Abstract

We propose an electrically controllable soft optical cloak based on a fluid system containing gold nanorods, which can be transformed from isotropic to anisotropic epsilon-near-zero (ENZ) state at a certain incident optical frequency due to the orientation of gold nanorods under an external electric field stimulus. Both effective medium theory and 3D finite element simulation demonstrate that, at the ENZ point, the scattering from arbitrary-shaped objects can be nearly perfect suppressed. The loss and aspect ratio of gold nanorods have an effect on the ENZ point and scattering suppression behavior. When different aspect ratio of gold nanorods is employed, the fluid has multi ENZ points and exhibits perfect suppression of scattering from objects at multiple incident optical frequencies. Because the orientation of gold nanorods depends on the strength of applied external electric field, the permittivity of fluid can be adjusted by external electric field and, as a result, the ENZ state and scattering suppression of objects can be controlled. The flexible, controllable, and multi-frequency responsive characteristics make the optical cloak possess potential use in soft smart metamaterial devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Half-sized cylindrical invisibility cloaks using double near zero slabs with realistic material size and properties

Reza Dehbashi, Konstanty S. Bialkowski, and Amin M. Abbosh
Opt. Express 25(20) 24486-24500 (2017)

Suppression of near-field coupling in plasmonic antennas on epsilon-near-zero substrates

Clayton T. DeVault, Vladimir A. Zenin, Anders Pors, Krishnakali Chaudhuri, Jongbum Kim, Alexandra Boltasseva, Vladimir M. Shalaev, and Sergey I. Bozhevolnyi
Optica 5(12) 1557-1563 (2018)

Anomalous birefringence and enhanced magneto-optical effects in epsilon-near-zero metamaterials based on nanorods’ arrays

I. A. Kolmychek, A. R. Pomozov, V. B. Novikov, A. P. Leontiev, K. S. Napolskii, and T. V. Murzina
Opt. Express 27(22) 32069-32074 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
    [Crossref] [PubMed]
  2. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
    [Crossref] [PubMed]
  3. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  4. Z. Su, J. Yin, Y. Guan, and X. Zhao, “Electrically tunable negative refraction in core/shell-structured nanorod fluids,” Soft Matter 10(39), 7696–7704 (2014).
    [Crossref] [PubMed]
  5. H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
    [Crossref] [PubMed]
  6. N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
    [Crossref] [PubMed]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  8. W. Zhu, M. Premaratne, and Y. Huang, “Hiding inside an arbitrarily shaped metal pit using homogeneous metamaterials,” J. Electromagnet Wave 26(17-18), 2315–2322 (2012).
    [Crossref]
  9. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [Crossref] [PubMed]
  10. M. G. Silveirinha, A. Alù, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B 78(7), 075107 (2008).
    [Crossref]
  11. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
    [Crossref] [PubMed]
  12. M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–13906 (2012).
    [Crossref] [PubMed]
  13. A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
    [Crossref]
  14. A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36(23), 4479–4481 (2011).
    [Crossref] [PubMed]
  15. S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
    [Crossref] [PubMed]
  16. S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
    [Crossref]
  17. A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical Scattering Cancellation through Arrays of Plasmonic Nanoparticles: A Review,” Photonics 2(2), 540–552 (2015).
    [Crossref]
  18. J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
    [Crossref] [PubMed]
  19. A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
    [Crossref]
  20. A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
    [Crossref]
  21. R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
    [Crossref] [PubMed]
  22. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
    [Crossref] [PubMed]
  23. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
    [Crossref]
  24. Y. Xu, C. T. Chan, and H. Chen, “Goos-Hänchen effect in epsilon-near-zero metamaterials,” Sci. Rep. 5, 8681 (2015).
    [Crossref] [PubMed]
  25. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
    [Crossref]
  26. P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21(12), 14907–14917 (2013).
    [Crossref] [PubMed]
  27. L. Davis, “The metal particle/insulating oil system: An ideal electrorheological fluid,” J. Appl. Phys. 73(2), 680–683 (1993).
    [Crossref]
  28. T. Takahashi, T. Murayama, A. Higuchi, H. Awano, and K. Yonetake, “Aligning vapor-grown carbon fibers in polydimethylsiloxane using dc electric or magnetic field,” Carbon 44(7), 1180–1188 (2006).
    [Crossref]
  29. M. Parthasarathy and D. J. Klingenberg, “Electrorheology: mechanisms and models,” Mater. Sci. Eng. Rep. 17(2), 57–103 (1996).
    [Crossref]
  30. A. Sihvola, “Mixing rules with complex dielectric coefficients,” Subsurf. Sens. Technol. Appl. 1(4), 393–415 (2000).
    [Crossref]
  31. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1120 (1983).
    [Crossref] [PubMed]
  32. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
    [Crossref] [PubMed]
  33. X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
    [Crossref] [PubMed]
  34. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
    [Crossref] [PubMed]
  35. S. J. Boehm, L. Lin, K. Guzmán Betancourt, R. Emery, J. S. Mayer, T. S. Mayer, and C. D. Keating, “Formation and frequency response of two-dimensional nanowire lattices in an applied electric field,” Langmuir 31(21), 5779–5786 (2015).
    [Crossref] [PubMed]
  36. A.-P. Hynninen and M. Dijkstra, “Phase diagram of dipolar hard and soft spheres: manipulation of colloidal crystal structures by an external field,” Phys. Rev. Lett. 94(13), 138303 (2005).
    [Crossref] [PubMed]
  37. A. S. Potemkin, A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Green function for hyperbolic media,” Phys. Rev. A 86(2), 023848 (2012).
    [Crossref]
  38. M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of epsilon-negative rods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4), 046612 (2006).
    [Crossref] [PubMed]
  39. T. Geng, S. Zhuang, J. Gao, and X. Yang, “Nonlocal effective medium approximation for metallic nanorod metamaterials,” Phys. Rev. B 91(24), 245128 (2015).
    [Crossref]
  40. R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102(12), 127405 (2009).
    [Crossref] [PubMed]
  41. O. D. Miller, W. Qiu, J. D. Joannopoulos, and S. G. Johnson, “Comment on” A self-assembled three-dimensional cloak in the visible” in Scientific Reports 3, 2328,” arXiv preprint arXiv:1310.1503 (2013).
  42. A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
    [Crossref]
  43. X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5, 7892 (2015).
    [Crossref] [PubMed]
  44. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  45. Y. He, H. Deng, X. Jiao, S. He, J. Gao, and X. Yang, “Infrared perfect absorber based on nanowire metamaterial cavities,” Opt. Lett. 38(7), 1179–1181 (2013).
    [Crossref] [PubMed]
  46. B. M. van der Zande, G. J. Koper, and H. N. Lekkerkerker, “Alignment of rod-shaped gold particles by electric fields,” J. Phys. Chem. B 103(28), 5754–5760 (1999).
    [Crossref]
  47. O. Levy, “Dielectric response and electro-optical effects in suspensions of anisotropic particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 011404 (2002).
    [Crossref] [PubMed]

2015 (8)

A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
[Crossref]

Y. Xu, C. T. Chan, and H. Chen, “Goos-Hänchen effect in epsilon-near-zero metamaterials,” Sci. Rep. 5, 8681 (2015).
[Crossref] [PubMed]

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical Scattering Cancellation through Arrays of Plasmonic Nanoparticles: A Review,” Photonics 2(2), 540–552 (2015).
[Crossref]

S. J. Boehm, L. Lin, K. Guzmán Betancourt, R. Emery, J. S. Mayer, T. S. Mayer, and C. D. Keating, “Formation and frequency response of two-dimensional nanowire lattices in an applied electric field,” Langmuir 31(21), 5779–5786 (2015).
[Crossref] [PubMed]

T. Geng, S. Zhuang, J. Gao, and X. Yang, “Nonlocal effective medium approximation for metallic nanorod metamaterials,” Phys. Rev. B 91(24), 245128 (2015).
[Crossref]

A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
[Crossref]

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5, 7892 (2015).
[Crossref] [PubMed]

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
[Crossref]

2014 (2)

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

Z. Su, J. Yin, Y. Guan, and X. Zhao, “Electrically tunable negative refraction in core/shell-structured nanorod fluids,” Soft Matter 10(39), 7696–7704 (2014).
[Crossref] [PubMed]

2013 (5)

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Y. He, H. Deng, X. Jiao, S. He, J. Gao, and X. Yang, “Infrared perfect absorber based on nanowire metamaterial cavities,” Opt. Lett. 38(7), 1179–1181 (2013).
[Crossref] [PubMed]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21(12), 14907–14917 (2013).
[Crossref] [PubMed]

2012 (6)

M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–13906 (2012).
[Crossref] [PubMed]

A. S. Potemkin, A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Green function for hyperbolic media,” Phys. Rev. A 86(2), 023848 (2012).
[Crossref]

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
[Crossref] [PubMed]

W. Zhu, M. Premaratne, and Y. Huang, “Hiding inside an arbitrarily shaped metal pit using homogeneous metamaterials,” J. Electromagnet Wave 26(17-18), 2315–2322 (2012).
[Crossref]

2011 (2)

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
[Crossref]

A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36(23), 4479–4481 (2011).
[Crossref] [PubMed]

2010 (2)

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

2009 (2)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102(12), 127405 (2009).
[Crossref] [PubMed]

2008 (4)

M. G. Silveirinha, A. Alù, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B 78(7), 075107 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

2007 (2)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[Crossref] [PubMed]

2006 (3)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of epsilon-negative rods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4), 046612 (2006).
[Crossref] [PubMed]

T. Takahashi, T. Murayama, A. Higuchi, H. Awano, and K. Yonetake, “Aligning vapor-grown carbon fibers in polydimethylsiloxane using dc electric or magnetic field,” Carbon 44(7), 1180–1188 (2006).
[Crossref]

2005 (1)

A.-P. Hynninen and M. Dijkstra, “Phase diagram of dipolar hard and soft spheres: manipulation of colloidal crystal structures by an external field,” Phys. Rev. Lett. 94(13), 138303 (2005).
[Crossref] [PubMed]

2004 (3)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[Crossref] [PubMed]

2002 (1)

O. Levy, “Dielectric response and electro-optical effects in suspensions of anisotropic particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 011404 (2002).
[Crossref] [PubMed]

2000 (1)

A. Sihvola, “Mixing rules with complex dielectric coefficients,” Subsurf. Sens. Technol. Appl. 1(4), 393–415 (2000).
[Crossref]

1999 (1)

B. M. van der Zande, G. J. Koper, and H. N. Lekkerkerker, “Alignment of rod-shaped gold particles by electric fields,” J. Phys. Chem. B 103(28), 5754–5760 (1999).
[Crossref]

1996 (1)

M. Parthasarathy and D. J. Klingenberg, “Electrorheology: mechanisms and models,” Mater. Sci. Eng. Rep. 17(2), 57–103 (1996).
[Crossref]

1993 (1)

L. Davis, “The metal particle/insulating oil system: An ideal electrorheological fluid,” J. Appl. Phys. 73(2), 680–683 (1993).
[Crossref]

1983 (1)

Alexander, R. W.

Alù, A.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
[Crossref]

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical Scattering Cancellation through Arrays of Plasmonic Nanoparticles: A Review,” Photonics 2(2), 540–552 (2015).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

M. G. Silveirinha, A. Alù, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B 78(7), 075107 (2008).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Ankonina, G.

Atkinson, R.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102(12), 127405 (2009).
[Crossref] [PubMed]

Atrashchenko, A.

Awano, H.

T. Takahashi, T. Murayama, A. Higuchi, H. Awano, and K. Yonetake, “Aligning vapor-grown carbon fibers in polydimethylsiloxane using dc electric or magnetic field,” Carbon 44(7), 1180–1188 (2006).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Belov, P. A.

A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
[Crossref]

A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
[Crossref]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21(12), 14907–14917 (2013).
[Crossref] [PubMed]

A. S. Potemkin, A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Green function for hyperbolic media,” Phys. Rev. A 86(2), 023848 (2012).
[Crossref]

Bilotti, F.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical Scattering Cancellation through Arrays of Plasmonic Nanoparticles: A Review,” Photonics 2(2), 540–552 (2015).
[Crossref]

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
[Crossref]

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
[Crossref]

A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36(23), 4479–4481 (2011).
[Crossref] [PubMed]

Boehm, S. J.

S. J. Boehm, L. Lin, K. Guzmán Betancourt, R. Emery, J. S. Mayer, T. S. Mayer, and C. D. Keating, “Formation and frequency response of two-dimensional nanowire lattices in an applied electric field,” Langmuir 31(21), 5779–5786 (2015).
[Crossref] [PubMed]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Bürgi, T.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Chan, C. T.

Y. Xu, C. T. Chan, and H. Chen, “Goos-Hänchen effect in epsilon-near-zero metamaterials,” Sci. Rep. 5, 8681 (2015).
[Crossref] [PubMed]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref] [PubMed]

Chen, H.

Y. Xu, C. T. Chan, and H. Chen, “Goos-Hänchen effect in epsilon-near-zero metamaterials,” Sci. Rep. 5, 8681 (2015).
[Crossref] [PubMed]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref] [PubMed]

H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[Crossref] [PubMed]

Chen, X.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Cheng, Q.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Cui, T. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Cummer, S. A.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Cunningham, A.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Davis, L.

L. Davis, “The metal particle/insulating oil system: An ideal electrorheological fluid,” J. Appl. Phys. 73(2), 680–683 (1993).
[Crossref]

Deng, H.

Dickson, W.

Dijkstra, M.

A.-P. Hynninen and M. Dijkstra, “Phase diagram of dipolar hard and soft spheres: manipulation of colloidal crystal structures by an external field,” Phys. Rev. Lett. 94(13), 138303 (2005).
[Crossref] [PubMed]

Dintinger, J.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Edwards, B.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Emery, R.

S. J. Boehm, L. Lin, K. Guzmán Betancourt, R. Emery, J. S. Mayer, T. S. Mayer, and C. D. Keating, “Formation and frequency response of two-dimensional nanowire lattices in an applied electric field,” Langmuir 31(21), 5779–5786 (2015).
[Crossref] [PubMed]

Engheta, N.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

M. G. Silveirinha, A. Alù, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B 78(7), 075107 (2008).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Evans, P. R.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102(12), 127405 (2009).
[Crossref] [PubMed]

Farhat, M.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–13906 (2012).
[Crossref] [PubMed]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
[Crossref]

Gao, J.

T. Geng, S. Zhuang, J. Gao, and X. Yang, “Nonlocal effective medium approximation for metallic nanorod metamaterials,” Phys. Rev. B 91(24), 245128 (2015).
[Crossref]

Y. He, H. Deng, X. Jiao, S. He, J. Gao, and X. Yang, “Infrared perfect absorber based on nanowire metamaterial cavities,” Opt. Lett. 38(7), 1179–1181 (2013).
[Crossref] [PubMed]

Geng, T.

T. Geng, S. Zhuang, J. Gao, and X. Yang, “Nonlocal effective medium approximation for metallic nanorod metamaterials,” Phys. Rev. B 91(24), 245128 (2015).
[Crossref]

Ginzburg, P.

A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
[Crossref]

A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
[Crossref]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21(12), 14907–14917 (2013).
[Crossref] [PubMed]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Guan, Y.

Z. Su, J. Yin, Y. Guan, and X. Zhao, “Electrically tunable negative refraction in core/shell-structured nanorod fluids,” Soft Matter 10(39), 7696–7704 (2014).
[Crossref] [PubMed]

Guzmán Betancourt, K.

S. J. Boehm, L. Lin, K. Guzmán Betancourt, R. Emery, J. S. Mayer, T. S. Mayer, and C. D. Keating, “Formation and frequency response of two-dimensional nanowire lattices in an applied electric field,” Langmuir 31(21), 5779–5786 (2015).
[Crossref] [PubMed]

Hand, T.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Hang, Z.

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

Hasan, S. B.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

He, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

He, S.

He, Y.

Hendren, W. R.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102(12), 127405 (2009).
[Crossref] [PubMed]

Higuchi, A.

T. Takahashi, T. Murayama, A. Higuchi, H. Awano, and K. Yonetake, “Aligning vapor-grown carbon fibers in polydimethylsiloxane using dc electric or magnetic field,” Carbon 44(7), 1180–1188 (2006).
[Crossref]

Hou, B.

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

Huang, Y.

W. Zhu, M. Premaratne, and Y. Huang, “Hiding inside an arbitrarily shaped metal pit using homogeneous metamaterials,” J. Electromagnet Wave 26(17-18), 2315–2322 (2012).
[Crossref]

Hynninen, A.-P.

A.-P. Hynninen and M. Dijkstra, “Phase diagram of dipolar hard and soft spheres: manipulation of colloidal crystal structures by an external field,” Phys. Rev. Lett. 94(13), 138303 (2005).
[Crossref] [PubMed]

Iorsh, I.

A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
[Crossref]

A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21(12), 14907–14917 (2013).
[Crossref] [PubMed]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Jiao, X.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Keating, C. D.

S. J. Boehm, L. Lin, K. Guzmán Betancourt, R. Emery, J. S. Mayer, T. S. Mayer, and C. D. Keating, “Formation and frequency response of two-dimensional nanowire lattices in an applied electric field,” Langmuir 31(21), 5779–5786 (2015).
[Crossref] [PubMed]

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Kivshar, Y. S.

A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
[Crossref]

A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
[Crossref]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21(12), 14907–14917 (2013).
[Crossref] [PubMed]

A. S. Potemkin, A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Green function for hyperbolic media,” Phys. Rev. A 86(2), 023848 (2012).
[Crossref]

Klingenberg, D. J.

M. Parthasarathy and D. J. Klingenberg, “Electrorheology: mechanisms and models,” Mater. Sci. Eng. Rep. 17(2), 57–103 (1996).
[Crossref]

Kong, J. A.

H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[Crossref] [PubMed]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Koper, G. J.

B. M. van der Zande, G. J. Koper, and H. N. Lekkerkerker, “Alignment of rod-shaped gold particles by electric fields,” J. Phys. Chem. B 103(28), 5754–5760 (1999).
[Crossref]

Koschny, T.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Lai, Y.

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

Landy, N.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lederer, F.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–13906 (2012).
[Crossref] [PubMed]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
[Crossref]

Lekkerkerker, H. N.

B. M. van der Zande, G. J. Koper, and H. N. Lekkerkerker, “Alignment of rod-shaped gold particles by electric fields,” J. Phys. Chem. B 103(28), 5754–5760 (1999).
[Crossref]

Levy, O.

O. Levy, “Dielectric response and electro-optical effects in suspensions of anisotropic particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 011404 (2002).
[Crossref] [PubMed]

Li, X.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Lin, L.

S. J. Boehm, L. Lin, K. Guzmán Betancourt, R. Emery, J. S. Mayer, T. S. Mayer, and C. D. Keating, “Formation and frequency response of two-dimensional nanowire lattices in an applied electric field,” Langmuir 31(21), 5779–5786 (2015).
[Crossref] [PubMed]

Linden, S.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Long, L. L.

Lu, W.

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

Luo, J.

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

Maas, R.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Mayer, J. S.

S. J. Boehm, L. Lin, K. Guzmán Betancourt, R. Emery, J. S. Mayer, T. S. Mayer, and C. D. Keating, “Formation and frequency response of two-dimensional nanowire lattices in an applied electric field,” Langmuir 31(21), 5779–5786 (2015).
[Crossref] [PubMed]

Mayer, T. S.

S. J. Boehm, L. Lin, K. Guzmán Betancourt, R. Emery, J. S. Mayer, T. S. Mayer, and C. D. Keating, “Formation and frequency response of two-dimensional nanowire lattices in an applied electric field,” Langmuir 31(21), 5779–5786 (2015).
[Crossref] [PubMed]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Monti, A.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical Scattering Cancellation through Arrays of Plasmonic Nanoparticles: A Review,” Photonics 2(2), 540–552 (2015).
[Crossref]

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
[Crossref]

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
[Crossref]

A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36(23), 4479–4481 (2011).
[Crossref] [PubMed]

Morgan, F.

Mühlig, S.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–13906 (2012).
[Crossref] [PubMed]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
[Crossref]

Murayama, T.

T. Takahashi, T. Murayama, A. Higuchi, H. Awano, and K. Yonetake, “Aligning vapor-grown carbon fibers in polydimethylsiloxane using dc electric or magnetic field,” Carbon 44(7), 1180–1188 (2006).
[Crossref]

Murphy, A.

Nevet, A.

Ordal, M. A.

Orenstein, M.

Orlov, A. A.

A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
[Crossref]

A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
[Crossref]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Parsons, J.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Parthasarathy, M.

M. Parthasarathy and D. J. Klingenberg, “Electrorheology: mechanisms and models,” Mater. Sci. Eng. Rep. 17(2), 57–103 (1996).
[Crossref]

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Poddubny, A. N.

A. S. Potemkin, A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Green function for hyperbolic media,” Phys. Rev. A 86(2), 023848 (2012).
[Crossref]

Podolskiy, V. A.

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102(12), 127405 (2009).
[Crossref] [PubMed]

Pollard, R. J.

Polman, A.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Potemkin, A. S.

A. S. Potemkin, A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Green function for hyperbolic media,” Phys. Rev. A 86(2), 023848 (2012).
[Crossref]

Premaratne, M.

W. Zhu, M. Premaratne, and Y. Huang, “Hiding inside an arbitrarily shaped metal pit using homogeneous metamaterials,” J. Electromagnet Wave 26(17-18), 2315–2322 (2012).
[Crossref]

Rockstuhl, C.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

M. Farhat, S. Mühlig, C. Rockstuhl, and F. Lederer, “Scattering cancellation of the magnetic dipole field from macroscopic spheres,” Opt. Express 20(13), 13896–13906 (2012).
[Crossref] [PubMed]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
[Crossref]

Rodríguez Fortuño, F. J.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Salandrino, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Scharf, T.

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shalin, A. S.

A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
[Crossref]

A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
[Crossref]

Sheng, P.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref] [PubMed]

Sihvola, A.

A. Sihvola, “Mixing rules with complex dielectric coefficients,” Subsurf. Sens. Technol. Appl. 1(4), 393–415 (2000).
[Crossref]

Silveirinha, M.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Silveirinha, M. G.

M. G. Silveirinha, A. Alù, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B 78(7), 075107 (2008).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of epsilon-negative rods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4), 046612 (2006).
[Crossref] [PubMed]

Smith, D. R.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Soukoulis, C. M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Su, Z.

Z. Su, J. Yin, Y. Guan, and X. Zhao, “Electrically tunable negative refraction in core/shell-structured nanorod fluids,” Soft Matter 10(39), 7696–7704 (2014).
[Crossref] [PubMed]

Sun, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Takahashi, T.

T. Takahashi, T. Murayama, A. Higuchi, H. Awano, and K. Yonetake, “Aligning vapor-grown carbon fibers in polydimethylsiloxane using dc electric or magnetic field,” Carbon 44(7), 1180–1188 (2006).
[Crossref]

Toscano, A.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
[Crossref]

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical Scattering Cancellation through Arrays of Plasmonic Nanoparticles: A Review,” Photonics 2(2), 540–552 (2015).
[Crossref]

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
[Crossref]

A. Monti, F. Bilotti, and A. Toscano, “Optical cloaking of cylindrical objects by using covers made of core-shell nanoparticles,” Opt. Lett. 36(23), 4479–4481 (2011).
[Crossref] [PubMed]

van der Zande, B. M.

B. M. van der Zande, G. J. Koper, and H. N. Lekkerkerker, “Alignment of rod-shaped gold particles by electric fields,” J. Phys. Chem. B 103(28), 5754–5760 (1999).
[Crossref]

Vegni, L.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
[Crossref]

Ward, C. A.

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Wu, B. I.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Wu, B.-I.

H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[Crossref] [PubMed]

Wu, Y.

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5, 7892 (2015).
[Crossref] [PubMed]

Wurtz, G. A.

Xiao, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Xu, Y.

Y. Xu, C. T. Chan, and H. Chen, “Goos-Hänchen effect in epsilon-near-zero metamaterials,” Sci. Rep. 5, 8681 (2015).
[Crossref] [PubMed]

Yang, X.

T. Geng, S. Zhuang, J. Gao, and X. Yang, “Nonlocal effective medium approximation for metallic nanorod metamaterials,” Phys. Rev. B 91(24), 245128 (2015).
[Crossref]

Y. He, H. Deng, X. Jiao, S. He, J. Gao, and X. Yang, “Infrared perfect absorber based on nanowire metamaterial cavities,” Opt. Lett. 38(7), 1179–1181 (2013).
[Crossref] [PubMed]

Yin, J.

Z. Su, J. Yin, Y. Guan, and X. Zhao, “Electrically tunable negative refraction in core/shell-structured nanorod fluids,” Soft Matter 10(39), 7696–7704 (2014).
[Crossref] [PubMed]

Yonetake, K.

T. Takahashi, T. Murayama, A. Higuchi, H. Awano, and K. Yonetake, “Aligning vapor-grown carbon fibers in polydimethylsiloxane using dc electric or magnetic field,” Carbon 44(7), 1180–1188 (2006).
[Crossref]

Young, M. E.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Zayats, A. V.

A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
[Crossref]

A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
[Crossref]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21(12), 14907–14917 (2013).
[Crossref] [PubMed]

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102(12), 127405 (2009).
[Crossref] [PubMed]

Zhang, B.

H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[Crossref] [PubMed]

Zhang, X.

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5, 7892 (2015).
[Crossref] [PubMed]

Zhao, X.

Z. Su, J. Yin, Y. Guan, and X. Zhao, “Electrically tunable negative refraction in core/shell-structured nanorod fluids,” Soft Matter 10(39), 7696–7704 (2014).
[Crossref] [PubMed]

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Zhou, L.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Zhu, W.

W. Zhu, M. Premaratne, and Y. Huang, “Hiding inside an arbitrarily shaped metal pit using homogeneous metamaterials,” J. Electromagnet Wave 26(17-18), 2315–2322 (2012).
[Crossref]

Zhuang, S.

T. Geng, S. Zhuang, J. Gao, and X. Yang, “Nonlocal effective medium approximation for metallic nanorod metamaterials,” Phys. Rev. B 91(24), 245128 (2015).
[Crossref]

Ziolkowski, R. W.

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[Crossref] [PubMed]

Appl. Opt. (1)

Carbon (1)

T. Takahashi, T. Murayama, A. Higuchi, H. Awano, and K. Yonetake, “Aligning vapor-grown carbon fibers in polydimethylsiloxane using dc electric or magnetic field,” Carbon 44(7), 1180–1188 (2006).
[Crossref]

J. Appl. Phys. (2)

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117(12), 123103 (2015).
[Crossref]

L. Davis, “The metal particle/insulating oil system: An ideal electrorheological fluid,” J. Appl. Phys. 73(2), 680–683 (1993).
[Crossref]

J. Electromagnet Wave (1)

W. Zhu, M. Premaratne, and Y. Huang, “Hiding inside an arbitrarily shaped metal pit using homogeneous metamaterials,” J. Electromagnet Wave 26(17-18), 2315–2322 (2012).
[Crossref]

J. Phys. Chem. B (1)

B. M. van der Zande, G. J. Koper, and H. N. Lekkerkerker, “Alignment of rod-shaped gold particles by electric fields,” J. Phys. Chem. B 103(28), 5754–5760 (1999).
[Crossref]

Langmuir (1)

S. J. Boehm, L. Lin, K. Guzmán Betancourt, R. Emery, J. S. Mayer, T. S. Mayer, and C. D. Keating, “Formation and frequency response of two-dimensional nanowire lattices in an applied electric field,” Langmuir 31(21), 5779–5786 (2015).
[Crossref] [PubMed]

Mater. Sci. Eng. Rep. (1)

M. Parthasarathy and D. J. Klingenberg, “Electrorheology: mechanisms and models,” Mater. Sci. Eng. Rep. 17(2), 57–103 (1996).
[Crossref]

Nat. Mater. (3)

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2012).
[Crossref] [PubMed]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Opt. Commun. (1)

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Photonics (1)

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical Scattering Cancellation through Arrays of Plasmonic Nanoparticles: A Review,” Photonics 2(2), 540–552 (2015).
[Crossref]

Phys. Rev. A (1)

A. S. Potemkin, A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Green function for hyperbolic media,” Phys. Rev. A 86(2), 023848 (2012).
[Crossref]

Phys. Rev. B (6)

T. Geng, S. Zhuang, J. Gao, and X. Yang, “Nonlocal effective medium approximation for metallic nanorod metamaterials,” Phys. Rev. B 91(24), 245128 (2015).
[Crossref]

A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
[Crossref]

M. G. Silveirinha, A. Alù, and N. Engheta, “Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation,” Phys. Rev. B 78(7), 075107 (2008).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

S. Mühlig, M. Farhat, C. Rockstuhl, and F. Lederer, “Cloaking dielectric spherical objects by a shell of metallic nanoparticles,” Phys. Rev. B 83(19), 195116 (2011).
[Crossref]

A. S. Shalin, P. Ginzburg, A. A. Orlov, I. Iorsh, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials,” Phys. Rev. B 91(12), 125426 (2015).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (4)

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[Crossref] [PubMed]

M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of epsilon-negative rods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4), 046612 (2006).
[Crossref] [PubMed]

O. Levy, “Dielectric response and electro-optical effects in suspensions of anisotropic particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 011404 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (7)

R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett. 102(12), 127405 (2009).
[Crossref] [PubMed]

A.-P. Hynninen and M. Dijkstra, “Phase diagram of dipolar hard and soft spheres: manipulation of colloidal crystal structures by an external field,” Phys. Rev. Lett. 94(13), 138303 (2005).
[Crossref] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[Crossref] [PubMed]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sci. Rep. (3)

S. Mühlig, A. Cunningham, J. Dintinger, M. Farhat, S. B. Hasan, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, “A self-assembled three-dimensional cloak in the visible,” Sci. Rep. 3, 2328 (2013).
[Crossref] [PubMed]

Y. Xu, C. T. Chan, and H. Chen, “Goos-Hänchen effect in epsilon-near-zero metamaterials,” Sci. Rep. 5, 8681 (2015).
[Crossref] [PubMed]

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5, 7892 (2015).
[Crossref] [PubMed]

Science (4)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Soft Matter (1)

Z. Su, J. Yin, Y. Guan, and X. Zhao, “Electrically tunable negative refraction in core/shell-structured nanorod fluids,” Soft Matter 10(39), 7696–7704 (2014).
[Crossref] [PubMed]

Subsurf. Sens. Technol. Appl. (1)

A. Sihvola, “Mixing rules with complex dielectric coefficients,” Subsurf. Sens. Technol. Appl. 1(4), 393–415 (2000).
[Crossref]

Other (1)

O. D. Miller, W. Qiu, J. D. Joannopoulos, and S. G. Johnson, “Comment on” A self-assembled three-dimensional cloak in the visible” in Scientific Reports 3, 2328,” arXiv preprint arXiv:1310.1503 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) The schematic structure of proposed fluid system containing gold nanorods without an external electric field; (b) The calculated effective permittivity of the fluid system when the gold nanorods is randomly dispersed; (c) The distribution of Ex when a PEC scattering object placed in the fluid at 474 THz based on EMT simulation.
Fig. 2
Fig. 2 (a) The schematic structure of proposed fluid system containing gold nanorods with an external electric field applied along z axis; (b) The calculated effective permittivity of the fluid system when the gold nanorods orientate along the direction of external electric field; (c) The unit cell used in retrieval method; (d) The calculated effective permittivity along z axis through retrieval method.
Fig. 3
Fig. 3 The distribution of Ex based on EMT simulation when a vertically polarized dipole is placed inside fluid at 400 THz (a), 474 THz (b), and 540 THz (c); The distribution of Ex based on 3D finite element simulation when a vertically polarized dipole is placed inside fluid at 400 THz (d), 474 THz (e), and 540 THz (f). The white cone represents the power flow and both sides of the fluid are set as air.
Fig. 4
Fig. 4 The distribution of Ex based on EMT simulation (a, d, g) and 3D finite element simulation (b, e, h) and scattering cross-section (c, f, i) when different shape of PEC object is placed in the fluid: a PEC cycle object with diameter 720 nm (a, b, c), a PEC square object with side length 720 nm (d, e, f), and a PEC equilateral triangle object with side length 720 nm (g, h, i).
Fig. 5
Fig. 5 The distribution of Ex based on EMT simulation (a) and 3D finite element simulation (b) when a common dielectric object with ε = 3.0 placed in the fluid system; The distribution of Ex based on EMT simulation (c) and 3D finite element simulation (d) when a non-electrically small object with the diameter d = 360 nm placed in the fluid system.
Fig. 6
Fig. 6 The electric field distribution when electric field component of incident wave is along x axis (a) and y axis (b) based on EMT simulation. Coordinate unit is micron.
Fig. 7
Fig. 7 The distribution of Ex based on EMT simulation when a vertically polarized dipole is placed in the fluid at 474 THz and the imaginary part of ε zz is set as 0.5i (a), 1i (b), 2.5i (c), and 5i (d).
Fig. 8
Fig. 8 (a) The calculated effective permittivity of the fluid system containing gold nanorods with different depolarization factors; (b-d) The distribution of Ex when a PEC object placed in the fluid system containing gold nanorods with different depolarization factors at 409 THz (b), 482 THz (c), and 538 THz (d).
Fig. 9
Fig. 9 (a) The dependence of order parameter S on the strength of external electric field; (b) The dependence of effective permittivity of fluid system on the strength of external electric field; (c-e) The distribution of Ex at 474 THz when a PEC object placed in the fluid system which is subjected to different strength of external electric field: 0 V/μm (c), 1.5 V/μm (d), and 4 V/μm (e).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ε iso = ε d [1+ p 3 i=,, ε g ε d ε d + N i ( ε g ε d ) 1 p 3 i=,, ( ε g ε d ) N i ε d + N i ( ε g ε d ) ].
ε , = ε d [1+ p( ε g ε d ) ε d + N , (1p)( ε g ε d ) ].
E x = H 0 ( 1 ) ( k 0 r e ) x 2 ε zz + z 2 ε xx [ k 0 r e H 0 ( 1 ) ( k 0 r e ) H 1 ( 1 ) ( k 0 r e )] k 0 r e 3 ε xx .
E x i1 ε xx π e i k 0 z ε xx ( k 0 z ε xx ) 1/2 .
ε = ε d [1+ i=1 4 p i ( ε g ε d ) ε d + N i ( ε g ε d ) 1 i=1 4 p i ( ε g ε d ) N i ε d + N i ( ε g ε d ) ].
S= 1 2 (3< cos 2 θ>1).
U= 1 2 Δα E 2 cos 2 θ.
< cos 2 θ>= exp( U k B T ) cos 2 θdΩ exp( U k B T )dΩ .
α xx = α yy = 1 2 [ α + α ( α α < cos 2 θ> )].
α zz = α +( α α )< cos 2 θ>.
κ xx = κ yy = 1 2 [ κ + κ ( κ κ < cos 2 θ>)].
κ zz = κ +( κ κ )< cos 2 θ>.
ε zz,xx = ε d + p α xx,zz 1p+p κ zz,xx .

Metrics