. Puttnam, R. S. Luís, J. M. Delgado Mendinueta, J. Sakaguchi, W. Klaus, Y. Kamio, M. Nakamura, N. Wada, Y. Awaji, A. Kanno, T. Kawanishi, and T. Miyazaki, “Self-homodyne detection in optical communication systems,” Photonics 1, 110–130 (2014).
[Crossref]

B. J. Puttnam, J. Sakaguchi, J. M. D. Mendinueta, W. Klaus, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link,” Opt. Express 21, 1561–1566 (2013).
[Crossref] [PubMed]

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in 2015 European Conference on Optical Communications (ECOC) (2015), paper PD3.1.
[Crossref]

Kobayashi, T.

A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224x 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), paper PDP5C.3.
[Crossref]

Koos, C.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

Kubota, F.

T. Miyazaki and F. Kubota, “PSK self-homodyne detection using a pilot carrier for multibit/symbol transmission with inverse-RZ signal,” IEEE Photon. Technol. Lett. 17, 1334–1336 (2005).
[Crossref]

Kuo, B. P. P.

Lauermann, M.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

Lee, W.

Leuthold, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

Li, B.

S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. Burrows, G. Raybon, and P. Winzer, “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” 2016 European Conference on Optical Communications (ECOC) (2016), paper Th.3.C.1.

Li, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

Liao, P.

Y. Cao, A. Almaiman, M. Ziyadi, P. Liao, A. M. Ariaei, F. Alishah, C. Bao, A. Fallahpour, B. Shamee, A. Willner, A. Youichi, T. Ikeuchi, S. Wilkinson, J. Touch, M. Tur, and A. Willner, “Demonstration of automatically phase-locked self-homodyne detection with a low-power pilot tone based on Brillouin amplification and optical frequency combs,” in 2016 Optical Fiber Communication Conference, paper M2A.6 2016).

Lipson, M.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature Photon. 441, 960–963 (2006).

Liu, Z.

Lorences-Riesgo, A.

Lu, G.-W.

Luís, R. S.

R. S. Luís, B. J. Puttnam, J. M. D. Mendinueta, S. Shinada, M. Nakamura, Y. Kamio, and N. Wada, “Digital self-homodyne detection,” IEEE Photon. Technol. Lett. 27, 608–611 (2015).
[Crossref]

B. J. Puttnam, R. S. Luís, J. M. Delgado Mendinueta, J. Sakaguchi, W. Klaus, Y. Kamio, M. Nakamura, N. Wada, Y. Awaji, A. Kanno, T. Kawanishi, and T. Miyazaki, “Self-homodyne detection in optical communication systems,” Photonics 1, 110–130 (2014).
[Crossref]

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in 2015 European Conference on Optical Communications (ECOC) (2015), paper PD3.1.
[Crossref]

Mao, W.

W. Mao, P. A. Andrekson, and J. Toulouse, “Investigation of a spectrally flat multi-wavelength DWDM source based on optical phase- and intensity-modulation,” in Optical Fiber Communication Conference (OFC) (2004), paper MF78.

Marciante, J.

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in 2015 European Conference on Optical Communications (ECOC) (2015), paper PD3.1.
[Crossref]

Marpaung, D.

M. Pelusi, A. Choudhary, T. Inoue, D. Marpaung, B. Eggleton, H. N. Tan, K. Solis-Trapala, and S. Namiki, “Low noise, regeneration of optical frequency comb-lines for 64QAM enabled by SBS gain,” 2016 OptoElectronics and Communications Conference (OECC) (2016), paper PD1-3.

Masuda, H.

A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224x 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), paper PDP5C.3.
[Crossref]

Matsuura, A.

A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224x 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), paper PDP5C.3.
[Crossref]

Mendinueta, J. M. D.

Mendinueta, J.-M. D.

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in 2015 European Conference on Optical Communications (ECOC) (2015), paper PD3.1.
[Crossref]

Miyamoto, Y.

A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224x 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), paper PDP5C.3.
[Crossref]

Miyazaki, T.

B. J. Puttnam, R. S. Luís, J. M. Delgado Mendinueta, J. Sakaguchi, W. Klaus, Y. Kamio, M. Nakamura, N. Wada, Y. Awaji, A. Kanno, T. Kawanishi, and T. Miyazaki, “Self-homodyne detection in optical communication systems,” Photonics 1, 110–130 (2014).
[Crossref]

T. Miyazaki, “Linewidth-tolerant QPSK homodyne transmission using a polarization-multiplexed pilot carrier,” IEEE Photon. Technol. Lett. 18, 388–390 (2006).
[Crossref]

T. Miyazaki and F. Kubota, “PSK self-homodyne detection using a pilot carrier for multibit/symbol transmission with inverse-RZ signal,” IEEE Photon. Technol. Lett. 17, 1334–1336 (2005).
[Crossref]

Myslivets, E.

Nakamura, M.

R. S. Luís, B. J. Puttnam, J. M. D. Mendinueta, S. Shinada, M. Nakamura, Y. Kamio, and N. Wada, “Digital self-homodyne detection,” IEEE Photon. Technol. Lett. 27, 608–611 (2015).
[Crossref]

B. J. Puttnam, R. S. Luís, J. M. Delgado Mendinueta, J. Sakaguchi, W. Klaus, Y. Kamio, M. Nakamura, N. Wada, Y. Awaji, A. Kanno, T. Kawanishi, and T. Miyazaki, “Self-homodyne detection in optical communication systems,” Photonics 1, 110–130 (2014).
[Crossref]

Nakazawa, M.

Namiki, S.

M. Pelusi, A. Choudhary, T. Inoue, D. Marpaung, B. Eggleton, H. N. Tan, K. Solis-Trapala, and S. Namiki, “Low noise, regeneration of optical frequency comb-lines for 64QAM enabled by SBS gain,” 2016 OptoElectronics and Communications Conference (OECC) (2016), paper PD1-3.

Ozharar, S.

Pelusi, M.

M. Pelusi, A. Choudhary, T. Inoue, D. Marpaung, B. Eggleton, H. N. Tan, K. Solis-Trapala, and S. Namiki, “Low noise, regeneration of optical frequency comb-lines for 64QAM enabled by SBS gain,” 2016 OptoElectronics and Communications Conference (OECC) (2016), paper PD1-3.

Pfeifle, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

Puttnam, B. J.

R. S. Luís, B. J. Puttnam, J. M. D. Mendinueta, S. Shinada, M. Nakamura, Y. Kamio, and N. Wada, “Digital self-homodyne detection,” IEEE Photon. Technol. Lett. 27, 608–611 (2015).
[Crossref]

B. J. Puttnam, R. S. Luís, J. M. Delgado Mendinueta, J. Sakaguchi, W. Klaus, Y. Kamio, M. Nakamura, N. Wada, Y. Awaji, A. Kanno, T. Kawanishi, and T. Miyazaki, “Self-homodyne detection in optical communication systems,” Photonics 1, 110–130 (2014).
[Crossref]

B. J. Puttnam, J. Sakaguchi, J. M. D. Mendinueta, W. Klaus, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link,” Opt. Express 21, 1561–1566 (2013).
[Crossref] [PubMed]

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in 2015 European Conference on Optical Communications (ECOC) (2015), paper PD3.1.
[Crossref]

Qian, D.

L. Xu, J. Hu, D. Qian, and T. Wang, “Coherent optical OFDM systems using self optical carrier extraction,” in 2008 Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2008), paper OMU4.

Quinlan, F.

Radic, S.

Rakich, P. T.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nature Photon. 10, 463–467 (2016).
[Crossref]

Raybon, G.

S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. Burrows, G. Raybon, and P. Winzer, “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” 2016 European Conference on Optical Communications (ECOC) (2016), paper Th.3.C.1.

Richardson, D. J.

Rosenkranz, W.

S. Adhikari, S. Sygletos, A. D. Ellis, B. Inan, S. L. Jansen, and W. Rosenkranz, “Enhanced self-coherent OFDM by the use of injection locked laser,” in 2012 Optical Fiber Communication Conference (2012), paper JW2A.64.

Sakaguchi, J.

B. J. Puttnam, R. S. Luís, J. M. Delgado Mendinueta, J. Sakaguchi, W. Klaus, Y. Kamio, M. Nakamura, N. Wada, Y. Awaji, A. Kanno, T. Kawanishi, and T. Miyazaki, “Self-homodyne detection in optical communication systems,” Photonics 1, 110–130 (2014).
[Crossref]

B. J. Puttnam, J. Sakaguchi, J. M. D. Mendinueta, W. Klaus, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link,” Opt. Express 21, 1561–1566 (2013).
[Crossref] [PubMed]

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in 2015 European Conference on Optical Communications (ECOC) (2015), paper PD3.1.
[Crossref]

Sano, A.

A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224x 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), paper PDP5C.3.
[Crossref]

Schindler, P.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature Photon. 441, 960–963 (2006).

Schmogrow, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

Seeds, A. J.

Shamee, B.

Y. Cao, A. Almaiman, M. Ziyadi, P. Liao, A. M. Ariaei, F. Alishah, C. Bao, A. Fallahpour, B. Shamee, A. Willner, A. Youichi, T. Ikeuchi, S. Wilkinson, J. Touch, M. Tur, and A. Willner, “Demonstration of automatically phase-locked self-homodyne detection with a low-power pilot tone based on Brillouin amplification and optical frequency combs,” in 2016 Optical Fiber Communication Conference, paper M2A.6 2016).

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature Photon. 441, 960–963 (2006).

Shin, H.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nature Photon. 10, 463–467 (2016).
[Crossref]

Shinada, S.

R. S. Luís, B. J. Puttnam, J. M. D. Mendinueta, S. Shinada, M. Nakamura, Y. Kamio, and N. Wada, “Digital self-homodyne detection,” IEEE Photon. Technol. Lett. 27, 608–611 (2015).
[Crossref]

Sjödin, M.

M. Sjödin, E. Agrell, P. Johannisson, G.-W. Lu, P. A. Andrekson, and M. Karlsson, “Filter optimization for self-homodyne coherent WDM systems using interleaved polarization division multiplexing,” J. Lightwave Technol. 29, 1219–1226 (2011).
[Crossref]

M. Sjödin, P. Johannisson, M. Karlsson, Z. Tong, and P. A. Andrekson, “OSNR requirements for self-homodyne coherent systems,” IEEE Photon. Technol. Lett. 22, 91–93 (2010).
[Crossref]

Slavík, R.

Solis-Trapala, K.

M. Pelusi, A. Choudhary, T. Inoue, D. Marpaung, B. Eggleton, H. N. Tan, K. Solis-Trapala, and S. Namiki, “Low noise, regeneration of optical frequency comb-lines for 64QAM enabled by SBS gain,” 2016 OptoElectronics and Communications Conference (OECC) (2016), paper PD1-3.

Suzuki, H.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37, 967–968 (2001).
[Crossref]

Sygletos, S.

S. Adhikari, S. Sygletos, A. D. Ellis, B. Inan, S. L. Jansen, and W. Rosenkranz, “Enhanced self-coherent OFDM by the use of injection locked laser,” in 2012 Optical Fiber Communication Conference (2012), paper JW2A.64.

Tamura, Y.

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in 2015 European Conference on Optical Communications (ECOC) (2015), paper PD3.1.
[Crossref]

Tan, H. N.

M. Pelusi, A. Choudhary, T. Inoue, D. Marpaung, B. Eggleton, H. N. Tan, K. Solis-Trapala, and S. Namiki, “Low noise, regeneration of optical frequency comb-lines for 64QAM enabled by SBS gain,” 2016 OptoElectronics and Communications Conference (OECC) (2016), paper PD1-3.

Temprana, E. G.

Teshima, M.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37, 967–968 (2001).
[Crossref]

Tong, Z.

M. Sjödin, P. Johannisson, M. Karlsson, Z. Tong, and P. A. Andrekson, “OSNR requirements for self-homodyne coherent systems,” IEEE Photon. Technol. Lett. 22, 91–93 (2010).
[Crossref]

Touch, J.

Y. Cao, A. Almaiman, M. Ziyadi, P. Liao, A. M. Ariaei, F. Alishah, C. Bao, A. Fallahpour, B. Shamee, A. Willner, A. Youichi, T. Ikeuchi, S. Wilkinson, J. Touch, M. Tur, and A. Willner, “Demonstration of automatically phase-locked self-homodyne detection with a low-power pilot tone based on Brillouin amplification and optical frequency combs,” in 2016 Optical Fiber Communication Conference, paper M2A.6 2016).

Toulouse, J.

W. Mao, P. A. Andrekson, and J. Toulouse, “Investigation of a spectrally flat multi-wavelength DWDM source based on optical phase- and intensity-modulation,” in Optical Fiber Communication Conference (OFC) (2004), paper MF78.

Tur, M.

Y. Cao, A. Almaiman, M. Ziyadi, P. Liao, A. M. Ariaei, F. Alishah, C. Bao, A. Fallahpour, B. Shamee, A. Willner, A. Youichi, T. Ikeuchi, S. Wilkinson, J. Touch, M. Tur, and A. Willner, “Demonstration of automatically phase-locked self-homodyne detection with a low-power pilot tone based on Brillouin amplification and optical frequency combs,” in 2016 Optical Fiber Communication Conference, paper M2A.6 2016).

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature Photon. 441, 960–963 (2006).

Wada, N.

R. S. Luís, B. J. Puttnam, J. M. D. Mendinueta, S. Shinada, M. Nakamura, Y. Kamio, and N. Wada, “Digital self-homodyne detection,” IEEE Photon. Technol. Lett. 27, 608–611 (2015).
[Crossref]

B. J. Puttnam, R. S. Luís, J. M. Delgado Mendinueta, J. Sakaguchi, W. Klaus, Y. Kamio, M. Nakamura, N. Wada, Y. Awaji, A. Kanno, T. Kawanishi, and T. Miyazaki, “Self-homodyne detection in optical communication systems,” Photonics 1, 110–130 (2014).
[Crossref]

B. J. Puttnam, J. Sakaguchi, J. M. D. Mendinueta, W. Klaus, Y. Awaji, N. Wada, A. Kanno, and T. Kawanishi, “Investigating self-homodyne coherent detection in a 19 channel space-division-multiplexed transmission link,” Opt. Express 21, 1561–1566 (2013).
[Crossref] [PubMed]

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in 2015 European Conference on Optical Communications (ECOC) (2015), paper PD3.1.
[Crossref]

Wang, T.

L. Xu, J. Hu, D. Qian, and T. Wang, “Coherent optical OFDM systems using self optical carrier extraction,” in 2008 Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2008), paper OMU4.

Wang, Y.

Wegner, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

Weimann, C.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

Wilkinson, S.

Y. Cao, A. Almaiman, M. Ziyadi, P. Liao, A. M. Ariaei, F. Alishah, C. Bao, A. Fallahpour, B. Shamee, A. Willner, A. Youichi, T. Ikeuchi, S. Wilkinson, J. Touch, M. Tur, and A. Willner, “Demonstration of automatically phase-locked self-homodyne detection with a low-power pilot tone based on Brillouin amplification and optical frequency combs,” in 2016 Optical Fiber Communication Conference, paper M2A.6 2016).

Willner, A.

Y. Cao, A. Almaiman, M. Ziyadi, P. Liao, A. M. Ariaei, F. Alishah, C. Bao, A. Fallahpour, B. Shamee, A. Willner, A. Youichi, T. Ikeuchi, S. Wilkinson, J. Touch, M. Tur, and A. Willner, “Demonstration of automatically phase-locked self-homodyne detection with a low-power pilot tone based on Brillouin amplification and optical frequency combs,” in 2016 Optical Fiber Communication Conference, paper M2A.6 2016).

Y. Cao, A. Almaiman, M. Ziyadi, P. Liao, A. M. Ariaei, F. Alishah, C. Bao, A. Fallahpour, B. Shamee, A. Willner, A. Youichi, T. Ikeuchi, S. Wilkinson, J. Touch, M. Tur, and A. Willner, “Demonstration of automatically phase-locked self-homodyne detection with a low-power pilot tone based on Brillouin amplification and optical frequency combs,” in 2016 Optical Fiber Communication Conference, paper M2A.6 2016).

Winzer, P.

S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. Burrows, G. Raybon, and P. Winzer, “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” 2016 European Conference on Optical Communications (ECOC) (2016), paper Th.3.C.1.

Wu, D. S.

Xu, L.

L. Xu, J. Hu, D. Qian, and T. Wang, “Coherent optical OFDM systems using self optical carrier extraction,” in 2008 Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2008), paper OMU4.

Yamanaka, S.

A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224x 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), paper PDP5C.3.
[Crossref]

Yilmaz, T.

Yoshida, M.

Youichi, A.

Y. Cao, A. Almaiman, M. Ziyadi, P. Liao, A. M. Ariaei, F. Alishah, C. Bao, A. Fallahpour, B. Shamee, A. Willner, A. Youichi, T. Ikeuchi, S. Wilkinson, J. Touch, M. Tur, and A. Willner, “Demonstration of automatically phase-locked self-homodyne detection with a low-power pilot tone based on Brillouin amplification and optical frequency combs,” in 2016 Optical Fiber Communication Conference, paper M2A.6 2016).

Yu, Y.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

Ziyadi, M.

Y. Cao, A. Almaiman, M. Ziyadi, P. Liao, A. M. Ariaei, F. Alishah, C. Bao, A. Fallahpour, B. Shamee, A. Willner, A. Youichi, T. Ikeuchi, S. Wilkinson, J. Touch, M. Tur, and A. Willner, “Demonstration of automatically phase-locked self-homodyne detection with a low-power pilot tone based on Brillouin amplification and optical frequency combs,” in 2016 Optical Fiber Communication Conference, paper M2A.6 2016).

Electron. Lett. (1)

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett. 37, 967–968 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (4)

T. Miyazaki and F. Kubota, “PSK self-homodyne detection using a pilot carrier for multibit/symbol transmission with inverse-RZ signal,” IEEE Photon. Technol. Lett. 17, 1334–1336 (2005).
[Crossref]

T. Miyazaki, “Linewidth-tolerant QPSK homodyne transmission using a polarization-multiplexed pilot carrier,” IEEE Photon. Technol. Lett. 18, 388–390 (2006).
[Crossref]

M. Sjödin, P. Johannisson, M. Karlsson, Z. Tong, and P. A. Andrekson, “OSNR requirements for self-homodyne coherent systems,” IEEE Photon. Technol. Lett. 22, 91–93 (2010).
[Crossref]

R. S. Luís, B. J. Puttnam, J. M. D. Mendinueta, S. Shinada, M. Nakamura, Y. Kamio, and N. Wada, “Digital self-homodyne detection,” IEEE Photon. Technol. Lett. 27, 608–611 (2015).
[Crossref]

J. Lightwave Technol. (5)

Nature Photon. (3)

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nature Photon. 10, 463–467 (2016).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature Photon. 441, 960–963 (2006).

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nature Photon. 8, 375–380 (2014).
[Crossref]

Opt. Express (6)

Photonics (1)

B. J. Puttnam, R. S. Luís, J. M. Delgado Mendinueta, J. Sakaguchi, W. Klaus, Y. Kamio, M. Nakamura, N. Wada, Y. Awaji, A. Kanno, T. Kawanishi, and T. Miyazaki, “Self-homodyne detection in optical communication systems,” Photonics 1, 110–130 (2014).
[Crossref]

Other (10)

A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224x 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference (2012), paper PDP5C.3.
[Crossref]

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb,” in 2015 European Conference on Optical Communications (ECOC) (2015), paper PD3.1.
[Crossref]

S. Chandrasekhar, B. Li, J. Cho, X. Chen, E. Burrows, G. Raybon, and P. Winzer, “High-spectral-efficiency transmission of PDM 256-QAM with parallel probabilistic shaping at record rate-reach trade-offs,” 2016 European Conference on Optical Communications (ECOC) (2016), paper Th.3.C.1.

“Reset-free polarization tracker PolaStay,” http://www.generalphotonics.com/wp-content/uploads/2015/04/POS-002.pdf , Visited: 11/11/2016.

Y. Cao, A. Almaiman, M. Ziyadi, P. Liao, A. M. Ariaei, F. Alishah, C. Bao, A. Fallahpour, B. Shamee, A. Willner, A. Youichi, T. Ikeuchi, S. Wilkinson, J. Touch, M. Tur, and A. Willner, “Demonstration of automatically phase-locked self-homodyne detection with a low-power pilot tone based on Brillouin amplification and optical frequency combs,” in 2016 Optical Fiber Communication Conference, paper M2A.6 2016).

L. Xu, J. Hu, D. Qian, and T. Wang, “Coherent optical OFDM systems using self optical carrier extraction,” in 2008 Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2008), paper OMU4.

S. Adhikari, S. Sygletos, A. D. Ellis, B. Inan, S. L. Jansen, and W. Rosenkranz, “Enhanced self-coherent OFDM by the use of injection locked laser,” in 2012 Optical Fiber Communication Conference (2012), paper JW2A.64.

W. Mao, P. A. Andrekson, and J. Toulouse, “Investigation of a spectrally flat multi-wavelength DWDM source based on optical phase- and intensity-modulation,” in Optical Fiber Communication Conference (OFC) (2004), paper MF78.

G. Agrawal, Nonlinear Fiber Optics, 5th ed. Optics and Photonics (Elsevier Science, Chapter 10, 2013).

M. Pelusi, A. Choudhary, T. Inoue, D. Marpaung, B. Eggleton, H. N. Tan, K. Solis-Trapala, and S. Namiki, “Low noise, regeneration of optical frequency comb-lines for 64QAM enabled by SBS gain,” 2016 OptoElectronics and Communications Conference (OECC) (2016), paper PD1-3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the experimental setup of the transmitter (a), transmission span (b) and receiver (c).
Fig. 2
Fig. 2 a) Spectra of the transmitted superchannel. b) Spectrum of the regenerated comb. The resolution is 0.013 nm
Fig. 3
Fig. 3 Schematic of the all-optical comb regeneration stage.
Fig. 4
Fig. 4 Required OSNR for BER=2×10−2 in a B2B scenario when using the transmitted comb as LO, and when using the regenerated comb as LO with an input OSNR of 22 dB.
Fig. 5
Fig. 5 Constellation diagrams for the signals at 1545.7 nm and 1547.7 nm. The signal OSNR is 27 dB and the regenerated carriers are used as LO. The input OSNR per carrier to the comb regeneration stage is 22 dB.
Fig. 6
Fig. 6 BER of each data channel after 120 km SMF transmission for the cases of a) intradyne and b) SH receivers. PL indicates the total launch power into the span.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( n ) = n ϕ ( 1 ) ( n 1 ) ϕ ( 0 ) ,
Δ ϕ ( n ) = ϕ ( n ) ϕ ( n ) = ϕ ( n ) n ϕ ( 0 ) + ( n 1 ) ϕ ( 0 ) ) .
E [ Δ ϕ ( n ) ] 2 = E [ ϕ ( n ) ] 2 + n 2 E [ ϕ ( 1 ) ] 2 + ( n 1 ) 2 E [ ( ϕ ( 0 ) ] 2 .

Metrics