Abstract

This paper reports the design and the fabrication of an all-solid photonic bandgap fiber with core diameter larger than 100 µm, a record effective mode area of about 3700 µm2 at 1035 nm and robust single-mode behavior on propagation length as short as 90 cm. These properties are obtained by using a pixelated Bragg fiber geometry together with an heterostructuration of the cladding and the appropriated generalized half wave stack condition applied to the first three higher order modes. We detail the numerical study that permitted to select the most efficient cladding geometry and present the experimental results that validate our approach.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pixelated Bragg fibers: bandgap guiding, generalized half-wave stack condition, and application to large mode area fibers

O. Vanvincq, J. P. Yehouessi, G. Bouwmans, L. Bigot, and Y. Quiquempois
J. Opt. Soc. Am. B 32(9) 1986-1992 (2015)

Polarization-maintaining and single-mode large mode area pixelated Bragg fiber

Olivier Vanvincq, Rémi Habert, Andy Cassez, Karen Baudelle, Damien Labat, Sylvain Delobel, Yves Quiquempois, Géraud Bouwmans, and Laurent Bigot
Opt. Lett. 45(7) 1946-1949 (2020)

Design and realization of flexible very large mode area pixelated Bragg fibers

Jean-Paul Yehouessi, Assaad Baz, Laurent Bigot, Geraud Bouwmans, Olivier Vanvincq, Marc Douay, and Yves Quiquempois
Opt. Lett. 40(3) 363-366 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  2. D. Jain, Y. Jung, P. Barua, S. Alam, and J. K. Sahu, “Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers,” Opt. Express 23(6), 7407–7415 (2015).
    [Crossref] [PubMed]
  3. S. Lefrancois, C.-H. Liu, M. L. Stock, T. S. Sosnowski, A. Galvanauskas, and F. W. Wise, “High-energy similariton fiber laser using chirally coupled core fiber,” Opt. Lett. 38(1), 43–45 (2013).
    [Crossref] [PubMed]
  4. L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
    [Crossref]
  5. J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
    [Crossref]
  6. R. Dauliat, D. Darwich, A. Benoît, R. Jamier, S. Grimm, K. Schuster, F. Salin, and P. Roy, “All-Solid Aperiodic Large Pitch Fibers for Operation in High Power Regime,”in Proceedings of IEEE 17th International Conference on Transparent Optical Networks (IEEE,2015), pp. 3–6.
    [Crossref]
  7. X. Ao, T.-H. Her, and L. W. Casperson, “Gain guiding in large-core Bragg fibers,” Opt. Express 17(25), 22666–22672 (2009).
    [Crossref] [PubMed]
  8. X. Peng, K. Kim, M. Mielke, T. Booth, J. W. Nicholson, J. M. Fini, X. Liu, A. Desantolo, P. S. Westbrook, R. S. Windeler, E. M. Monberg, F. V. Dimarcello, C. Headley, and D. J. Digiovanni, “Higher-order mode fiber enables high energy chirped-pulse amplification,” Opt. Express 21(26), 32411–32416 (2013).
    [Crossref] [PubMed]
  9. D. A. Rockwell, V. V. Shkunov, and J. R. Marciante, “Semi-guiding high-aspect-ratio core (SHARC) fiber providing single-mode operation and an ultra-large core area in a compact coilable package,” Opt. Express 19(15), 14746–14762 (2011).
    [Crossref] [PubMed]
  10. M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, and T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Opt. Express 20(7), 7263–7273 (2012).
    [Crossref] [PubMed]
  11. G. Gu, F. Kong, T. W. Hawkins, M. Jones, and L. Dong, “Extending mode areas of single-mode all-solid photonic bandgap fibers,” Opt. Express 23(7), 9147–9156 (2015).
    [PubMed]
  12. D. Jain, Y. Jung, J. Kim, and J. K. Sahu, “Robust single-mode all-solid multi-trench fiber with large effective mode area,” Opt. Lett. 39(17), 5200–5203 (2014).
    [Crossref] [PubMed]
  13. L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24(8), 1689–1697 (2007).
    [Crossref]
  14. O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, A. N. Denisov, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and D. V. Kuksenkov, “Single-mode all-silica photonic bandgap fiber with 20-µm mode-field diameter,” Opt. Express 16(16), 11735–11740 (2008).
    [Crossref] [PubMed]
  15. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(061113), 30–32 (2008).
  16. O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, V. V. Velmiskin, A. D. Pryamikov, A. S. Biriukov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and E. M. Dianov, “Large mode area single-mode ytterbium doped all-solid photonic bandgap fiber,”in Proceedings of 35th Eur. Conf. Opt. Commun. (2009), pp. 3–4.
  17. D. A. Gaponov, P. Roy, S. Février, M. E. Likhachev, M. Y. Salganskii, and M. V. Yashkov, “100 W from a photonic bandgap Bragg fiber laser,” Lasers Electro-Optics Quantum Electron. Laser Sci. Conf. (QELS), 2010Conf., vol. 2, pp. 4–5, Optical Society of America 2010).
    [Crossref]
  18. S. S. Aleshkina, M. E. Likhachev, A. D. Pryamikov, D. A. Gaponov, A. N. Denisov, M. M. Bubnov, M. Y. Salganskii, A. Y. Laptev, A. N. Guryanov, Y. A. Uspenskii, N. L. Popov, and S. Février, “Very-large-mode-area photonic bandgap Bragg fiber polarizing in a wide spectral range,” Opt. Lett. 36(18), 3566–3568 (2011).
    [Crossref] [PubMed]
  19. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Low bending loss and effectively single-mode all-solid photonic bandgap fiber with an effective area of 650 μm2.,” Opt. Lett. 37(8), 1292–1294 (2012).
    [Crossref] [PubMed]
  20. X. Ma, C. Zhu, I.-N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
    [Crossref] [PubMed]
  21. A. Baz, L. Bigot, G. Bouwmans, and Y. Quiquempois, “Single-mode, large mode area, solid-core photonic bandgap fiber with hetero-structured cladding,” J. Lightwave Technol. 31(5), 830–835 (2013).
    [Crossref]
  22. G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
    [Crossref] [PubMed]
  23. B. Ward, “Solid-core photonic bandgap fibers for cladding-pumped Raman amplification,” Opt. Express 19(12), 11852–11866 (2011).
    [Crossref] [PubMed]
  24. D. A. Gaponov, S. Février, M. Devautour, P. Roy, M. E. Likhachev, S. S. Aleshkina, M. Y. Salganskii, M. V. Yashkov, and A. N. Guryanov, “Management of the high-order mode content in large (40 µm) core photonic bandgap Bragg fiber laser,” Opt. Lett. 35(13), 2233–2235 (2010).
    [Crossref] [PubMed]
  25. A. Baz, G. Bouwmans, L. Bigot, and Y. Quiquempois, “Pixelated high-index ring Bragg fibers,” Opt. Express 20(17), 18795–18802 (2012).
    [Crossref] [PubMed]
  26. S. Ghosh, S. Dasgupta, R. K. Varshney, D. J. Richardson, and B. P. Pal, “Design of a Bragg fiber with large mode area for mid-infrared applications,” Opt. Express 19(22), 21295–21304 (2011).
    [PubMed]
  27. J. P. Yehouessi, A. Baz, L. Bigot, G. Bouwmans, O. Vanvincq, M. Douay, and Y. Quiquempois, “Design and realization of flexible very large mode area pixelated Bragg fibers,” Opt. Lett. 40(3), 363–366 (2015).
    [Crossref] [PubMed]
  28. O. Vanvincq, J. P. Yehouessi, G. Bouwmans, L. Bigot, and Y. Quiquempois, “Pixelated Bragg fibers : bandgap guiding, generalized half-wave stack condition, and application to large mode area fibers,” J. Opt. Soc. Am. B 32(9), 1986–1992 (2015).
    [Crossref]

2015 (4)

2014 (3)

2013 (4)

2012 (4)

2011 (4)

2010 (1)

2009 (2)

X. Ao, T.-H. Her, and L. W. Casperson, “Gain guiding in large-core Bragg fibers,” Opt. Express 17(25), 22666–22672 (2009).
[Crossref] [PubMed]

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

2008 (2)

2007 (1)

Alam, S.

Aleshkina, S. S.

Alkeskjold, T. T.

Ao, X.

Barua, P.

Baz, A.

Benoît, A.

R. Dauliat, D. Darwich, A. Benoît, R. Jamier, S. Grimm, K. Schuster, F. Salin, and P. Roy, “All-Solid Aperiodic Large Pitch Fibers for Operation in High Power Regime,”in Proceedings of IEEE 17th International Conference on Transparent Optical Networks (IEEE,2015), pp. 3–6.
[Crossref]

Bigot, L.

Biriukov, A. S.

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, A. N. Denisov, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and D. V. Kuksenkov, “Single-mode all-silica photonic bandgap fiber with 20-µm mode-field diameter,” Opt. Express 16(16), 11735–11740 (2008).
[Crossref] [PubMed]

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, V. V. Velmiskin, A. D. Pryamikov, A. S. Biriukov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and E. M. Dianov, “Large mode area single-mode ytterbium doped all-solid photonic bandgap fiber,”in Proceedings of 35th Eur. Conf. Opt. Commun. (2009), pp. 3–4.

Booth, T.

Bouwmans, G.

Bubnov, M. M.

Casperson, L. W.

Darwich, D.

R. Dauliat, D. Darwich, A. Benoît, R. Jamier, S. Grimm, K. Schuster, F. Salin, and P. Roy, “All-Solid Aperiodic Large Pitch Fibers for Operation in High Power Regime,”in Proceedings of IEEE 17th International Conference on Transparent Optical Networks (IEEE,2015), pp. 3–6.
[Crossref]

Dasgupta, S.

Dauliat, R.

R. Dauliat, D. Darwich, A. Benoît, R. Jamier, S. Grimm, K. Schuster, F. Salin, and P. Roy, “All-Solid Aperiodic Large Pitch Fibers for Operation in High Power Regime,”in Proceedings of IEEE 17th International Conference on Transparent Optical Networks (IEEE,2015), pp. 3–6.
[Crossref]

Denisov, A. N.

Desantolo, A.

Devautour, M.

Dianov, E. M.

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, A. N. Denisov, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and D. V. Kuksenkov, “Single-mode all-silica photonic bandgap fiber with 20-µm mode-field diameter,” Opt. Express 16(16), 11735–11740 (2008).
[Crossref] [PubMed]

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, V. V. Velmiskin, A. D. Pryamikov, A. S. Biriukov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and E. M. Dianov, “Large mode area single-mode ytterbium doped all-solid photonic bandgap fiber,”in Proceedings of 35th Eur. Conf. Opt. Commun. (2009), pp. 3–4.

Digiovanni, D. J.

Dimarcello, F. V.

Dong, L.

Douay, M.

J. P. Yehouessi, A. Baz, L. Bigot, G. Bouwmans, O. Vanvincq, M. Douay, and Y. Quiquempois, “Design and realization of flexible very large mode area pixelated Bragg fibers,” Opt. Lett. 40(3), 363–366 (2015).
[Crossref] [PubMed]

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(061113), 30–32 (2008).

Dunn, C.

Egorova, O. N.

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, A. N. Denisov, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and D. V. Kuksenkov, “Single-mode all-silica photonic bandgap fiber with 20-µm mode-field diameter,” Opt. Express 16(16), 11735–11740 (2008).
[Crossref] [PubMed]

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, V. V. Velmiskin, A. D. Pryamikov, A. S. Biriukov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and E. M. Dianov, “Large mode area single-mode ytterbium doped all-solid photonic bandgap fiber,”in Proceedings of 35th Eur. Conf. Opt. Commun. (2009), pp. 3–4.

Eidam, T.

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Février, S.

Fini, J. M.

Fu, L.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Fujimaki, M.

Galvanauskas, A.

Gaponov, D. A.

Ghosh, S.

Grimm, S.

R. Dauliat, D. Darwich, A. Benoît, R. Jamier, S. Grimm, K. Schuster, F. Salin, and P. Roy, “All-Solid Aperiodic Large Pitch Fibers for Operation in High Power Regime,”in Proceedings of IEEE 17th International Conference on Transparent Optical Networks (IEEE,2015), pp. 3–6.
[Crossref]

Gu, G.

Gurianov, A. N.

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, A. N. Denisov, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and D. V. Kuksenkov, “Single-mode all-silica photonic bandgap fiber with 20-µm mode-field diameter,” Opt. Express 16(16), 11735–11740 (2008).
[Crossref] [PubMed]

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, V. V. Velmiskin, A. D. Pryamikov, A. S. Biriukov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and E. M. Dianov, “Large mode area single-mode ytterbium doped all-solid photonic bandgap fiber,”in Proceedings of 35th Eur. Conf. Opt. Commun. (2009), pp. 3–4.

Guryanov, A. N.

Hawkins, T.

Hawkins, T. W.

Headley, C.

Her, T.-H.

Hu, I.-N.

Jain, D.

Jamier, R.

R. Dauliat, D. Darwich, A. Benoît, R. Jamier, S. Grimm, K. Schuster, F. Salin, and P. Roy, “All-Solid Aperiodic Large Pitch Fibers for Operation in High Power Regime,”in Proceedings of IEEE 17th International Conference on Transparent Optical Networks (IEEE,2015), pp. 3–6.
[Crossref]

Jansen, F.

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Jaouen, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(061113), 30–32 (2008).

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Jones, M.

Jørgensen, M. M.

Jung, Y.

Kalichevsky-Dong, M. T.

Kaplan, A.

Kashiwagi, M.

Khopin, V. F.

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, A. N. Denisov, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and D. V. Kuksenkov, “Single-mode all-silica photonic bandgap fiber with 20-µm mode-field diameter,” Opt. Express 16(16), 11735–11740 (2008).
[Crossref] [PubMed]

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, V. V. Velmiskin, A. D. Pryamikov, A. S. Biriukov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and E. M. Dianov, “Large mode area single-mode ytterbium doped all-solid photonic bandgap fiber,”in Proceedings of 35th Eur. Conf. Opt. Commun. (2009), pp. 3–4.

Kim, J.

Kim, K.

Kong, F.

Kosolapov, A. F.

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, A. N. Denisov, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and D. V. Kuksenkov, “Single-mode all-silica photonic bandgap fiber with 20-µm mode-field diameter,” Opt. Express 16(16), 11735–11740 (2008).
[Crossref] [PubMed]

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, V. V. Velmiskin, A. D. Pryamikov, A. S. Biriukov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and E. M. Dianov, “Large mode area single-mode ytterbium doped all-solid photonic bandgap fiber,”in Proceedings of 35th Eur. Conf. Opt. Commun. (2009), pp. 3–4.

Kuksenkov, D. V.

Lægsgaard, J.

Laptev, A. Y.

Laurila, M.

Lefrancois, S.

Li, J.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24(8), 1689–1697 (2007).
[Crossref]

Likhachev, M. E.

Limpert, J.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Liu, C.-H.

Liu, X.

Ma, X.

Marciante, J. R.

Matsuo, S.

McKay, H. A.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Mielke, M.

Monberg, E. M.

Nicholson, J. W.

Otto, H.-J.

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Pal, B. P.

Parsons, J.

Peng, X.

Petersen, S. R.

Popov, N. L.

Pryamikov, A. D.

Pureur, V.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(061113), 30–32 (2008).

Quiquempois, Y.

Richardson, D. J.

Rockwell, D. A.

Roy, P.

D. A. Gaponov, S. Février, M. Devautour, P. Roy, M. E. Likhachev, S. S. Aleshkina, M. Y. Salganskii, M. V. Yashkov, and A. N. Guryanov, “Management of the high-order mode content in large (40 µm) core photonic bandgap Bragg fiber laser,” Opt. Lett. 35(13), 2233–2235 (2010).
[Crossref] [PubMed]

R. Dauliat, D. Darwich, A. Benoît, R. Jamier, S. Grimm, K. Schuster, F. Salin, and P. Roy, “All-Solid Aperiodic Large Pitch Fibers for Operation in High Power Regime,”in Proceedings of IEEE 17th International Conference on Transparent Optical Networks (IEEE,2015), pp. 3–6.
[Crossref]

Sahu, J. K.

Saitoh, K.

Salganskii, M. Y.

Salin, F.

R. Dauliat, D. Darwich, A. Benoît, R. Jamier, S. Grimm, K. Schuster, F. Salin, and P. Roy, “All-Solid Aperiodic Large Pitch Fibers for Operation in High Power Regime,”in Proceedings of IEEE 17th International Conference on Transparent Optical Networks (IEEE,2015), pp. 3–6.
[Crossref]

Schuster, K.

R. Dauliat, D. Darwich, A. Benoît, R. Jamier, S. Grimm, K. Schuster, F. Salin, and P. Roy, “All-Solid Aperiodic Large Pitch Fibers for Operation in High Power Regime,”in Proceedings of IEEE 17th International Conference on Transparent Optical Networks (IEEE,2015), pp. 3–6.
[Crossref]

Semjonov, S. L.

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, A. N. Denisov, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and D. V. Kuksenkov, “Single-mode all-silica photonic bandgap fiber with 20-µm mode-field diameter,” Opt. Express 16(16), 11735–11740 (2008).
[Crossref] [PubMed]

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, V. V. Velmiskin, A. D. Pryamikov, A. S. Biriukov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and E. M. Dianov, “Large mode area single-mode ytterbium doped all-solid photonic bandgap fiber,”in Proceedings of 35th Eur. Conf. Opt. Commun. (2009), pp. 3–4.

Shkunov, V. V.

Sosnowski, T. S.

Stock, M. L.

Stutzki, F.

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Takenaga, K.

Tanigawa, S.

Tünnermann, A.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Uspenskii, Y. A.

Vanvincq, O.

Varshney, R. K.

Velmiskin, V. V.

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, V. V. Velmiskin, A. D. Pryamikov, A. S. Biriukov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and E. M. Dianov, “Large mode area single-mode ytterbium doped all-solid photonic bandgap fiber,”in Proceedings of 35th Eur. Conf. Opt. Commun. (2009), pp. 3–4.

Ward, B.

Westbrook, P. S.

Windeler, R. S.

Winful, H. G.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Wise, F. W.

Wu, T. W.

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

Yashkov, M. V.

Yehouessi, J. P.

Zhu, C.

Appl. Phys. Lett. (1)

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92(061113), 30–32 (2008).

IEEE J. Sel. Top. Quantum Electron. (1)

L. Dong, T. W. Wu, H. A. McKay, L. Fu, J. Li, and H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Light Sci. Appl. (1)

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (12)

A. Baz, G. Bouwmans, L. Bigot, and Y. Quiquempois, “Pixelated high-index ring Bragg fibers,” Opt. Express 20(17), 18795–18802 (2012).
[Crossref] [PubMed]

D. Jain, Y. Jung, P. Barua, S. Alam, and J. K. Sahu, “Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers,” Opt. Express 23(6), 7407–7415 (2015).
[Crossref] [PubMed]

G. Gu, F. Kong, T. W. Hawkins, M. Jones, and L. Dong, “Extending mode areas of single-mode all-solid photonic bandgap fibers,” Opt. Express 23(7), 9147–9156 (2015).
[PubMed]

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, A. N. Denisov, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and D. V. Kuksenkov, “Single-mode all-silica photonic bandgap fiber with 20-µm mode-field diameter,” Opt. Express 16(16), 11735–11740 (2008).
[Crossref] [PubMed]

X. Ao, T.-H. Her, and L. W. Casperson, “Gain guiding in large-core Bragg fibers,” Opt. Express 17(25), 22666–22672 (2009).
[Crossref] [PubMed]

X. Peng, K. Kim, M. Mielke, T. Booth, J. W. Nicholson, J. M. Fini, X. Liu, A. Desantolo, P. S. Westbrook, R. S. Windeler, E. M. Monberg, F. V. Dimarcello, C. Headley, and D. J. Digiovanni, “Higher-order mode fiber enables high energy chirped-pulse amplification,” Opt. Express 21(26), 32411–32416 (2013).
[Crossref] [PubMed]

X. Ma, C. Zhu, I.-N. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores,” Opt. Express 22(8), 9206–9219 (2014).
[Crossref] [PubMed]

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22(11), 13962–13968 (2014).
[Crossref] [PubMed]

B. Ward, “Solid-core photonic bandgap fibers for cladding-pumped Raman amplification,” Opt. Express 19(12), 11852–11866 (2011).
[Crossref] [PubMed]

D. A. Rockwell, V. V. Shkunov, and J. R. Marciante, “Semi-guiding high-aspect-ratio core (SHARC) fiber providing single-mode operation and an ultra-large core area in a compact coilable package,” Opt. Express 19(15), 14746–14762 (2011).
[Crossref] [PubMed]

S. Ghosh, S. Dasgupta, R. K. Varshney, D. J. Richardson, and B. P. Pal, “Design of a Bragg fiber with large mode area for mid-infrared applications,” Opt. Express 19(22), 21295–21304 (2011).
[PubMed]

M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, and T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Opt. Express 20(7), 7263–7273 (2012).
[Crossref] [PubMed]

Opt. Lett. (6)

M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Low bending loss and effectively single-mode all-solid photonic bandgap fiber with an effective area of 650 μm2.,” Opt. Lett. 37(8), 1292–1294 (2012).
[Crossref] [PubMed]

S. S. Aleshkina, M. E. Likhachev, A. D. Pryamikov, D. A. Gaponov, A. N. Denisov, M. M. Bubnov, M. Y. Salganskii, A. Y. Laptev, A. N. Guryanov, Y. A. Uspenskii, N. L. Popov, and S. Février, “Very-large-mode-area photonic bandgap Bragg fiber polarizing in a wide spectral range,” Opt. Lett. 36(18), 3566–3568 (2011).
[Crossref] [PubMed]

D. Jain, Y. Jung, J. Kim, and J. K. Sahu, “Robust single-mode all-solid multi-trench fiber with large effective mode area,” Opt. Lett. 39(17), 5200–5203 (2014).
[Crossref] [PubMed]

J. P. Yehouessi, A. Baz, L. Bigot, G. Bouwmans, O. Vanvincq, M. Douay, and Y. Quiquempois, “Design and realization of flexible very large mode area pixelated Bragg fibers,” Opt. Lett. 40(3), 363–366 (2015).
[Crossref] [PubMed]

D. A. Gaponov, S. Février, M. Devautour, P. Roy, M. E. Likhachev, S. S. Aleshkina, M. Y. Salganskii, M. V. Yashkov, and A. N. Guryanov, “Management of the high-order mode content in large (40 µm) core photonic bandgap Bragg fiber laser,” Opt. Lett. 35(13), 2233–2235 (2010).
[Crossref] [PubMed]

S. Lefrancois, C.-H. Liu, M. L. Stock, T. S. Sosnowski, A. Galvanauskas, and F. W. Wise, “High-energy similariton fiber laser using chirally coupled core fiber,” Opt. Lett. 38(1), 43–45 (2013).
[Crossref] [PubMed]

Other (3)

R. Dauliat, D. Darwich, A. Benoît, R. Jamier, S. Grimm, K. Schuster, F. Salin, and P. Roy, “All-Solid Aperiodic Large Pitch Fibers for Operation in High Power Regime,”in Proceedings of IEEE 17th International Conference on Transparent Optical Networks (IEEE,2015), pp. 3–6.
[Crossref]

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, V. V. Velmiskin, A. D. Pryamikov, A. S. Biriukov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and E. M. Dianov, “Large mode area single-mode ytterbium doped all-solid photonic bandgap fiber,”in Proceedings of 35th Eur. Conf. Opt. Commun. (2009), pp. 3–4.

D. A. Gaponov, P. Roy, S. Février, M. E. Likhachev, M. Y. Salganskii, and M. V. Yashkov, “100 W from a photonic bandgap Bragg fiber laser,” Lasers Electro-Optics Quantum Electron. Laser Sci. Conf. (QELS), 2010Conf., vol. 2, pp. 4–5, Optical Society of America 2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Evolution of the mode field diameter of microstructured single mode fiber (dark symbols for doped fibers and white symbols for passive fibers). Results extracted from references [5,11–22].
Fig. 2
Fig. 2 Confinement losses for different geometries of pixelated Bragg fiber with only one index ring: (a) non-heterostructured, (b) π heterostructuration, (c) quasi 2π /3 heterostructuration, (d) π/2 heterostructuration, (e) quasi 2π/5 heterostructuration.
Fig. 3
Fig. 3 Confinement losses for different geometries of pixelated Bragg fiber with two rings of high index inclusions for (a) quasi 2π/3 symmetry of the first ring and (b) π/2 symmetry of the first ring.
Fig. 4
Fig. 4 Electric field distribution of LP11(a), LP21(b), LP02(c) modes at 1050 nm for x-axis polarization. Strong couplings between LP11 core mode and LP21 claddding mode (a), LP21 core mode and LP51 cladding mode (b), LP02 core mode and LP61 cladding mode (c) are put in evidence.
Fig. 5
Fig. 5 Confinement losses for different geometries of pixelated Bragg fiber with quasi 2π/3 heterostructuration symmetry for the first high index ring and for the second high index ring: (a) quasi π/4 heterostructuration, (b) quasi π/2 heterostructuration, (c) 2π/3 heterostructuration, (d) π heterostructuration.
Fig. 6
Fig. 6 SEM pictures for the fabricated fiber.
Fig. 7
Fig. 7 Center: Transmission spectrum of a 90 cm-long piece of PiBF. Inset: Zoom-in figure of the transmission spectrum near 1035 nm.
Fig. 8
Fig. 8 Inset: Near field pattern of the core guided mode taken at 1035 nm for centered injection. Center: Beam profiles for vertical and horizontal cross-sections.
Fig. 9
Fig. 9 Near field pattern of the core guided mode taken with narrow-band filters for a 90 cm-long straight fiber. From left to right: images obtained for centered injection, off-set of 20 µm and off-set of 36 µm. Each line corresponds to a wavelength.

Metrics