Abstract

Visible light communication (VLC) is recommended for indoor transmissions in 5G network, whereby DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM) is adopted to eliminate the inter-symbol interference (ISI) but suffers from considerable performance loss induced by clipping distortion. In this paper, bit-interleaved coded modulation with iterative demapping and decoding (BICM-ID) scheme for clipped DCO-OFDM is investigated to enhance the performance of VLC systems. In order to further mitigate the clipping distortions, a novel soft demapping criterion is proposed, and a simplified demapping algorithm is developed to reduce the complexity of the proposed criterion. Simulation results illustrate that the enhanced demapping algorithm achieves a significant performance gain.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
PAPR reduction based on tone reservation scheme for DCO-OFDM indoor visible light communications

Jurong Bai, Yong Li, Yang Yi, Wei Cheng, and Huimin Du
Opt. Express 25(20) 24630-24638 (2017)

Improved TKM-TR methods for PAPR reduction of DCO-OFDM visible light communications

Yongqiang Hei, Jiao Liu, Huaxi Gu, Wentao Li, Xiaochuan Xu, and Ray T. Chen
Opt. Express 25(20) 24448-24458 (2017)

Time domain reshuffling for OFDM based indoor visible light communication systems

Xiaodi You, Jian Chen, Changyuan Yu, and Huanhuan Zheng
Opt. Express 25(10) 11606-11621 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. X. Jovicic, F. Haider, X. Gao, X You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Heosaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
    [Crossref]
  2. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
    [Crossref]
  3. J. Armstrong, “OFDM for Optical Communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
    [Crossref]
  4. J. B. Carruthers and J. M. Kahn, “Multiple-subcarrier modulation for nondirected wireless infrared communication,” IEEE J. Sel. Areas. Commun. 14(3), 538–546 (1996).
    [Crossref]
  5. Q. Wang, C. Qian, X. Guo, Z. Wang, D. G. Cunningham, and I. H. White, “Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission,” Opt. Express 23(9), 12382–12393 (2015).
    [Crossref] [PubMed]
  6. S. Dimitrov and H. Haas, “Information rate of OFDM-based optical wireless communication systems with nonlinear distortion,” J. Lightwave Technol. 31(6), 918–929 (2013).
    [Crossref]
  7. H. Zhang, Y. Yuan, and W. Xu, “PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation,” IEEE Photon. Technol. Lett 26(17), 1718–1721 (2014).
    [Crossref]
  8. J. G. Doblado, A. C. O. Oria, V. Baena-Lecuyer, P. Lopez, and D. Perez-Calderon, “Cubic metric reduction for DCO-OFDM visible light communication systems,” J. Lightwave Technol. 33(10), 1971–1978 (2015).
    [Crossref]
  9. T. Mao, Z. Wang, Q. Wang, and L. Dai, “Ellipse-based DCO-OFDM for visible light communications,” Opt. Commun. 360, 1–6 (2016).
    [Crossref]
  10. Z. Wang, Q. Wang, S. Chen, and L. Hanzo, “An adaptive scaling and biasing scheme for OFDM-based visible light communication systems,” Opt. Express 22(10), 12707–12715 (2014).
    [Crossref] [PubMed]
  11. J. Tan, Z. Wang, Q. Wang, and L. Dai, “Near-optimal low-complexity sequence detection for clipped DCO-OFDM,” IEEE Photon. Technol. Lett 28(3), 233–236 (2016).
    [Crossref]
  12. S. ten Brink, J. Speidel, and R. H. Yan, “Iterative demapping and decoding for multilevel modulation,” in Proc. Globecom.579–584 (1998).
  13. K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22(2), 36–45 (2015).
    [Crossref]
  14. P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain,” in Proc. ICC, 1009–1013 (1995).
  15. J. Tan, Z. Wang, C. Qian, Z. Wang, S. Chen, and L. Hanzo, “A reduced-complexity demapping algorithm for BICM-ID systems,” IEEE Trans. Veh. Technol. 64(9), 4350–4356 (2015).
    [Crossref]
  16. S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes,” IEEE Trans. Commun. 49(10), 1727–1737 (2001).
    [Crossref]
  17. IEEE Std. 802.11-2012, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (2012).
  18. K. Ying, Z. Yu, R. J. Baxley, and G. T. Zhou, “Optimization of signal-to-noise-plus-distortion ratio for dynamic-range-limited nonlinearities,” Digital Signal Processing 36, 104–114 (2015).
    [Crossref]

2016 (2)

T. Mao, Z. Wang, Q. Wang, and L. Dai, “Ellipse-based DCO-OFDM for visible light communications,” Opt. Commun. 360, 1–6 (2016).
[Crossref]

J. Tan, Z. Wang, Q. Wang, and L. Dai, “Near-optimal low-complexity sequence detection for clipped DCO-OFDM,” IEEE Photon. Technol. Lett 28(3), 233–236 (2016).
[Crossref]

2015 (5)

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22(2), 36–45 (2015).
[Crossref]

J. Tan, Z. Wang, C. Qian, Z. Wang, S. Chen, and L. Hanzo, “A reduced-complexity demapping algorithm for BICM-ID systems,” IEEE Trans. Veh. Technol. 64(9), 4350–4356 (2015).
[Crossref]

K. Ying, Z. Yu, R. J. Baxley, and G. T. Zhou, “Optimization of signal-to-noise-plus-distortion ratio for dynamic-range-limited nonlinearities,” Digital Signal Processing 36, 104–114 (2015).
[Crossref]

Q. Wang, C. Qian, X. Guo, Z. Wang, D. G. Cunningham, and I. H. White, “Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission,” Opt. Express 23(9), 12382–12393 (2015).
[Crossref] [PubMed]

J. G. Doblado, A. C. O. Oria, V. Baena-Lecuyer, P. Lopez, and D. Perez-Calderon, “Cubic metric reduction for DCO-OFDM visible light communication systems,” J. Lightwave Technol. 33(10), 1971–1978 (2015).
[Crossref]

2014 (3)

H. Zhang, Y. Yuan, and W. Xu, “PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation,” IEEE Photon. Technol. Lett 26(17), 1718–1721 (2014).
[Crossref]

Z. Wang, Q. Wang, S. Chen, and L. Hanzo, “An adaptive scaling and biasing scheme for OFDM-based visible light communication systems,” Opt. Express 22(10), 12707–12715 (2014).
[Crossref] [PubMed]

C. X. Jovicic, F. Haider, X. Gao, X You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Heosaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

2013 (1)

2009 (1)

2001 (1)

S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes,” IEEE Trans. Commun. 49(10), 1727–1737 (2001).
[Crossref]

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

1996 (1)

J. B. Carruthers and J. M. Kahn, “Multiple-subcarrier modulation for nondirected wireless infrared communication,” IEEE J. Sel. Areas. Commun. 14(3), 538–546 (1996).
[Crossref]

Aggoune, H. M.

C. X. Jovicic, F. Haider, X. Gao, X You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Heosaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Armstrong, J.

Baena-Lecuyer, V.

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Baxley, R. J.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22(2), 36–45 (2015).
[Crossref]

K. Ying, Z. Yu, R. J. Baxley, and G. T. Zhou, “Optimization of signal-to-noise-plus-distortion ratio for dynamic-range-limited nonlinearities,” Digital Signal Processing 36, 104–114 (2015).
[Crossref]

Carruthers, J. B.

J. B. Carruthers and J. M. Kahn, “Multiple-subcarrier modulation for nondirected wireless infrared communication,” IEEE J. Sel. Areas. Commun. 14(3), 538–546 (1996).
[Crossref]

Chang, G. K.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22(2), 36–45 (2015).
[Crossref]

Chen, S.

J. Tan, Z. Wang, C. Qian, Z. Wang, S. Chen, and L. Hanzo, “A reduced-complexity demapping algorithm for BICM-ID systems,” IEEE Trans. Veh. Technol. 64(9), 4350–4356 (2015).
[Crossref]

Z. Wang, Q. Wang, S. Chen, and L. Hanzo, “An adaptive scaling and biasing scheme for OFDM-based visible light communication systems,” Opt. Express 22(10), 12707–12715 (2014).
[Crossref] [PubMed]

Cunningham, D. G.

Dai, L.

T. Mao, Z. Wang, Q. Wang, and L. Dai, “Ellipse-based DCO-OFDM for visible light communications,” Opt. Commun. 360, 1–6 (2016).
[Crossref]

J. Tan, Z. Wang, Q. Wang, and L. Dai, “Near-optimal low-complexity sequence detection for clipped DCO-OFDM,” IEEE Photon. Technol. Lett 28(3), 233–236 (2016).
[Crossref]

Dimitrov, S.

Doblado, J. G.

Fletcher, S.

C. X. Jovicic, F. Haider, X. Gao, X You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Heosaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Gao, X.

C. X. Jovicic, F. Haider, X. Gao, X You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Heosaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Guo, X.

Haas, H.

C. X. Jovicic, F. Haider, X. Gao, X You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Heosaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

S. Dimitrov and H. Haas, “Information rate of OFDM-based optical wireless communication systems with nonlinear distortion,” J. Lightwave Technol. 31(6), 918–929 (2013).
[Crossref]

Haider, F.

C. X. Jovicic, F. Haider, X. Gao, X You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Heosaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Hanzo, L.

J. Tan, Z. Wang, C. Qian, Z. Wang, S. Chen, and L. Hanzo, “A reduced-complexity demapping algorithm for BICM-ID systems,” IEEE Trans. Veh. Technol. 64(9), 4350–4356 (2015).
[Crossref]

Z. Wang, Q. Wang, S. Chen, and L. Hanzo, “An adaptive scaling and biasing scheme for OFDM-based visible light communication systems,” Opt. Express 22(10), 12707–12715 (2014).
[Crossref] [PubMed]

Heosaydir, E.

C. X. Jovicic, F. Haider, X. Gao, X You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Heosaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Hoeher, P.

P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain,” in Proc. ICC, 1009–1013 (1995).

Jovicic, C. X.

C. X. Jovicic, F. Haider, X. Gao, X You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Heosaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

J. B. Carruthers and J. M. Kahn, “Multiple-subcarrier modulation for nondirected wireless infrared communication,” IEEE J. Sel. Areas. Commun. 14(3), 538–546 (1996).
[Crossref]

Lopez, P.

Mao, T.

T. Mao, Z. Wang, Q. Wang, and L. Dai, “Ellipse-based DCO-OFDM for visible light communications,” Opt. Commun. 360, 1–6 (2016).
[Crossref]

Oria, A. C. O.

Perez-Calderon, D.

Qian, C.

Q. Wang, C. Qian, X. Guo, Z. Wang, D. G. Cunningham, and I. H. White, “Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission,” Opt. Express 23(9), 12382–12393 (2015).
[Crossref] [PubMed]

J. Tan, Z. Wang, C. Qian, Z. Wang, S. Chen, and L. Hanzo, “A reduced-complexity demapping algorithm for BICM-ID systems,” IEEE Trans. Veh. Technol. 64(9), 4350–4356 (2015).
[Crossref]

Qian, H.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22(2), 36–45 (2015).
[Crossref]

Robertson, P.

P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain,” in Proc. ICC, 1009–1013 (1995).

Speidel, J.

S. ten Brink, J. Speidel, and R. H. Yan, “Iterative demapping and decoding for multilevel modulation,” in Proc. Globecom.579–584 (1998).

Tan, J.

J. Tan, Z. Wang, Q. Wang, and L. Dai, “Near-optimal low-complexity sequence detection for clipped DCO-OFDM,” IEEE Photon. Technol. Lett 28(3), 233–236 (2016).
[Crossref]

J. Tan, Z. Wang, C. Qian, Z. Wang, S. Chen, and L. Hanzo, “A reduced-complexity demapping algorithm for BICM-ID systems,” IEEE Trans. Veh. Technol. 64(9), 4350–4356 (2015).
[Crossref]

ten Brink, S.

S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes,” IEEE Trans. Commun. 49(10), 1727–1737 (2001).
[Crossref]

S. ten Brink, J. Speidel, and R. H. Yan, “Iterative demapping and decoding for multilevel modulation,” in Proc. Globecom.579–584 (1998).

Villebrun, E.

P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain,” in Proc. ICC, 1009–1013 (1995).

Wang, Q.

T. Mao, Z. Wang, Q. Wang, and L. Dai, “Ellipse-based DCO-OFDM for visible light communications,” Opt. Commun. 360, 1–6 (2016).
[Crossref]

J. Tan, Z. Wang, Q. Wang, and L. Dai, “Near-optimal low-complexity sequence detection for clipped DCO-OFDM,” IEEE Photon. Technol. Lett 28(3), 233–236 (2016).
[Crossref]

Q. Wang, C. Qian, X. Guo, Z. Wang, D. G. Cunningham, and I. H. White, “Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission,” Opt. Express 23(9), 12382–12393 (2015).
[Crossref] [PubMed]

Z. Wang, Q. Wang, S. Chen, and L. Hanzo, “An adaptive scaling and biasing scheme for OFDM-based visible light communication systems,” Opt. Express 22(10), 12707–12715 (2014).
[Crossref] [PubMed]

Wang, Z.

J. Tan, Z. Wang, Q. Wang, and L. Dai, “Near-optimal low-complexity sequence detection for clipped DCO-OFDM,” IEEE Photon. Technol. Lett 28(3), 233–236 (2016).
[Crossref]

T. Mao, Z. Wang, Q. Wang, and L. Dai, “Ellipse-based DCO-OFDM for visible light communications,” Opt. Commun. 360, 1–6 (2016).
[Crossref]

Q. Wang, C. Qian, X. Guo, Z. Wang, D. G. Cunningham, and I. H. White, “Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission,” Opt. Express 23(9), 12382–12393 (2015).
[Crossref] [PubMed]

J. Tan, Z. Wang, C. Qian, Z. Wang, S. Chen, and L. Hanzo, “A reduced-complexity demapping algorithm for BICM-ID systems,” IEEE Trans. Veh. Technol. 64(9), 4350–4356 (2015).
[Crossref]

J. Tan, Z. Wang, C. Qian, Z. Wang, S. Chen, and L. Hanzo, “A reduced-complexity demapping algorithm for BICM-ID systems,” IEEE Trans. Veh. Technol. 64(9), 4350–4356 (2015).
[Crossref]

Z. Wang, Q. Wang, S. Chen, and L. Hanzo, “An adaptive scaling and biasing scheme for OFDM-based visible light communication systems,” Opt. Express 22(10), 12707–12715 (2014).
[Crossref] [PubMed]

White, I. H.

Xu, W.

H. Zhang, Y. Yuan, and W. Xu, “PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation,” IEEE Photon. Technol. Lett 26(17), 1718–1721 (2014).
[Crossref]

Yan, R. H.

S. ten Brink, J. Speidel, and R. H. Yan, “Iterative demapping and decoding for multilevel modulation,” in Proc. Globecom.579–584 (1998).

Yang, Y.

C. X. Jovicic, F. Haider, X. Gao, X You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Heosaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Ying, K.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22(2), 36–45 (2015).
[Crossref]

K. Ying, Z. Yu, R. J. Baxley, and G. T. Zhou, “Optimization of signal-to-noise-plus-distortion ratio for dynamic-range-limited nonlinearities,” Digital Signal Processing 36, 104–114 (2015).
[Crossref]

You, X

C. X. Jovicic, F. Haider, X. Gao, X You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Heosaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Yu, Z.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22(2), 36–45 (2015).
[Crossref]

K. Ying, Z. Yu, R. J. Baxley, and G. T. Zhou, “Optimization of signal-to-noise-plus-distortion ratio for dynamic-range-limited nonlinearities,” Digital Signal Processing 36, 104–114 (2015).
[Crossref]

Yuan, D.

C. X. Jovicic, F. Haider, X. Gao, X You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Heosaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Yuan, Y.

H. Zhang, Y. Yuan, and W. Xu, “PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation,” IEEE Photon. Technol. Lett 26(17), 1718–1721 (2014).
[Crossref]

Zhang, H.

H. Zhang, Y. Yuan, and W. Xu, “PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation,” IEEE Photon. Technol. Lett 26(17), 1718–1721 (2014).
[Crossref]

Zhou, G. T.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22(2), 36–45 (2015).
[Crossref]

K. Ying, Z. Yu, R. J. Baxley, and G. T. Zhou, “Optimization of signal-to-noise-plus-distortion ratio for dynamic-range-limited nonlinearities,” Digital Signal Processing 36, 104–114 (2015).
[Crossref]

Digital Signal Processing (1)

K. Ying, Z. Yu, R. J. Baxley, and G. T. Zhou, “Optimization of signal-to-noise-plus-distortion ratio for dynamic-range-limited nonlinearities,” Digital Signal Processing 36, 104–114 (2015).
[Crossref]

IEEE Commun. Mag. (1)

C. X. Jovicic, F. Haider, X. Gao, X You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Heosaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

IEEE J. Sel. Areas. Commun. (1)

J. B. Carruthers and J. M. Kahn, “Multiple-subcarrier modulation for nondirected wireless infrared communication,” IEEE J. Sel. Areas. Commun. 14(3), 538–546 (1996).
[Crossref]

IEEE Photon. Technol. Lett (2)

H. Zhang, Y. Yuan, and W. Xu, “PAPR reduction for DCO-OFDM visible light communications via semidefinite relaxation,” IEEE Photon. Technol. Lett 26(17), 1718–1721 (2014).
[Crossref]

J. Tan, Z. Wang, Q. Wang, and L. Dai, “Near-optimal low-complexity sequence detection for clipped DCO-OFDM,” IEEE Photon. Technol. Lett 28(3), 233–236 (2016).
[Crossref]

IEEE Trans. Commun. (1)

S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes,” IEEE Trans. Commun. 49(10), 1727–1737 (2001).
[Crossref]

IEEE Trans. Veh. Technol. (1)

J. Tan, Z. Wang, C. Qian, Z. Wang, S. Chen, and L. Hanzo, “A reduced-complexity demapping algorithm for BICM-ID systems,” IEEE Trans. Veh. Technol. 64(9), 4350–4356 (2015).
[Crossref]

IEEE Wireless Commun. (1)

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wireless Commun. 22(2), 36–45 (2015).
[Crossref]

J. Lightwave Technol. (3)

Opt. Commun. (1)

T. Mao, Z. Wang, Q. Wang, and L. Dai, “Ellipse-based DCO-OFDM for visible light communications,” Opt. Commun. 360, 1–6 (2016).
[Crossref]

Opt. Express (2)

Proc. IEEE (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Other (3)

S. ten Brink, J. Speidel, and R. H. Yan, “Iterative demapping and decoding for multilevel modulation,” in Proc. Globecom.579–584 (1998).

P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain,” in Proc. ICC, 1009–1013 (1995).

IEEE Std. 802.11-2012, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The block diagram of DCO-OFDM transceiver using BICM-ID technology.
Fig. 2
Fig. 2 The EXIT chart of the conventional and the proposed demapper for 16QAM and SNR = 8.5 dB.
Fig. 3
Fig. 3 The EXIT chart of the conventional and the proposed demapper for 64QAM and SNR = 12 dB.
Fig. 4
Fig. 4 The BER performance of the conventional and the proposed demapper for clipped DCO-OFDM VLC systems.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

X DCO = HS ( X ) = [ 0 , X 1 , , X N used , 0 , 0 , X N used * , , X 1 * ] T .
x n = 1 N k = 0 N 1 X DCO , k exp ( j 2 π k n N ) , n = 0 , 1 , . . , N 1 ,
x DCO = x + B DC ,
z = { A min , z < A min A max , z > A max z , else .
L k , i e log max X ¯ k 𝒳 i ( 0 ) { P ( Y k | X ¯ k ) P ( X ¯ k | L k a ) } max X ¯ k 𝒳 i ( 1 ) { P ( Y k | X ¯ k ) P ( X ¯ k | L k a ) } L k , i a = max X ¯ k 𝒳 i ( 0 ) { 1 σ 2 X ¯ k Y k 2 + 1 2 s T ( X ¯ k ) L k a } max X ¯ k 𝒳 i ( 1 ) { 1 σ 2 X ¯ k Y k 2 + 1 2 s T ( X ¯ k ) L k a } L k , i a .
P ( y | X ¯ ) = 1 ( 2 π σ 2 ) N 2 exp ( 1 2 σ 2 x r ( X ¯ ) y 2 ) .
x r ( X ¯ ) = IFFT ( HS ( X ¯ ) ) + B DC .
L k , i e log max X ¯ 𝒳 k , i N used , ( 0 ) { P ( y | X ¯ ) P ( X ¯ | L a ) } max X ¯ 𝒳 k , i N used , ( 1 ) { P ( y | X ¯ ) P ( X ¯ | L a ) } L k , i a = max X ¯ 𝒳 k , i N used , ( 0 ) { 1 2 σ 2 x r ( X ¯ ) y 2 + 1 2 s T ( X ¯ ) L a } max X ¯ 𝒳 k , i N used , ( 1 ) { 1 2 σ 2 x r ( X ¯ ) y 2 + 1 2 s T ( X ¯ ) L a } L k , i a .
b i k ( L k a ) = { 0 , L k , i a 0 1 , L k , i a < 0 ,
X ¯ l k ( X ¯ , L a ) = { X ¯ k , l = k X a ( L l a ) , l k ,
L k , i e = max X ¯ k 𝒳 i ( 0 ) { 1 2 σ 2 x r ( X ¯ k ( X ¯ k , L a ) ) y 2 + 1 2 s T ( X ¯ k ) L k a } max X ¯ k 𝒳 i ( 1 ) { 1 2 σ 2 x r ( X ¯ k ( X ¯ k , L a ) ) y 2 + 1 2 s T ( X ¯ k ) L k a } L k , i a .
x r ( X ¯ k ( X ¯ k , L a ) ) y 2 = l = 0 N X l c ( X ¯ k , L a ) Y l 2 ,
L k , i e = max X ¯ k 𝒳 i ( 0 ) { 1 2 σ 2 l = 0 N X l c ( X ¯ k , L a ) Y l 2 + 1 2 s T ( X ¯ k ) L k a } max X ¯ k 𝒳 i ( 1 ) { 1 2 σ 2 l = 0 N X l c ( X ¯ k , L a ) Y l 2 + 1 2 s T ( X ¯ k ) L k a } L k , i a max X ¯ k 𝒳 i ( 0 ) { 1 σ 2 X k c ( X ¯ k , L a ) Y k 2 + 1 2 s T ( X ¯ k ) L k a } max X ¯ k 𝒳 i ( 1 ) { 1 σ 2 X k c ( X ¯ k , L a ) Y k 2 + 1 2 s T ( X ¯ k ) L k a } L k , i a ,
X k c ( X ¯ k , L a ) = N e k T x r ( X ¯ k ( X ¯ k , L a ) ) ,
x n r ( X ¯ k ( X ¯ k , L a ) ) = x n r ( X a ( L a ) ) + 2 N Re ( ( X ¯ k X a ( L k a ) ) exp ( 2 π N k n ) ) , n = 0 , 1 , , N 1 ,

Metrics