Abstract

Aluminum-doped zinc oxide (AZO) is well known as transparent conducting material for electro-optical devices, but is rarely used as plasmonic material, particularly on the localized surface plasmon resonance (LSPR) behavior of AZO nanostructure and its plasmonic devices. In this study, we systematically investigate the plasmonic behaviors of AZO thin films and patterned AZO nanostructures with various structural dimensions under different annealing treatments. We find that AZO film can possess highly-tunable, metal-like, and low-loss plasmonic property and the LSPR characteristic of AZO nanostructure is observed in the near-infrared (NIR) region under proper annealing conditions. Finally, environmental index sensing is performed to demonstrate the capability of AZO nanostructure for optical sensing application. High index sensitivity of 873 nm per refractive index unit (RIU) variation is obtained in experiment.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic metallic nanostructures by direct nanoimprinting of gold nanoparticles

Chia-Ching Liang, Mei-Yi Liao, Wen-Yu Chen, Tsung-Chieh Cheng, Wen-Huei Chang, and Chun-Hung Lin
Opt. Express 19(5) 4768-4776 (2011)

Infrared surface plasmon resonance of AZO-Ag-AZO sandwich thin films

Joshua T. Guske, Jeff Brown, Alex Welsh, and Stefan Franzen
Opt. Express 20(21) 23215-23226 (2012)

Nanopatterning of atomic layer deposited Al:ZnO films using electron beam lithography for waveguide applications in the NIR region

Kevin Santiago, Rajeh Mundle, Chandan B. Samantaray, M. Bahoura, and A. K. Pradhan
Opt. Mater. Express 2(12) 1743-1750 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 5(2), 83–91 (2010).
    [Crossref]
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  3. S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
    [Crossref] [PubMed]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  5. C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
    [Crossref] [PubMed]
  6. R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14(10), 5528–5532 (2014).
    [Crossref] [PubMed]
  7. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  8. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
    [Crossref] [PubMed]
  9. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [Crossref] [PubMed]
  10. P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10(6), 1985–1990 (2010).
    [Crossref] [PubMed]
  11. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
    [Crossref]
  12. G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
    [Crossref]
  13. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  14. M. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004).
    [Crossref] [PubMed]
  15. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  16. H. Saarenpää, T. Niemi, A. Tukiainen, H. Lemmetyinen, and N. Tkachenko, “Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices,” Sol. Energy Mater. Sol. Cells 94(8), 1379–1383 (2010).
    [Crossref]
  17. M. Sessolo and H. J. Bolink, “Hybrid organic-inorganic light-emitting diodes,” Adv. Mater. 23(16), 1829–1845 (2011).
    [Crossref] [PubMed]
  18. W. Gao and Z. W. Li, “Photoluminescence properties of ZnO films grown by wet oxidation: effect of processing,” J. Alloys Compd. 449(1–2), 202–206 (2008).
    [Crossref]
  19. E. E. Khawaja, S. M. A. Durrani, and A. M. Al-Shukri, “Simple method for determining the optical constants of thin metallic films from transmittance measurements,” Thin Solid Films 358(1–2), 166–171 (2000).
    [Crossref]
  20. F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
    [Crossref]
  21. A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72(12), 126501 (2009).
    [Crossref]
  22. Y. Kim, W. Lee, D.-R. Jung, J. Kim, S. Nam, H. Kim, and B. Park, “Optical and electronic properties of post-annealed ZnO:Al thin films,” Appl. Phys. Lett. 96(17), 171902 (2010).
    [Crossref]
  23. X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan, and X. G. Kong, “Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films,” J. Phys. D Appl. Phys. 34(24), 3430–3433 (2001).
    [Crossref]
  24. H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci. 257(11), 4906–4911 (2011).
    [Crossref]
  25. M. K. Puchert, P. Y. Timbrell, and R. N. Lamb, “Postdeposition annealing of radio frequency magnetron sputtered ZnO films,” J. Vac. Sci. Technol. A 14(4), 2220–2230 (1996).
    [Crossref]
  26. A. L. Patterson, “The Scherrer formula for X-Ray particle size determination,” Phys. Rev. 56(10), 978–982 (1939).
    [Crossref]
  27. J. Tauc, “Absorption edge and internal electric fields in amorphous semiconductors,” Mater. Res. Bull. 5(8), 721–729 (1970).
    [Crossref]
  28. E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93(3), 632–633 (1954).
    [Crossref]
  29. W. Yang, Z. Wu, Z. Liu, A. Pang, Y.-L. Tu, and Z. C. Feng, “Room temperature deposition of Al-doped ZnO films on quartz substrates by radio-frequency magnetron sputtering and effects of thermal annealing,” Thin Solid Films 519(1), 31–36 (2010).
    [Crossref]
  30. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  31. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
    [Crossref] [PubMed]
  32. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
    [Crossref]
  33. J. Ye, C. Chen, W. V. Roy, P. V. Dorpe, G. Maes, and G. Borghs, “The fabrication and optical property of silver nanoplates with different thicknesses,” Nanotechnology 19(32), 325702 (2008).
    [Crossref] [PubMed]

2014 (2)

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
[Crossref] [PubMed]

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14(10), 5528–5532 (2014).
[Crossref] [PubMed]

2013 (3)

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

2011 (5)

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. Sessolo and H. J. Bolink, “Hybrid organic-inorganic light-emitting diodes,” Adv. Mater. 23(16), 1829–1845 (2011).
[Crossref] [PubMed]

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci. 257(11), 4906–4911 (2011).
[Crossref]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
[Crossref] [PubMed]

2010 (9)

W. Yang, Z. Wu, Z. Liu, A. Pang, Y.-L. Tu, and Z. C. Feng, “Room temperature deposition of Al-doped ZnO films on quartz substrates by radio-frequency magnetron sputtering and effects of thermal annealing,” Thin Solid Films 519(1), 31–36 (2010).
[Crossref]

Y. Kim, W. Lee, D.-R. Jung, J. Kim, S. Nam, H. Kim, and B. Park, “Optical and electronic properties of post-annealed ZnO:Al thin films,” Appl. Phys. Lett. 96(17), 171902 (2010).
[Crossref]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 5(2), 83–91 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10(6), 1985–1990 (2010).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

H. Saarenpää, T. Niemi, A. Tukiainen, H. Lemmetyinen, and N. Tkachenko, “Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices,” Sol. Energy Mater. Sol. Cells 94(8), 1379–1383 (2010).
[Crossref]

2009 (1)

A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72(12), 126501 (2009).
[Crossref]

2008 (2)

W. Gao and Z. W. Li, “Photoluminescence properties of ZnO films grown by wet oxidation: effect of processing,” J. Alloys Compd. 449(1–2), 202–206 (2008).
[Crossref]

J. Ye, C. Chen, W. V. Roy, P. V. Dorpe, G. Maes, and G. Borghs, “The fabrication and optical property of silver nanoplates with different thicknesses,” Nanotechnology 19(32), 325702 (2008).
[Crossref] [PubMed]

2007 (1)

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

2006 (1)

2005 (1)

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[Crossref]

2004 (1)

2001 (1)

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan, and X. G. Kong, “Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films,” J. Phys. D Appl. Phys. 34(24), 3430–3433 (2001).
[Crossref]

2000 (1)

E. E. Khawaja, S. M. A. Durrani, and A. M. Al-Shukri, “Simple method for determining the optical constants of thin metallic films from transmittance measurements,” Thin Solid Films 358(1–2), 166–171 (2000).
[Crossref]

1996 (1)

M. K. Puchert, P. Y. Timbrell, and R. N. Lamb, “Postdeposition annealing of radio frequency magnetron sputtered ZnO films,” J. Vac. Sci. Technol. A 14(4), 2220–2230 (1996).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1970 (1)

J. Tauc, “Absorption edge and internal electric fields in amorphous semiconductors,” Mater. Res. Bull. 5(8), 721–729 (1970).
[Crossref]

1954 (1)

E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93(3), 632–633 (1954).
[Crossref]

1939 (1)

A. L. Patterson, “The Scherrer formula for X-Ray particle size determination,” Phys. Rev. 56(10), 978–982 (1939).
[Crossref]

Ahijado-Guzmán, R.

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14(10), 5528–5532 (2014).
[Crossref] [PubMed]

Aizpurua, J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[Crossref]

Alekseyev, L. V.

Al-Shukri, A. M.

E. E. Khawaja, S. M. A. Durrani, and A. M. Al-Shukri, “Simple method for determining the optical constants of thin metallic films from transmittance measurements,” Thin Solid Films 358(1–2), 166–171 (2000).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Babicheva, V. E.

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Bochterle, J.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Bolink, H. J.

M. Sessolo and H. J. Bolink, “Hybrid organic-inorganic light-emitting diodes,” Adv. Mater. 23(16), 1829–1845 (2011).
[Crossref] [PubMed]

Boltasseva, A.

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Borghs, G.

J. Ye, C. Chen, W. V. Roy, P. V. Dorpe, G. Maes, and G. Borghs, “The fabrication and optical property of silver nanoplates with different thicknesses,” Nanotechnology 19(32), 325702 (2008).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 5(2), 83–91 (2010).
[Crossref]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[Crossref]

Burstein, E.

E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93(3), 632–633 (1954).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cao, Y.

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci. 257(11), 4906–4911 (2011).
[Crossref]

Chen, C.

J. Ye, C. Chen, W. V. Roy, P. V. Dorpe, G. Maes, and G. Borghs, “The fabrication and optical property of silver nanoplates with different thicknesses,” Nanotechnology 19(32), 325702 (2008).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

D’Andrea, C.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Deng, Z.

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci. 257(11), 4906–4911 (2011).
[Crossref]

Di Fabrizio, E.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Dorpe, P. V.

J. Ye, C. Chen, W. V. Roy, P. V. Dorpe, G. Maes, and G. Borghs, “The fabrication and optical property of silver nanoplates with different thicknesses,” Nanotechnology 19(32), 325702 (2008).
[Crossref] [PubMed]

Durrani, S. M. A.

E. E. Khawaja, S. M. A. Durrani, and A. M. Al-Shukri, “Simple method for determining the optical constants of thin metallic films from transmittance measurements,” Thin Solid Films 358(1–2), 166–171 (2000).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Engheta, N.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Fainman, Y.

Fan, X. W.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan, and X. G. Kong, “Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films,” J. Phys. D Appl. Phys. 34(24), 3430–3433 (2001).
[Crossref]

Fazio, B.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Feng, Z. C.

W. Yang, Z. Wu, Z. Liu, A. Pang, Y.-L. Tu, and Z. C. Feng, “Room temperature deposition of Al-doped ZnO films on quartz substrates by radio-frequency magnetron sputtering and effects of thermal annealing,” Thin Solid Films 519(1), 31–36 (2010).
[Crossref]

Gai, R.

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

Gao, W.

W. Gao and Z. W. Li, “Photoluminescence properties of ZnO films grown by wet oxidation: effect of processing,” J. Alloys Compd. 449(1–2), 202–206 (2008).
[Crossref]

García de Abajo, F. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[Crossref]

García-Vidal, F. J.

P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10(6), 1985–1990 (2010).
[Crossref] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 5(2), 83–91 (2010).
[Crossref]

Gucciardi, P. G.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Henkel, A.

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14(10), 5528–5532 (2014).
[Crossref] [PubMed]

Huang, C.

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci. 257(11), 4906–4911 (2011).
[Crossref]

Huang, J.

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci. 257(11), 4906–4911 (2011).
[Crossref]

Huang, Z.

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

Huck, C.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Huidobro, P. A.

P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10(6), 1985–1990 (2010).
[Crossref] [PubMed]

Ishii, S.

S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, “Plasmonic waveguides cladded by hyperbolic metamaterials,” Opt. Lett. 39(16), 4663–4666 (2014).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Jacob, Z.

Janotti, A.

A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72(12), 126501 (2009).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Jung, D.-R.

Y. Kim, W. Lee, D.-R. Jung, J. Kim, S. Nam, H. Kim, and B. Park, “Optical and electronic properties of post-annealed ZnO:Al thin films,” Appl. Phys. Lett. 96(17), 171902 (2010).
[Crossref]

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[Crossref]

Khawaja, E. E.

E. E. Khawaja, S. M. A. Durrani, and A. M. Al-Shukri, “Simple method for determining the optical constants of thin metallic films from transmittance measurements,” Thin Solid Films 358(1–2), 166–171 (2000).
[Crossref]

Kildishev, A. V.

Kim, H.

Y. Kim, W. Lee, D.-R. Jung, J. Kim, S. Nam, H. Kim, and B. Park, “Optical and electronic properties of post-annealed ZnO:Al thin films,” Appl. Phys. Lett. 96(17), 171902 (2010).
[Crossref]

Kim, J.

Y. Kim, W. Lee, D.-R. Jung, J. Kim, S. Nam, H. Kim, and B. Park, “Optical and electronic properties of post-annealed ZnO:Al thin films,” Appl. Phys. Lett. 96(17), 171902 (2010).
[Crossref]

Kim, Y.

Y. Kim, W. Lee, D.-R. Jung, J. Kim, S. Nam, H. Kim, and B. Park, “Optical and electronic properties of post-annealed ZnO:Al thin films,” Appl. Phys. Lett. 96(17), 171902 (2010).
[Crossref]

Kong, X. G.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan, and X. G. Kong, “Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films,” J. Phys. D Appl. Phys. 34(24), 3430–3433 (2001).
[Crossref]

Lai, F.

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

Lamb, R. N.

M. K. Puchert, P. Y. Timbrell, and R. N. Lamb, “Postdeposition annealing of radio frequency magnetron sputtered ZnO films,” J. Vac. Sci. Technol. A 14(4), 2220–2230 (1996).
[Crossref]

Lamy de La Chapelle, M.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Lan, H.

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci. 257(11), 4906–4911 (2011).
[Crossref]

Lee, W.

Y. Kim, W. Lee, D.-R. Jung, J. Kim, S. Nam, H. Kim, and B. Park, “Optical and electronic properties of post-annealed ZnO:Al thin films,” Appl. Phys. Lett. 96(17), 171902 (2010).
[Crossref]

Lemmetyinen, H.

H. Saarenpää, T. Niemi, A. Tukiainen, H. Lemmetyinen, and N. Tkachenko, “Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices,” Sol. Energy Mater. Sol. Cells 94(8), 1379–1383 (2010).
[Crossref]

Li, Z. W.

W. Gao and Z. W. Li, “Photoluminescence properties of ZnO films grown by wet oxidation: effect of processing,” J. Alloys Compd. 449(1–2), 202–206 (2008).
[Crossref]

Lin, L.

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

Lin, Y.

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

Liu, Y. C.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan, and X. G. Kong, “Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films,” J. Phys. D Appl. Phys. 34(24), 3430–3433 (2001).
[Crossref]

Liu, Z.

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci. 257(11), 4906–4911 (2011).
[Crossref]

W. Yang, Z. Wu, Z. Liu, A. Pang, Y.-L. Tu, and Z. C. Feng, “Room temperature deposition of Al-doped ZnO films on quartz substrates by radio-frequency magnetron sputtering and effects of thermal annealing,” Thin Solid Films 519(1), 31–36 (2010).
[Crossref]

Lu, Y. M.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan, and X. G. Kong, “Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films,” J. Phys. D Appl. Phys. 34(24), 3430–3433 (2001).
[Crossref]

Maas, R.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Maes, G.

J. Ye, C. Chen, W. V. Roy, P. V. Dorpe, G. Maes, and G. Borghs, “The fabrication and optical property of silver nanoplates with different thicknesses,” Nanotechnology 19(32), 325702 (2008).
[Crossref] [PubMed]

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[Crossref]

Maragò, O. M.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Martín-Moreno, L.

P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10(6), 1985–1990 (2010).
[Crossref] [PubMed]

Messina, E.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nam, S.

Y. Kim, W. Lee, D.-R. Jung, J. Kim, S. Nam, H. Kim, and B. Park, “Optical and electronic properties of post-annealed ZnO:Al thin films,” Appl. Phys. Lett. 96(17), 171902 (2010).
[Crossref]

Narimanov, E.

Nesterov, M. L.

P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10(6), 1985–1990 (2010).
[Crossref] [PubMed]

Neubrech, F.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Nezhad, M.

Niemi, T.

H. Saarenpää, T. Niemi, A. Tukiainen, H. Lemmetyinen, and N. Tkachenko, “Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices,” Sol. Energy Mater. Sol. Cells 94(8), 1379–1383 (2010).
[Crossref]

Nordlander, P.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
[Crossref] [PubMed]

Pang, A.

W. Yang, Z. Wu, Z. Liu, A. Pang, Y.-L. Tu, and Z. C. Feng, “Room temperature deposition of Al-doped ZnO films on quartz substrates by radio-frequency magnetron sputtering and effects of thermal annealing,” Thin Solid Films 519(1), 31–36 (2010).
[Crossref]

Park, B.

Y. Kim, W. Lee, D.-R. Jung, J. Kim, S. Nam, H. Kim, and B. Park, “Optical and electronic properties of post-annealed ZnO:Al thin films,” Appl. Phys. Lett. 96(17), 171902 (2010).
[Crossref]

Parsons, J.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Patterson, A. L.

A. L. Patterson, “The Scherrer formula for X-Ray particle size determination,” Phys. Rev. 56(10), 978–982 (1939).
[Crossref]

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Polman, A.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Prasad, J.

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14(10), 5528–5532 (2014).
[Crossref] [PubMed]

Pucci, A.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Puchert, M. K.

M. K. Puchert, P. Y. Timbrell, and R. N. Lamb, “Postdeposition annealing of radio frequency magnetron sputtered ZnO films,” J. Vac. Sci. Technol. A 14(4), 2220–2230 (1996).
[Crossref]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[Crossref]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Rivas, G.

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14(10), 5528–5532 (2014).
[Crossref] [PubMed]

Rosman, C.

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14(10), 5528–5532 (2014).
[Crossref] [PubMed]

Roy, W. V.

J. Ye, C. Chen, W. V. Roy, P. V. Dorpe, G. Maes, and G. Borghs, “The fabrication and optical property of silver nanoplates with different thicknesses,” Nanotechnology 19(32), 325702 (2008).
[Crossref] [PubMed]

Saarenpää, H.

H. Saarenpää, T. Niemi, A. Tukiainen, H. Lemmetyinen, and N. Tkachenko, “Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices,” Sol. Energy Mater. Sol. Cells 94(8), 1379–1383 (2010).
[Crossref]

Schneider, D.

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14(10), 5528–5532 (2014).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Sessolo, M.

M. Sessolo and H. J. Bolink, “Hybrid organic-inorganic light-emitting diodes,” Adv. Mater. 23(16), 1829–1845 (2011).
[Crossref] [PubMed]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shalaginov, M. Y.

Shen, D. Z.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan, and X. G. Kong, “Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films,” J. Phys. D Appl. Phys. 34(24), 3430–3433 (2001).
[Crossref]

Sönnichsen, C.

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14(10), 5528–5532 (2014).
[Crossref] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Tauc, J.

J. Tauc, “Absorption edge and internal electric fields in amorphous semiconductors,” Mater. Res. Bull. 5(8), 721–729 (1970).
[Crossref]

Tetz, K.

Timbrell, P. Y.

M. K. Puchert, P. Y. Timbrell, and R. N. Lamb, “Postdeposition annealing of radio frequency magnetron sputtered ZnO films,” J. Vac. Sci. Technol. A 14(4), 2220–2230 (1996).
[Crossref]

Tkachenko, N.

H. Saarenpää, T. Niemi, A. Tukiainen, H. Lemmetyinen, and N. Tkachenko, “Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices,” Sol. Energy Mater. Sol. Cells 94(8), 1379–1383 (2010).
[Crossref]

Toma, A.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Tome, L.

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14(10), 5528–5532 (2014).
[Crossref] [PubMed]

Tong, H.

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci. 257(11), 4906–4911 (2011).
[Crossref]

Tu, Y.-L.

W. Yang, Z. Wu, Z. Liu, A. Pang, Y.-L. Tu, and Z. C. Feng, “Room temperature deposition of Al-doped ZnO films on quartz substrates by radio-frequency magnetron sputtering and effects of thermal annealing,” Thin Solid Films 519(1), 31–36 (2010).
[Crossref]

Tukiainen, A.

H. Saarenpää, T. Niemi, A. Tukiainen, H. Lemmetyinen, and N. Tkachenko, “Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices,” Sol. Energy Mater. Sol. Cells 94(8), 1379–1383 (2010).
[Crossref]

Van de Walle, C. G.

A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72(12), 126501 (2009).
[Crossref]

Wang, C.

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci. 257(11), 4906–4911 (2011).
[Crossref]

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wu, Z.

W. Yang, Z. Wu, Z. Liu, A. Pang, Y.-L. Tu, and Z. C. Feng, “Room temperature deposition of Al-doped ZnO films on quartz substrates by radio-frequency magnetron sputtering and effects of thermal annealing,” Thin Solid Films 519(1), 31–36 (2010).
[Crossref]

Xu, W.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan, and X. G. Kong, “Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films,” J. Phys. D Appl. Phys. 34(24), 3430–3433 (2001).
[Crossref]

Yang, W.

W. Yang, Z. Wu, Z. Liu, A. Pang, Y.-L. Tu, and Z. C. Feng, “Room temperature deposition of Al-doped ZnO films on quartz substrates by radio-frequency magnetron sputtering and effects of thermal annealing,” Thin Solid Films 519(1), 31–36 (2010).
[Crossref]

Ye, J.

J. Ye, C. Chen, W. V. Roy, P. V. Dorpe, G. Maes, and G. Borghs, “The fabrication and optical property of silver nanoplates with different thicknesses,” Nanotechnology 19(32), 325702 (2008).
[Crossref] [PubMed]

Zhang, J. Y.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan, and X. G. Kong, “Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films,” J. Phys. D Appl. Phys. 34(24), 3430–3433 (2001).
[Crossref]

Zhang, X. T.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan, and X. G. Kong, “Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films,” J. Phys. D Appl. Phys. 34(24), 3430–3433 (2001).
[Crossref]

Zhi, Z. Z.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan, and X. G. Kong, “Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films,” J. Phys. D Appl. Phys. 34(24), 3430–3433 (2001).
[Crossref]

Zhong, G. Z.

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan, and X. G. Kong, “Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films,” J. Phys. D Appl. Phys. 34(24), 3430–3433 (2001).
[Crossref]

Zuloaga, J.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
[Crossref] [PubMed]

ACS Nano (1)

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Adv. Mater. (2)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

M. Sessolo and H. J. Bolink, “Hybrid organic-inorganic light-emitting diodes,” Adv. Mater. 23(16), 1829–1845 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y. Kim, W. Lee, D.-R. Jung, J. Kim, S. Nam, H. Kim, and B. Park, “Optical and electronic properties of post-annealed ZnO:Al thin films,” Appl. Phys. Lett. 96(17), 171902 (2010).
[Crossref]

Appl. Surf. Sci. (1)

H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, “Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films,” Appl. Surf. Sci. 257(11), 4906–4911 (2011).
[Crossref]

J. Alloys Compd. (1)

W. Gao and Z. W. Li, “Photoluminescence properties of ZnO films grown by wet oxidation: effect of processing,” J. Alloys Compd. 449(1–2), 202–206 (2008).
[Crossref]

J. Phys. D Appl. Phys. (1)

X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan, and X. G. Kong, “Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films,” J. Phys. D Appl. Phys. 34(24), 3430–3433 (2001).
[Crossref]

J. Vac. Sci. Technol. A (1)

M. K. Puchert, P. Y. Timbrell, and R. N. Lamb, “Postdeposition annealing of radio frequency magnetron sputtered ZnO films,” J. Vac. Sci. Technol. A 14(4), 2220–2230 (1996).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Mater. Res. Bull. (1)

J. Tauc, “Absorption edge and internal electric fields in amorphous semiconductors,” Mater. Res. Bull. 5(8), 721–729 (1970).
[Crossref]

Metamaterials (Amst.) (1)

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
[Crossref]

Nano Lett. (3)

P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10(6), 1985–1990 (2010).
[Crossref] [PubMed]

R. Ahijado-Guzmán, J. Prasad, C. Rosman, A. Henkel, L. Tome, D. Schneider, G. Rivas, and C. Sönnichsen, “Plasmonic nanosensors for simultaneous quantification of multiple protein-protein binding affinities,” Nano Lett. 14(10), 5528–5532 (2014).
[Crossref] [PubMed]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

J. Ye, C. Chen, W. V. Roy, P. V. Dorpe, G. Maes, and G. Borghs, “The fabrication and optical property of silver nanoplates with different thicknesses,” Nanotechnology 19(32), 325702 (2008).
[Crossref] [PubMed]

Nat. Mater. (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (3)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 5(2), 83–91 (2010).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (2)

E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93(3), 632–633 (1954).
[Crossref]

A. L. Patterson, “The Scherrer formula for X-Ray particle size determination,” Phys. Rev. 56(10), 978–982 (1939).
[Crossref]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
[Crossref]

Rep. Prog. Phys. (1)

A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys. 72(12), 126501 (2009).
[Crossref]

Science (1)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

H. Saarenpää, T. Niemi, A. Tukiainen, H. Lemmetyinen, and N. Tkachenko, “Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices,” Sol. Energy Mater. Sol. Cells 94(8), 1379–1383 (2010).
[Crossref]

Thin Solid Films (3)

E. E. Khawaja, S. M. A. Durrani, and A. M. Al-Shukri, “Simple method for determining the optical constants of thin metallic films from transmittance measurements,” Thin Solid Films 358(1–2), 166–171 (2000).
[Crossref]

F. Lai, L. Lin, R. Gai, Y. Lin, and Z. Huang, “Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data,” Thin Solid Films 515(18), 7387–7392 (2007).
[Crossref]

W. Yang, Z. Wu, Z. Liu, A. Pang, Y.-L. Tu, and Z. C. Feng, “Room temperature deposition of Al-doped ZnO films on quartz substrates by radio-frequency magnetron sputtering and effects of thermal annealing,” Thin Solid Films 519(1), 31–36 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) XRD analysis, spectra of (b) transmittance and (c) squared absorption coefficient of AZO films annealed at different temperatures.
Fig. 2
Fig. 2 (a) XRD analysis, spectra of (b) transmittance and (c) squared absorption coefficient of AZO films annealed in different atmospheres.
Fig. 3
Fig. 3 (a) Real and (b) imaginary parts of the dielectric functions of AZO films under different annealing atmospheres. (c) Real and (d) imaginary parts of the dielectric functions of AZO films under different annealing temperatures.
Fig. 4
Fig. 4 (a) XRD analysis, spectra of (b) transmittance and (c) squared absorption coefficient of annealed AZO films with different thicknesses.
Fig. 5
Fig. 5 Typical (a) SEM and (b) AFM images of AZO nanodisk array with diameter of 740 nm and height of 235 nm before annealing. (c) SEM images of AZO nanodisks after annealing at different temperatures.
Fig. 6
Fig. 6 (a) Measured and (b) simulated extinction spectra of AZO nanodisk arrays under different annealing temperatures (as-grown, 400, 500, and 600°C in N2 for 1 hour). (c) Measured and (d) simulated extinction spectra of AZO nanodisk arrays under different annealing atmospheres (vacuum, N2, air, and O2 at 500°C for 1 hour).
Fig. 7
Fig. 7 (a) SEM images, (b) measured and (c) simulated extinction spectra of AZO nanodisk arrays with different diameters (600, 740, 840, and 950 nm) annealed in N2 at 500°C for 1 hour.
Fig. 8
Fig. 8 Typical simulated (a) Electric field intensity and (b) surface charge distribution of AZO nanodisk with a thickness of 235 nm and diameter of 600 nm.
Fig. 9
Fig. 9 (a) AFM plots, (b) measured and (c) simulated extinction spectra of AZO nanodisk arrays with different thicknesses (210, 235, 250, and 270 nm) annealed in N2 at 500°C for 1 hour.
Fig. 10
Fig. 10 (a) Measured and (b) simulated extinciton spectra of AZO nanodisk array when the environmental refarctive index is varied. (c) Measured and (d) simulated LSPR peak wavelength of AZO nanodisk array as a function of environmental refractive index.

Tables (3)

Tables Icon

Table 1 Electric properties of AZO films annealed at different temperatures.

Tables Icon

Table 2 Electric properties of AZO films annealed in different atmospheres.

Tables Icon

Table 3 Electric properties of AZO films with different thicknesses.

Metrics