Abstract

We propose and experimentally demonstrate a wavelength and bandwidth-tunable comb filter based on silicon Sagnac loop mirrors (SLMs) with Mach-Zehnder interferometer (MZI) couplers. By thermally tuning the MZI couplers in common and differential modes, the phase shift and reflectivity of the SLMs can be changed, respectively, leading to tunable wavelength and bandwidth of the comb filter. The fabricated comb filter has 93 comb lines in the wavelength range from 1535 nm to 1565 nm spaced by ~0.322 nm. The central wavelength can be red-shifted by ~0.462 nm with a tuning efficiency of ~0.019 nm/mW. A continuously tunable bandwidth from 5.88 GHz to 24.89 GHz is also achieved with a differential heating power ranging from 0.00 mW to 0.53 mW.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reconfigurable and tunable compact comb filter and (de)interleaver on silicon platform

Nan Zhou, Shuang Zheng, Yun Long, Zhengsen Ruan, Li Shen, and Jian Wang
Opt. Express 26(4) 4358-4369 (2018)

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer

Ai-Ping Luo, Zhi-Chao Luo, Wen-Cheng Xu, and Hu Cui
Opt. Express 18(6) 6056-6063 (2010)

Tunable silicon Fabry–Perot comb filters formed by Sagnac loop mirrors

Xiaomeng Sun, Linjie Zhou, Jingya Xie, Zhi Zou, Liangjun Lu, Haike Zhu, Xinwan Li, and Jianping Chen
Opt. Lett. 38(4) 567-569 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Z. Luo, W. Cao, A. Luo, and W. Xu, “Polarization-independent, multifunctional all-fiber comb filter using variable ratio coupler-based Mach-Zehnder interferometer,” J. Lightwave Technol. 30(12), 1857–1862 (2012).
    [Crossref]
  2. I. Giuntoni, P. Balladares, R. Steingrüber, J. Bruns, and K. Petermann, “WDM multi-channel filter based on sampled gratings in silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper OThV3.
    [Crossref]
  3. M. W. Pruessner, T. H. Stievater, M. S. Ferraro, and W. S. Rabinovich, “Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities,” Opt. Express 15(12), 7557–7563 (2007).
    [Crossref] [PubMed]
  4. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett. 32(5), 533–535 (2007).
    [Crossref] [PubMed]
  5. P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
    [Crossref] [PubMed]
  6. B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20(10), 767–769 (2008).
    [Crossref]
  7. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  8. X. Sun, L. Zhou, J. Xie, Z. Zou, L. Lu, H. Zhu, X. Li, and J. Chen, “Tunable silicon Fabry-Perot comb filters formed by Sagnac loop mirrors,” Opt. Lett. 38(4), 567–569 (2013).
    [Crossref] [PubMed]
  9. X. Jiang, J. Wu, L. Jiang, Y. Yang, P. Cao, X. Hu, T. Pan, and Y. Su, “Variable bandwidth comb filter based on tunable silicon Sagnac-loop reflectors,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2014), pp. 217−218.
    [Crossref]
  10. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
    [Crossref]
  11. A. Zhang, L. Ding, T. Zhang, and Z. Guo, “Tunable bandwidth and wavelength liquid crystal optical filter,” Proc. SPIE 3936, 66–73 (2000).
    [Crossref]
  12. W. Vogel and M. Berroth, “Tuneable liquid crystal Fabry-Perot filters,” Proc. SPIE 4944, 293–302 (2003).
    [Crossref]
  13. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref] [PubMed]
  14. J. Wu, P. Cao, X. Hu, X. Jiang, T. Pan, Y. Yang, C. Qiu, C. Tremblay, and Y. Su, “Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems,” Opt. Express 22(21), 26254–26264 (2014).
    [Crossref] [PubMed]
  15. F. Gan, T. Barwicz, M. A. Popović, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of IEEE Conference on Optical Switch (IEEE, 2007), pp.67−68.
    [Crossref]
  16. J. Song, L. W. Luo, X. Luo, H. Zhou, X. Tu, L. Jia, Q. Fang, and G. Q. Lo, “Loop coupled resonator optical waveguides,” Opt. Express 22(20), 24202–24216 (2014).
    [Crossref] [PubMed]
  17. X. Dong, P. Shum, N. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express 14(8), 3288–3293 (2006).
    [Crossref] [PubMed]
  18. Z. Luo, A. Luo, and W. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
    [Crossref]

2014 (2)

2013 (1)

2012 (1)

2011 (2)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Z. Luo, A. Luo, and W. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

2008 (1)

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

2007 (3)

2006 (2)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

X. Dong, P. Shum, N. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express 14(8), 3288–3293 (2006).
[Crossref] [PubMed]

2003 (1)

W. Vogel and M. Berroth, “Tuneable liquid crystal Fabry-Perot filters,” Proc. SPIE 4944, 293–302 (2003).
[Crossref]

2002 (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

2000 (1)

A. Zhang, L. Ding, T. Zhang, and Z. Guo, “Tunable bandwidth and wavelength liquid crystal optical filter,” Proc. SPIE 3936, 66–73 (2000).
[Crossref]

Balladares, P.

I. Giuntoni, P. Balladares, R. Steingrüber, J. Bruns, and K. Petermann, “WDM multi-channel filter based on sampled gratings in silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper OThV3.
[Crossref]

Barwicz, T.

F. Gan, T. Barwicz, M. A. Popović, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of IEEE Conference on Optical Switch (IEEE, 2007), pp.67−68.
[Crossref]

Bergman, K.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

Berroth, M.

W. Vogel and M. Berroth, “Tuneable liquid crystal Fabry-Perot filters,” Proc. SPIE 4944, 293–302 (2003).
[Crossref]

Biberman, A.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

Bruns, J.

I. Giuntoni, P. Balladares, R. Steingrüber, J. Bruns, and K. Petermann, “WDM multi-channel filter based on sampled gratings in silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper OThV3.
[Crossref]

Cao, P.

J. Wu, P. Cao, X. Hu, X. Jiang, T. Pan, Y. Yang, C. Qiu, C. Tremblay, and Y. Su, “Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems,” Opt. Express 22(21), 26254–26264 (2014).
[Crossref] [PubMed]

X. Jiang, J. Wu, L. Jiang, Y. Yang, P. Cao, X. Hu, T. Pan, and Y. Su, “Variable bandwidth comb filter based on tunable silicon Sagnac-loop reflectors,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2014), pp. 217−218.
[Crossref]

Cao, W.

Chan, C. C.

Chen, J.

Dahlem, M. S.

F. Gan, T. Barwicz, M. A. Popović, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of IEEE Conference on Optical Switch (IEEE, 2007), pp.67−68.
[Crossref]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Ding, L.

A. Zhang, L. Ding, T. Zhang, and Z. Guo, “Tunable bandwidth and wavelength liquid crystal optical filter,” Proc. SPIE 3936, 66–73 (2000).
[Crossref]

Dong, P.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
[Crossref] [PubMed]

Dong, X.

Fang, Q.

Ferraro, M. S.

Gan, F.

F. Gan, T. Barwicz, M. A. Popović, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of IEEE Conference on Optical Switch (IEEE, 2007), pp.67−68.
[Crossref]

Giuntoni, I.

I. Giuntoni, P. Balladares, R. Steingrüber, J. Bruns, and K. Petermann, “WDM multi-channel filter based on sampled gratings in silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper OThV3.
[Crossref]

Guo, Z.

A. Zhang, L. Ding, T. Zhang, and Z. Guo, “Tunable bandwidth and wavelength liquid crystal optical filter,” Proc. SPIE 3936, 66–73 (2000).
[Crossref]

Holzwarth, C. W.

F. Gan, T. Barwicz, M. A. Popović, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of IEEE Conference on Optical Switch (IEEE, 2007), pp.67−68.
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Hu, X.

J. Wu, P. Cao, X. Hu, X. Jiang, T. Pan, Y. Yang, C. Qiu, C. Tremblay, and Y. Su, “Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems,” Opt. Express 22(21), 26254–26264 (2014).
[Crossref] [PubMed]

X. Jiang, J. Wu, L. Jiang, Y. Yang, P. Cao, X. Hu, T. Pan, and Y. Su, “Variable bandwidth comb filter based on tunable silicon Sagnac-loop reflectors,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2014), pp. 217−218.
[Crossref]

Ippen, E. P.

F. Gan, T. Barwicz, M. A. Popović, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of IEEE Conference on Optical Switch (IEEE, 2007), pp.67−68.
[Crossref]

Jia, L.

Jiang, L.

X. Jiang, J. Wu, L. Jiang, Y. Yang, P. Cao, X. Hu, T. Pan, and Y. Su, “Variable bandwidth comb filter based on tunable silicon Sagnac-loop reflectors,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2014), pp. 217−218.
[Crossref]

Jiang, X.

J. Wu, P. Cao, X. Hu, X. Jiang, T. Pan, Y. Yang, C. Qiu, C. Tremblay, and Y. Su, “Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems,” Opt. Express 22(21), 26254–26264 (2014).
[Crossref] [PubMed]

X. Jiang, J. Wu, L. Jiang, Y. Yang, P. Cao, X. Hu, T. Pan, and Y. Su, “Variable bandwidth comb filter based on tunable silicon Sagnac-loop reflectors,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2014), pp. 217−218.
[Crossref]

Kärtner, F. X.

F. Gan, T. Barwicz, M. A. Popović, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of IEEE Conference on Optical Switch (IEEE, 2007), pp.67−68.
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Lee, B. G.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

Li, X.

Lipson, M.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
[Crossref] [PubMed]

Lo, G. Q.

Lu, L.

Luo, A.

Z. Luo, W. Cao, A. Luo, and W. Xu, “Polarization-independent, multifunctional all-fiber comb filter using variable ratio coupler-based Mach-Zehnder interferometer,” J. Lightwave Technol. 30(12), 1857–1862 (2012).
[Crossref]

Z. Luo, A. Luo, and W. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

Luo, L. W.

Luo, X.

Luo, Z.

Z. Luo, W. Cao, A. Luo, and W. Xu, “Polarization-independent, multifunctional all-fiber comb filter using variable ratio coupler-based Mach-Zehnder interferometer,” J. Lightwave Technol. 30(12), 1857–1862 (2012).
[Crossref]

Z. Luo, A. Luo, and W. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

Ngo, N. Q.

Pan, T.

J. Wu, P. Cao, X. Hu, X. Jiang, T. Pan, Y. Yang, C. Qiu, C. Tremblay, and Y. Su, “Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems,” Opt. Express 22(21), 26254–26264 (2014).
[Crossref] [PubMed]

X. Jiang, J. Wu, L. Jiang, Y. Yang, P. Cao, X. Hu, T. Pan, and Y. Su, “Variable bandwidth comb filter based on tunable silicon Sagnac-loop reflectors,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2014), pp. 217−218.
[Crossref]

Petermann, K.

I. Giuntoni, P. Balladares, R. Steingrüber, J. Bruns, and K. Petermann, “WDM multi-channel filter based on sampled gratings in silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper OThV3.
[Crossref]

Popovic, M. A.

F. Gan, T. Barwicz, M. A. Popović, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of IEEE Conference on Optical Switch (IEEE, 2007), pp.67−68.
[Crossref]

Preble, S. F.

Pruessner, M. W.

Qiu, C.

Rabinovich, W. S.

Rakich, P. T.

F. Gan, T. Barwicz, M. A. Popović, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of IEEE Conference on Optical Switch (IEEE, 2007), pp.67−68.
[Crossref]

Shum, P.

Smith, H. I.

F. Gan, T. Barwicz, M. A. Popović, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of IEEE Conference on Optical Switch (IEEE, 2007), pp.67−68.
[Crossref]

Song, J.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Steingrüber, R.

I. Giuntoni, P. Balladares, R. Steingrüber, J. Bruns, and K. Petermann, “WDM multi-channel filter based on sampled gratings in silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper OThV3.
[Crossref]

Stievater, T. H.

Su, Y.

J. Wu, P. Cao, X. Hu, X. Jiang, T. Pan, Y. Yang, C. Qiu, C. Tremblay, and Y. Su, “Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems,” Opt. Express 22(21), 26254–26264 (2014).
[Crossref] [PubMed]

X. Jiang, J. Wu, L. Jiang, Y. Yang, P. Cao, X. Hu, T. Pan, and Y. Su, “Variable bandwidth comb filter based on tunable silicon Sagnac-loop reflectors,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2014), pp. 217−218.
[Crossref]

Sun, X.

Tremblay, C.

Tu, X.

Vogel, W.

W. Vogel and M. Berroth, “Tuneable liquid crystal Fabry-Perot filters,” Proc. SPIE 4944, 293–302 (2003).
[Crossref]

Wu, J.

J. Wu, P. Cao, X. Hu, X. Jiang, T. Pan, Y. Yang, C. Qiu, C. Tremblay, and Y. Su, “Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems,” Opt. Express 22(21), 26254–26264 (2014).
[Crossref] [PubMed]

X. Jiang, J. Wu, L. Jiang, Y. Yang, P. Cao, X. Hu, T. Pan, and Y. Su, “Variable bandwidth comb filter based on tunable silicon Sagnac-loop reflectors,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2014), pp. 217−218.
[Crossref]

Xie, J.

Xu, W.

Z. Luo, W. Cao, A. Luo, and W. Xu, “Polarization-independent, multifunctional all-fiber comb filter using variable ratio coupler-based Mach-Zehnder interferometer,” J. Lightwave Technol. 30(12), 1857–1862 (2012).
[Crossref]

Z. Luo, A. Luo, and W. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

Yang, Y.

J. Wu, P. Cao, X. Hu, X. Jiang, T. Pan, Y. Yang, C. Qiu, C. Tremblay, and Y. Su, “Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems,” Opt. Express 22(21), 26254–26264 (2014).
[Crossref] [PubMed]

X. Jiang, J. Wu, L. Jiang, Y. Yang, P. Cao, X. Hu, T. Pan, and Y. Su, “Variable bandwidth comb filter based on tunable silicon Sagnac-loop reflectors,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2014), pp. 217−218.
[Crossref]

Yariv, A.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

Zhang, A.

A. Zhang, L. Ding, T. Zhang, and Z. Guo, “Tunable bandwidth and wavelength liquid crystal optical filter,” Proc. SPIE 3936, 66–73 (2000).
[Crossref]

Zhang, T.

A. Zhang, L. Ding, T. Zhang, and Z. Guo, “Tunable bandwidth and wavelength liquid crystal optical filter,” Proc. SPIE 3936, 66–73 (2000).
[Crossref]

Zhou, H.

Zhou, L.

Zhu, H.

Zou, Z.

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

IEEE Photonics J. (1)

Z. Luo, A. Luo, and W. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photonics Technol. Lett. 20(10), 767–769 (2008).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (5)

Opt. Lett. (2)

Proc. SPIE (2)

A. Zhang, L. Ding, T. Zhang, and Z. Guo, “Tunable bandwidth and wavelength liquid crystal optical filter,” Proc. SPIE 3936, 66–73 (2000).
[Crossref]

W. Vogel and M. Berroth, “Tuneable liquid crystal Fabry-Perot filters,” Proc. SPIE 4944, 293–302 (2003).
[Crossref]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Other (3)

F. Gan, T. Barwicz, M. A. Popović, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Proceedings of IEEE Conference on Optical Switch (IEEE, 2007), pp.67−68.
[Crossref]

I. Giuntoni, P. Balladares, R. Steingrüber, J. Bruns, and K. Petermann, “WDM multi-channel filter based on sampled gratings in silicon-on-insulator,” in Optical Fiber Communication Conference (Optical Society of America, 2011), paper OThV3.
[Crossref]

X. Jiang, J. Wu, L. Jiang, Y. Yang, P. Cao, X. Hu, T. Pan, and Y. Su, “Variable bandwidth comb filter based on tunable silicon Sagnac-loop reflectors,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2014), pp. 217−218.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) A FPI comb filter consists of two loop mirrors. (b) Schematic of the proposed comb filter based on SLMs with MZI couplers. (c) Common and (d) differential tuning of the MZI couplers for wavelength and bandwidth tuning of the comb filter, respectively. SLM: Sagnac loop mirror. MZI: Mach-Zehnder interferometer. FPI: Fabry-Perot interferometer.
Fig. 2
Fig. 2 (a), (c) Simulated transmission spectra of (a) central wavelength and (c) bandwidth tuning by changing the refractive indexes of the phase shifters along the MZI arms according to Figs. 1(c) and 1(d), respectively. (b) Central wavelength shift versus ∆n. (d) Bandwidth and extinction ratio versus ∆n. ∆n: refractive index change. R: reflectivity.
Fig. 3
Fig. 3 Simulated transmission spectra of the comb filter with different t and l 1,3.
Fig. 4
Fig. 4 (a), (b) Micrograph of (a) the fabricated device and (b) the device after wire-bonding to a PCB. (c) Measured transmission spectrum of the comb filter in the wavelength range from 1535 nm to 1565 nm. (d) Measured (blue-solid curve) and fitted (red-dot curve) transmission spectra in the wavelength range from 1548 nm to 1550 nm. SLM: Sagnac loop mirror. MZI: Mach-Zehnder interferometer. PCB: printed circuit board.
Fig. 5
Fig. 5 (a), (c) Measured transmission spectra of (a) central wavelength and (c) bandwidth tuning versus heating power P of each micro-heater and differential heating power ∆P, respectively. (b) Central wavelength shift versus heating power P of each micro-heater. (d) Bandwidth and extinction ratio versus differential heating power ∆P.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t FP = t s 2 a 4 / ( 1 r s 2 a 4 2 ) ,
t s = a 1 a 2 a 3 ( k 4 + t 4 ) 2 a 2 ( a 1 2 + a 1 a 3 + a 3 2 ) k 2 t 2 ,
r s = 2 j a 2 ( a 1 + a 3 ) ( a 1 k t 3 a 3 k 3 t ) ,

Metrics