Abstract

In this article, we disclose a fork grating (FG) based on the photo-aligned ferroelectric liquid crystal (FLC). The Digital Micro-mirror Device based system is used as a dynamic photomask to generated different holograms. Because of controlled anchoring energy, the photo alignment process offers optimal conditions for the multi-domain FLC alignment. Two different electro-optical modes namely DIFF/TRANS and DIFF/OFF switchable modes have been proposed where the diffraction can be switched either to no diffraction or to a completely black state, respectively. The FLC FG shows high diffraction efficiency and fast response time of 50µs that is relatively faster than existing technologies. Thus, the FLC FG may pave a good foundation toward optical vertices generation and manipulation that could find applications in a variety of devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens

A. K. Srivastava, X. Q. Wang, S. Q. Gong, D. Shen, Y. Q. Lu, V. G. Chigrinov, and H. S. Kwok
Opt. Lett. 40(8) 1643-1646 (2015)

Photo-aligned ferroelectric liquid crystals in microchannels

Daniel Budaszewski, Abhishek K. Srivastava, Alwin M. W. Tam, Tomasz R. Wolinski, Vladimir G. Chigrinov, and Hoi-Sing Kwok
Opt. Lett. 39(16) 4679-4682 (2014)

Fast switchable optical vortex generator based on blue phase liquid crystal fork grating

Shi-Jun Ge, Wei Ji, Guo-Xin Cui, Bing-Yan Wei, Wei Hu, and Yan-Qing Lu
Opt. Mater. Express 4(12) 2535-2541 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Verbeeck, H. Tian, and G. Van Tendeloo, “How to manipulate nanoparticles with an electron beam?” Adv. Mater. 25(8), 1114–1117 (2013).
    [Crossref] [PubMed]
  2. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  3. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
    [Crossref]
  4. E. G. Abramochkin and V. G. Volostnikov, “Spiral light beams,” Phys. Uspekhi 47(12), 1177–1203 (2004).
    [Crossref]
  5. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]
  6. J. P. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (John Wiley & Sons, 2011)
  7. J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  8. G. Foo, D. M. Palacios, and G. A. Swartzlander., “Optical vortex coronagraph,” Opt. Lett. 30(24), 3308–3310 (2005).
    [Crossref] [PubMed]
  9. J. Vaughan and D. Willetts, “Interference properties of a light beam having a helical wave surface,” Opt. Commun. 30(3), 263–267 (1979).
    [Crossref]
  10. X.-C. Yuan, J. Lin, J. Bu, and R. E. Burge, “Achromatic design for the generation of optical vortices based on radial spiral phase plates,” Opt. Express 16(18), 13599–13605 (2008).
    [Crossref] [PubMed]
  11. M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
    [Crossref] [PubMed]
  12. D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27(15), 1351–1353 (2002).
    [Crossref] [PubMed]
  13. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, E. Santamato, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011).
    [Crossref] [PubMed]
  14. A. V. Carpentier, H. Michinel, R. Salgueiro, José, and O. David, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76(10), 916–921 (2008).
    [Crossref]
  15. N. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Laser beams with phase singularities,” Opt. Quantum. 24(9), S951–S962 (1992).
    [Crossref]
  16. Q. Li, Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications (John Wiley & Sons, 2012).
  17. E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
    [Crossref] [PubMed]
  18. Y. Liu, X. W. Sun, D. Luo, and Z. Raszewski, “Generating electrically tunable optical vortices by a liquid crystal cell with patterned electrode,” Appl. Phys. Lett. 92(10), 101114 (2008).
    [Crossref]
  19. M. Infusino, A. De Luca, V. Barna, R. Caputo, and C. Umeton, “Periodic and aperiodic liquid crystal-polymer composite structures realized via spatial light modulator direct holography,” Opt. Express 20(21), 23138–23143 (2012).
    [Crossref] [PubMed]
  20. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992).
    [Crossref] [PubMed]
  21. D. Voloschenko and O. D. Lavrentovich, “Optical vortices generated by dislocations in a cholesteric liquid crystal,” Opt. Lett. 25(5), 317–319 (2000).
    [Crossref] [PubMed]
  22. S. J. Ge, W. Ji, G. X. Cui, B. Y. Wei, W. Hu, and Y. Q. Lu, “Fast switchable optical vortex generator based on blue phase liquid crystal fork grating,” Opt. Mater. Express 4(12), 2535 (2014).
    [Crossref]
  23. A. K. Srivastava, V. G. Chigrinov, and H.-S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
    [Crossref]
  24. Y. Ma, S. Jiatong, A. K. Srivastava, Q. Guo, V. G. Chigrinov, and H.-S. Kwok, “Optically rewritable ferroelectric liquid-crystal grating,” Europhys. Lett. 102(2), 24005 (2013).
    [Crossref]
  25. A. D. Kiselev, V. G. Chigrinov, and E. P. Pozhidaev, “Switching dynamics of surface stabilized ferroelectric liquid crystal cells: effects of anchoring energy asymmetry,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(6), 061706 (2007).
    [Crossref] [PubMed]
  26. A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
    [Crossref]
  27. H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
    [Crossref]
  28. B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
    [Crossref] [PubMed]
  29. V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of Liquid Crystalline Materials: physics and applications (John Wiley & Sons, 2008).
  30. Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H.-S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
    [Crossref]
  31. A. K. Srivastava, X. Wang, S. Q. Gong, D. Shen, Y. Q. Lu, V. G. Chigrinov, and H. S. Kwok, “Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens,” Opt. Lett. 40(8), 1643–1646 (2015).
    [Crossref] [PubMed]
  32. Y. Ma, L. Y. Shi, A. K. Srivastava, V. G. Chigrinov, and H.-S. Kwok, “Restricted polymer stabilized electrically suppressed helix ferroelectric liquid crystals,” in press, Liq. Cryst. (2016).

2015 (2)

A. K. Srivastava, V. G. Chigrinov, and H.-S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

A. K. Srivastava, X. Wang, S. Q. Gong, D. Shen, Y. Q. Lu, V. G. Chigrinov, and H. S. Kwok, “Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens,” Opt. Lett. 40(8), 1643–1646 (2015).
[Crossref] [PubMed]

2014 (3)

S. J. Ge, W. Ji, G. X. Cui, B. Y. Wei, W. Hu, and Y. Q. Lu, “Fast switchable optical vortex generator based on blue phase liquid crystal fork grating,” Opt. Mater. Express 4(12), 2535 (2014).
[Crossref]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H.-S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[Crossref]

2013 (2)

Y. Ma, S. Jiatong, A. K. Srivastava, Q. Guo, V. G. Chigrinov, and H.-S. Kwok, “Optically rewritable ferroelectric liquid-crystal grating,” Europhys. Lett. 102(2), 24005 (2013).
[Crossref]

J. Verbeeck, H. Tian, and G. Van Tendeloo, “How to manipulate nanoparticles with an electron beam?” Adv. Mater. 25(8), 1114–1117 (2013).
[Crossref] [PubMed]

2012 (4)

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

M. Infusino, A. De Luca, V. Barna, R. Caputo, and C. Umeton, “Periodic and aperiodic liquid crystal-polymer composite structures realized via spatial light modulator direct holography,” Opt. Express 20(21), 23138–23143 (2012).
[Crossref] [PubMed]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
[Crossref]

2011 (2)

2010 (1)

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
[Crossref] [PubMed]

2009 (1)

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
[Crossref] [PubMed]

2008 (3)

Y. Liu, X. W. Sun, D. Luo, and Z. Raszewski, “Generating electrically tunable optical vortices by a liquid crystal cell with patterned electrode,” Appl. Phys. Lett. 92(10), 101114 (2008).
[Crossref]

A. V. Carpentier, H. Michinel, R. Salgueiro, José, and O. David, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76(10), 916–921 (2008).
[Crossref]

X.-C. Yuan, J. Lin, J. Bu, and R. E. Burge, “Achromatic design for the generation of optical vortices based on radial spiral phase plates,” Opt. Express 16(18), 13599–13605 (2008).
[Crossref] [PubMed]

2007 (2)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

A. D. Kiselev, V. G. Chigrinov, and E. P. Pozhidaev, “Switching dynamics of surface stabilized ferroelectric liquid crystal cells: effects of anchoring energy asymmetry,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(6), 061706 (2007).
[Crossref] [PubMed]

2005 (1)

2004 (1)

E. G. Abramochkin and V. G. Volostnikov, “Spiral light beams,” Phys. Uspekhi 47(12), 1177–1203 (2004).
[Crossref]

2002 (1)

2000 (1)

1992 (3)

N. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Laser beams with phase singularities,” Opt. Quantum. 24(9), S951–S962 (1992).
[Crossref]

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992).
[Crossref] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

1979 (1)

J. Vaughan and D. Willetts, “Interference properties of a light beam having a helical wave surface,” Opt. Commun. 30(3), 263–267 (1979).
[Crossref]

Abramochkin, E. G.

E. G. Abramochkin and V. G. Volostnikov, “Spiral light beams,” Phys. Uspekhi 47(12), 1177–1203 (2004).
[Crossref]

Ahmed, N.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Barna, V.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Brasselet, E.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
[Crossref] [PubMed]

Bu, J.

Burge, R. E.

Caputo, R.

Carpentier, A. V.

A. V. Carpentier, H. Michinel, R. Salgueiro, José, and O. David, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76(10), 916–921 (2008).
[Crossref]

Chigrinov, V.

Chigrinov, V. G.

A. K. Srivastava, X. Wang, S. Q. Gong, D. Shen, Y. Q. Lu, V. G. Chigrinov, and H. S. Kwok, “Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens,” Opt. Lett. 40(8), 1643–1646 (2015).
[Crossref] [PubMed]

A. K. Srivastava, V. G. Chigrinov, and H.-S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H.-S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[Crossref]

Y. Ma, S. Jiatong, A. K. Srivastava, Q. Guo, V. G. Chigrinov, and H.-S. Kwok, “Optically rewritable ferroelectric liquid-crystal grating,” Europhys. Lett. 102(2), 24005 (2013).
[Crossref]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

A. D. Kiselev, V. G. Chigrinov, and E. P. Pozhidaev, “Switching dynamics of surface stabilized ferroelectric liquid crystal cells: effects of anchoring energy asymmetry,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(6), 061706 (2007).
[Crossref] [PubMed]

Choi, J. W.

Cui, G. X.

David, O.

A. V. Carpentier, H. Michinel, R. Salgueiro, José, and O. David, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76(10), 916–921 (2008).
[Crossref]

De Luca, A.

Dolinar, S.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Du, T.

Fazal, I. M.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Foo, G.

Gan, X.

Ganic, D.

Ge, S. J.

Gong, S. Q.

Gu, M.

Guo, Q.

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H.-S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[Crossref]

Y. Ma, S. Jiatong, A. K. Srivastava, Q. Guo, V. G. Chigrinov, and H.-S. Kwok, “Optically rewritable ferroelectric liquid-crystal grating,” Europhys. Lett. 102(2), 24005 (2013).
[Crossref]

Hain, M.

Heckenberg, N.

N. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Laser beams with phase singularities,” Opt. Quantum. 24(9), S951–S962 (1992).
[Crossref]

Heckenberg, N. R.

Hu, H. C.

Hu, W.

S. J. Ge, W. Ji, G. X. Cui, B. Y. Wei, W. Hu, and Y. Q. Lu, “Fast switchable optical vortex generator based on blue phase liquid crystal fork grating,” Opt. Mater. Express 4(12), 2535 (2014).
[Crossref]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
[Crossref]

Huang, H.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Infusino, M.

Ji, W.

Jiatong, S.

Y. Ma, S. Jiatong, A. K. Srivastava, Q. Guo, V. G. Chigrinov, and H.-S. Kwok, “Optically rewritable ferroelectric liquid-crystal grating,” Europhys. Lett. 102(2), 24005 (2013).
[Crossref]

José,

A. V. Carpentier, H. Michinel, R. Salgueiro, José, and O. David, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76(10), 916–921 (2008).
[Crossref]

Juodkazis, S.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
[Crossref] [PubMed]

Kiselev, A. D.

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

A. D. Kiselev, V. G. Chigrinov, and E. P. Pozhidaev, “Switching dynamics of surface stabilized ferroelectric liquid crystal cells: effects of anchoring energy asymmetry,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(6), 061706 (2007).
[Crossref] [PubMed]

Kwok, H. S.

Kwok, H.-S.

A. K. Srivastava, V. G. Chigrinov, and H.-S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H.-S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[Crossref]

Y. Ma, S. Jiatong, A. K. Srivastava, Q. Guo, V. G. Chigrinov, and H.-S. Kwok, “Optically rewritable ferroelectric liquid-crystal grating,” Europhys. Lett. 102(2), 24005 (2013).
[Crossref]

Lavrentovich, O. D.

Lin, J.

Lin, X. W.

Liu, Y.

Y. Liu, X. W. Sun, D. Luo, and Z. Raszewski, “Generating electrically tunable optical vortices by a liquid crystal cell with patterned electrode,” Appl. Phys. Lett. 92(10), 101114 (2008).
[Crossref]

Lu, Y. Q.

Luo, D.

Y. Liu, X. W. Sun, D. Luo, and Z. Raszewski, “Generating electrically tunable optical vortices by a liquid crystal cell with patterned electrode,” Appl. Phys. Lett. 92(10), 101114 (2008).
[Crossref]

Ma, Y.

Y. Ma, S. Jiatong, A. K. Srivastava, Q. Guo, V. G. Chigrinov, and H.-S. Kwok, “Optically rewritable ferroelectric liquid-crystal grating,” Europhys. Lett. 102(2), 24005 (2013).
[Crossref]

Marrucci, L.

McDuff, R.

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992).
[Crossref] [PubMed]

N. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Laser beams with phase singularities,” Opt. Quantum. 24(9), S951–S962 (1992).
[Crossref]

Michinel, H.

A. V. Carpentier, H. Michinel, R. Salgueiro, José, and O. David, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76(10), 916–921 (2008).
[Crossref]

Ming, Y.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

Misawa, H.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
[Crossref] [PubMed]

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Murauski, A.

Murazawa, N.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
[Crossref] [PubMed]

Padgett, M. J.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Palacios, D. M.

Pozhidaev, E. P.

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H.-S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[Crossref]

A. D. Kiselev, V. G. Chigrinov, and E. P. Pozhidaev, “Switching dynamics of surface stabilized ferroelectric liquid crystal cells: effects of anchoring energy asymmetry,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(6), 061706 (2007).
[Crossref] [PubMed]

Raszewski, Z.

Y. Liu, X. W. Sun, D. Luo, and Z. Raszewski, “Generating electrically tunable optical vortices by a liquid crystal cell with patterned electrode,” Appl. Phys. Lett. 92(10), 101114 (2008).
[Crossref]

Ren, Y.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Rubin, S.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

Salgueiro, R.

A. V. Carpentier, H. Michinel, R. Salgueiro, José, and O. David, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76(10), 916–921 (2008).
[Crossref]

Santamato, E.

Shen, D.

Slussarenko, S.

Smith, C. P.

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992).
[Crossref] [PubMed]

N. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Laser beams with phase singularities,” Opt. Quantum. 24(9), S951–S962 (1992).
[Crossref]

Somalingam, S.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Srivastava, A. K.

A. K. Srivastava, V. G. Chigrinov, and H.-S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

A. K. Srivastava, X. Wang, S. Q. Gong, D. Shen, Y. Q. Lu, V. G. Chigrinov, and H. S. Kwok, “Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens,” Opt. Lett. 40(8), 1643–1646 (2015).
[Crossref] [PubMed]

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H.-S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[Crossref]

Y. Ma, S. Jiatong, A. K. Srivastava, Q. Guo, V. G. Chigrinov, and H.-S. Kwok, “Optically rewritable ferroelectric liquid-crystal grating,” Europhys. Lett. 102(2), 24005 (2013).
[Crossref]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Stankovic, S.

Sun, X. W.

Y. Liu, X. W. Sun, D. Luo, and Z. Raszewski, “Generating electrically tunable optical vortices by a liquid crystal cell with patterned electrode,” Appl. Phys. Lett. 92(10), 101114 (2008).
[Crossref]

Swartzlander, G. A.

Tian, H.

J. Verbeeck, H. Tian, and G. Van Tendeloo, “How to manipulate nanoparticles with an electron beam?” Adv. Mater. 25(8), 1114–1117 (2013).
[Crossref] [PubMed]

Tonomura, A.

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
[Crossref] [PubMed]

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Tschudi, T.

Tur, M.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Uchida, M.

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
[Crossref] [PubMed]

Umeton, C.

Van Tendeloo, G.

J. Verbeeck, H. Tian, and G. Van Tendeloo, “How to manipulate nanoparticles with an electron beam?” Adv. Mater. 25(8), 1114–1117 (2013).
[Crossref] [PubMed]

Vaughan, J.

J. Vaughan and D. Willetts, “Interference properties of a light beam having a helical wave surface,” Opt. Commun. 30(3), 263–267 (1979).
[Crossref]

Verbeeck, J.

J. Verbeeck, H. Tian, and G. Van Tendeloo, “How to manipulate nanoparticles with an electron beam?” Adv. Mater. 25(8), 1114–1117 (2013).
[Crossref] [PubMed]

Voloschenko, D.

Volostnikov, V. G.

E. G. Abramochkin and V. G. Volostnikov, “Spiral light beams,” Phys. Uspekhi 47(12), 1177–1203 (2004).
[Crossref]

Wang, J.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, J. G.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

Wang, X.

Wei, B. Y.

S. J. Ge, W. Ji, G. X. Cui, B. Y. Wei, W. Hu, and Y. Q. Lu, “Fast switchable optical vortex generator based on blue phase liquid crystal fork grating,” Opt. Mater. Express 4(12), 2535 (2014).
[Crossref]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

White, A. G.

N. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Laser beams with phase singularities,” Opt. Quantum. 24(9), S951–S962 (1992).
[Crossref]

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992).
[Crossref] [PubMed]

Willetts, D.

J. Vaughan and D. Willetts, “Interference properties of a light beam having a helical wave surface,” Opt. Commun. 30(3), 263–267 (1979).
[Crossref]

Willner, A. E.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Wu, H.

Xu, F.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

Yan, Y.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Yuan, X.-C.

Yue, Y.

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zhu, G.

Adv. Mater. (2)

J. Verbeeck, H. Tian, and G. Van Tendeloo, “How to manipulate nanoparticles with an electron beam?” Adv. Mater. 25(8), 1114–1117 (2013).
[Crossref] [PubMed]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Am. J. Phys. (1)

A. V. Carpentier, H. Michinel, R. Salgueiro, José, and O. David, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76(10), 916–921 (2008).
[Crossref]

Appl. Phys. Express (1)

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H.-S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[Crossref]

Appl. Phys. Lett. (2)

Y. Liu, X. W. Sun, D. Luo, and Z. Raszewski, “Generating electrically tunable optical vortices by a liquid crystal cell with patterned electrode,” Appl. Phys. Lett. 92(10), 101114 (2008).
[Crossref]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Europhys. Lett. (1)

Y. Ma, S. Jiatong, A. K. Srivastava, Q. Guo, V. G. Chigrinov, and H.-S. Kwok, “Optically rewritable ferroelectric liquid-crystal grating,” Europhys. Lett. 102(2), 24005 (2013).
[Crossref]

J. Soc. Inf. Disp. (1)

A. K. Srivastava, V. G. Chigrinov, and H.-S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

Nat. Photonics (1)

J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Nat. Phys. (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Nature (1)

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Vaughan and D. Willetts, “Interference properties of a light beam having a helical wave surface,” Opt. Commun. 30(3), 263–267 (1979).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Opt. Mater. Express (1)

Opt. Quantum. (1)

N. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Laser beams with phase singularities,” Opt. Quantum. 24(9), S951–S962 (1992).
[Crossref]

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. D. Kiselev, V. G. Chigrinov, and E. P. Pozhidaev, “Switching dynamics of surface stabilized ferroelectric liquid crystal cells: effects of anchoring energy asymmetry,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(6), 061706 (2007).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103(10), 103903 (2009).
[Crossref] [PubMed]

Phys. Uspekhi (1)

E. G. Abramochkin and V. G. Volostnikov, “Spiral light beams,” Phys. Uspekhi 47(12), 1177–1203 (2004).
[Crossref]

Other (4)

J. P. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (John Wiley & Sons, 2011)

Q. Li, Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications (John Wiley & Sons, 2012).

Y. Ma, L. Y. Shi, A. K. Srivastava, V. G. Chigrinov, and H.-S. Kwok, “Restricted polymer stabilized electrically suppressed helix ferroelectric liquid crystals,” in press, Liq. Cryst. (2016).

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of Liquid Crystalline Materials: physics and applications (John Wiley & Sons, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Computer-generated holograms for (a) m = 1, (b) m = 2 and (c) m = 21. Microphotographs recorded on FLC cells for (d) m = 1, (e) m = 2 and (f) m = 21. The scale bar is 100µm.
Fig. 2
Fig. 2 (a) Illustrates the diagram of FLC molecular orientation in the two states of the two domains, in the x-y coordinate. The angle between the easy axes of the two domains is β. (b) illustrates the positions of the polarizer, analyzer and FLC fast axis. The angle between the polarizer (P) and the analyzer (A) is α and γ represents the angle between the FLC fast axis and the polarizer.
Fig. 3
Fig. 3 CCD camera photographs for (a) m = 1, (b) m = 2 and (c) m = 21 for diffraction state and (d) in off state.
Fig. 4
Fig. 4 CCD camera photographs for the FG, with m = 1 and the optimization conditions defined above, for top (a) and front view (b) in diffraction state and the transmission state of top (c) and front view (d).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H = | ψ 1 + ψ 2 | 2 = | e x p ( i m θ ) + e x p ( i k x ) | 2 = 2   [ 1 + cos ( k x m θ ) ] .
F = [ ( E 1 , 1 E 1 , 2 + 1 ) 2 + ( E 1 , 1 + E 1 , 2 ) 2 ] + [ ( E 2 , 1 E 2 , 2 1 ) 2 + ( E 2 , 1 E 2 , 2 ) 2 ] .

Metrics