Abstract

Laser filamentation is responsible for the deposition of a significant part of the laser pulse energy in the propagation medium. We found that using terawatt laser pulses and moderately strong focusing conditions in air, more than 60 % of the pulses energy is transferred to the medium, eventually degrading into heat. This results in a strong hydrodynamic reaction of air with the generation of shock waves and associated underdense channels for each of the generated multiple filaments. In the focal zone, where filaments are close to each other, these discrete channels eventually merge to form a single cylindrical low-density tube over a ~ 1 µs timescale. We measured the maximum lineic deposited energy to be more than 1 J·m1.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tightly focused femtosecond laser pulse in air: from filamentation to breakdown

Xiao-Long Liu, Xin Lu, Xun Liu, Ting-Ting Xi, Feng Liu, Jing-Long Ma, and Jie Zhang
Opt. Express 18(25) 26007-26017 (2010)

Long-range detection and length estimation of light filaments using extra-attenuation of terawatt femtosecond laser pulses propagating in air

Qi Luo, Jin Yu, S. Abbas Hosseini, Weiwei Liu, Bruno Ferland, Gilles Roy, and See Leang Chin
Appl. Opt. 44(3) 391-397 (2005)

Pulse chirping and ionization of O2 molecules for the filamentation of femtosecond laser pulses in air

Rachel Nuter and Luc Bergé
J. Opt. Soc. Am. B 23(5) 874-884 (2006)

References

  • View by:
  • |
  • |
  • |

  1. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
    [Crossref]
  2. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, n2, and o2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 650–660 (1997).
    [Crossref]
  3. T. Seideman, “On the dynamics of rotationally broad, spatially aligned wave packets,” J. Chem. Phys. 115, 5965–5973 (2001).
    [Crossref]
  4. D. V. Kartashov, A. V. Kirsanov, A. M. Kiselev, A. N. Stepanov, N. N. Bochkarev, Y. N. Ponomarev, and B. A. Tikhomirov, “Nonlinear absorption of intense femtosecond laser radiation in air,” Opt. Express 14, 7552–7558 (2006).
    [Crossref] [PubMed]
  5. S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun. 181, 123–127 (2000).
    [Crossref]
  6. Y.-H. Chen, S. Varma, A. York, and H. M. Milchberg, “Single-shot, space- and time-resolved measurement of rotational wavepacket revivals in h2, d2, n2, o2, and n2o,” Opt. Express 15, 11341–11357 (2007).
    [Crossref] [PubMed]
  7. Y.-H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21, 4740–4751 (2013).
    [Crossref] [PubMed]
  8. G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. B: At. Mol. Opt. 48, 094009 (2015).
    [Crossref]
  9. N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high-power optical waveguides in air,” Phys. Rev. X 4, 011027 (2014).
  10. O. Lahav, L. Levi, I. Orr, R. A. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90, 021801 (2014).
    [Crossref]
  11. G. Dufour, B. Fornet, and F. Rogier, “Numerical modelling of supersonic flow actuated by laser-induced plasma,” Int. J. Aerodynamics 3, 122 (2013).
    [Crossref]
  12. F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
    [Crossref]
  13. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
    [Crossref]
  14. G. Fibich, S. Eisenmann, B. Ilan, Y. Erlich, M. Fraenkel, Z. Henis, A. Gaeta, and A. Zigler, “Self-focusing distance of very high power laser pulses,” Opt. Express 13, 5897–5903 (2005).
    [Crossref] [PubMed]
  15. J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, and J.-P. Wolf, “Sonographic probing of laser filaments in air,” Appl. Opt. 42, 7117–7120 (2003).
    [Crossref]
  16. G. Point, “Energy deposition in air from femtosecond laser filamentation for the control of high voltage spark discharges,” Ph.D. thesis, Ecole Polytechnique (2015).
  17. A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
    [Crossref]
  18. Y. Brelet, A. Jarnac, J. Carbonnel, Y.-B. André, A. Mysyrowicz, A. Houard, D. Fattaccioli, R. Guillermin, and J.-P. Sessarego, “Underwater acoustic signals induced by intense ultrashort laser pulse,” J. Acoust. Soc. Am. 137, 288–292 (2015).
    [Crossref]
  19. P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18, 21504–21510 (2010).
    [Crossref] [PubMed]
  20. G. Point, Y. Brelet, L. Arantchouk, J. Carbonnel, B. Prade, A. Mysyrowicz, and A. Houard, “Two-color interferometer for the study of laser filamentation triggered electric discharges in air,” Rev. Sci. Instrum. 85, 123101 (2014).
    [Crossref]
  21. G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in air,” Phys. Rev. Lett. 112, 223902 (2014).
    [Crossref] [PubMed]
  22. E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. B: At. Mol. Opt. 48, 094011 (2015).
    [Crossref]
  23. F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
    [Crossref]
  24. P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82, 013805 (2010).
    [Crossref]
  25. J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39, 1290 (2014).
    [Crossref] [PubMed]
  26. K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear- to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
    [Crossref] [PubMed]

2015 (3)

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. B: At. Mol. Opt. 48, 094009 (2015).
[Crossref]

Y. Brelet, A. Jarnac, J. Carbonnel, Y.-B. André, A. Mysyrowicz, A. Houard, D. Fattaccioli, R. Guillermin, and J.-P. Sessarego, “Underwater acoustic signals induced by intense ultrashort laser pulse,” J. Acoust. Soc. Am. 137, 288–292 (2015).
[Crossref]

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. B: At. Mol. Opt. 48, 094011 (2015).
[Crossref]

2014 (6)

G. Point, Y. Brelet, L. Arantchouk, J. Carbonnel, B. Prade, A. Mysyrowicz, and A. Houard, “Two-color interferometer for the study of laser filamentation triggered electric discharges in air,” Rev. Sci. Instrum. 85, 123101 (2014).
[Crossref]

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in air,” Phys. Rev. Lett. 112, 223902 (2014).
[Crossref] [PubMed]

K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear- to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
[Crossref] [PubMed]

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high-power optical waveguides in air,” Phys. Rev. X 4, 011027 (2014).

O. Lahav, L. Levi, I. Orr, R. A. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90, 021801 (2014).
[Crossref]

J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39, 1290 (2014).
[Crossref] [PubMed]

2013 (2)

Y.-H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21, 4740–4751 (2013).
[Crossref] [PubMed]

G. Dufour, B. Fornet, and F. Rogier, “Numerical modelling of supersonic flow actuated by laser-induced plasma,” Int. J. Aerodynamics 3, 122 (2013).
[Crossref]

2010 (2)

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82, 013805 (2010).
[Crossref]

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18, 21504–21510 (2010).
[Crossref] [PubMed]

2008 (1)

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[Crossref]

2007 (2)

2006 (2)

D. V. Kartashov, A. V. Kirsanov, A. M. Kiselev, A. N. Stepanov, N. N. Bochkarev, Y. N. Ponomarev, and B. A. Tikhomirov, “Nonlinear absorption of intense femtosecond laser radiation in air,” Opt. Express 14, 7552–7558 (2006).
[Crossref] [PubMed]

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

2005 (1)

2003 (1)

2001 (1)

T. Seideman, “On the dynamics of rotationally broad, spatially aligned wave packets,” J. Chem. Phys. 115, 5965–5973 (2001).
[Crossref]

2000 (2)

S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun. 181, 123–127 (2000).
[Crossref]

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

1999 (1)

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[Crossref]

1997 (1)

André, Y.-B.

Y. Brelet, A. Jarnac, J. Carbonnel, Y.-B. André, A. Mysyrowicz, A. Houard, D. Fattaccioli, R. Guillermin, and J.-P. Sessarego, “Underwater acoustic signals induced by intense ultrashort laser pulse,” J. Acoust. Soc. Am. 137, 288–292 (2015).
[Crossref]

Arantchouk, L.

G. Point, Y. Brelet, L. Arantchouk, J. Carbonnel, B. Prade, A. Mysyrowicz, and A. Houard, “Two-color interferometer for the study of laser filamentation triggered electric discharges in air,” Rev. Sci. Instrum. 85, 123101 (2014).
[Crossref]

Arnold, C. L.

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82, 013805 (2010).
[Crossref]

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18, 21504–21510 (2010).
[Crossref] [PubMed]

Audouard, E.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[Crossref]

Bagchi, S.

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18, 21504–21510 (2010).
[Crossref] [PubMed]

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82, 013805 (2010).
[Crossref]

Baudelet, M.

K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear- to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
[Crossref] [PubMed]

Becker, A.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

Birnbaum, R.

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high-power optical waveguides in air,” Phys. Rev. X 4, 011027 (2014).

Bochkarev, N. N.

Bonse, J.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[Crossref]

Boutou, V.

Brelet, Y.

Y. Brelet, A. Jarnac, J. Carbonnel, Y.-B. André, A. Mysyrowicz, A. Houard, D. Fattaccioli, R. Guillermin, and J.-P. Sessarego, “Underwater acoustic signals induced by intense ultrashort laser pulse,” J. Acoust. Soc. Am. 137, 288–292 (2015).
[Crossref]

G. Point, Y. Brelet, L. Arantchouk, J. Carbonnel, B. Prade, A. Mysyrowicz, and A. Houard, “Two-color interferometer for the study of laser filamentation triggered electric discharges in air,” Rev. Sci. Instrum. 85, 123101 (2014).
[Crossref]

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in air,” Phys. Rev. Lett. 112, 223902 (2014).
[Crossref] [PubMed]

Carbonnel, J.

Y. Brelet, A. Jarnac, J. Carbonnel, Y.-B. André, A. Mysyrowicz, A. Houard, D. Fattaccioli, R. Guillermin, and J.-P. Sessarego, “Underwater acoustic signals induced by intense ultrashort laser pulse,” J. Acoust. Soc. Am. 137, 288–292 (2015).
[Crossref]

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in air,” Phys. Rev. Lett. 112, 223902 (2014).
[Crossref] [PubMed]

G. Point, Y. Brelet, L. Arantchouk, J. Carbonnel, B. Prade, A. Mysyrowicz, and A. Houard, “Two-color interferometer for the study of laser filamentation triggered electric discharges in air,” Rev. Sci. Instrum. 85, 123101 (2014).
[Crossref]

Chen, Y.-H.

Cheng, Y.-H.

Chien, C.-Y.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

Chin, S. L.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

Cohen, O.

O. Lahav, L. Levi, I. Orr, R. A. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90, 021801 (2014).
[Crossref]

Comtois, D.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

Couairon, A.

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. B: At. Mol. Opt. 48, 094009 (2015).
[Crossref]

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in air,” Phys. Rev. Lett. 112, 223902 (2014).
[Crossref] [PubMed]

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82, 013805 (2010).
[Crossref]

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18, 21504–21510 (2010).
[Crossref] [PubMed]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Desparois, A.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

Dufour, G.

G. Dufour, B. Fornet, and F. Rogier, “Numerical modelling of supersonic flow actuated by laser-induced plasma,” Int. J. Aerodynamics 3, 122 (2013).
[Crossref]

Durand, M.

K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear- to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
[Crossref] [PubMed]

Eisenmann, S.

Erlich, Y.

Fattaccioli, D.

Y. Brelet, A. Jarnac, J. Carbonnel, Y.-B. André, A. Mysyrowicz, A. Houard, D. Fattaccioli, R. Guillermin, and J.-P. Sessarego, “Underwater acoustic signals induced by intense ultrashort laser pulse,” J. Acoust. Soc. Am. 137, 288–292 (2015).
[Crossref]

Favre, C.

Fibich, G.

Fornet, B.

G. Dufour, B. Fornet, and F. Rogier, “Numerical modelling of supersonic flow actuated by laser-induced plasma,” Int. J. Aerodynamics 3, 122 (2013).
[Crossref]

Fraenkel, M.

Franco, M.

S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun. 181, 123–127 (2000).
[Crossref]

Franco, M. A.

Gaeta, A.

Geffroy, S.

Grillon, G.

Guillermin, R.

Y. Brelet, A. Jarnac, J. Carbonnel, Y.-B. André, A. Mysyrowicz, A. Houard, D. Fattaccioli, R. Guillermin, and J.-P. Sessarego, “Underwater acoustic signals induced by intense ultrashort laser pulse,” J. Acoust. Soc. Am. 137, 288–292 (2015).
[Crossref]

Henis, Z.

Hertel, I. V.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[Crossref]

Houard, A.

Y. Brelet, A. Jarnac, J. Carbonnel, Y.-B. André, A. Mysyrowicz, A. Houard, D. Fattaccioli, R. Guillermin, and J.-P. Sessarego, “Underwater acoustic signals induced by intense ultrashort laser pulse,” J. Acoust. Soc. Am. 137, 288–292 (2015).
[Crossref]

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. B: At. Mol. Opt. 48, 094009 (2015).
[Crossref]

G. Point, Y. Brelet, L. Arantchouk, J. Carbonnel, B. Prade, A. Mysyrowicz, and A. Houard, “Two-color interferometer for the study of laser filamentation triggered electric discharges in air,” Rev. Sci. Instrum. 85, 123101 (2014).
[Crossref]

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in air,” Phys. Rev. Lett. 112, 223902 (2014).
[Crossref] [PubMed]

Ilan, B.

Jarnac, A.

Y. Brelet, A. Jarnac, J. Carbonnel, Y.-B. André, A. Mysyrowicz, A. Houard, D. Fattaccioli, R. Guillermin, and J.-P. Sessarego, “Underwater acoustic signals induced by intense ultrashort laser pulse,” J. Acoust. Soc. Am. 137, 288–292 (2015).
[Crossref]

Jhajj, N.

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. B: At. Mol. Opt. 48, 094011 (2015).
[Crossref]

J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39, 1290 (2014).
[Crossref] [PubMed]

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high-power optical waveguides in air,” Phys. Rev. X 4, 011027 (2014).

Y.-H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21, 4740–4751 (2013).
[Crossref] [PubMed]

Johnston, T. W.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

Jukna, V.

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in air,” Phys. Rev. Lett. 112, 223902 (2014).
[Crossref] [PubMed]

Kaminer, I.

O. Lahav, L. Levi, I. Orr, R. A. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90, 021801 (2014).
[Crossref]

Kartashov, D. V.

Kasparian, J.

Kieffer, J.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

Kiran, P. P.

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82, 013805 (2010).
[Crossref]

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18, 21504–21510 (2010).
[Crossref] [PubMed]

Kirsanov, A. V.

Kiselev, A. M.

Kolesik, M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[Crossref]

Krishnan, S. R.

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18, 21504–21510 (2010).
[Crossref] [PubMed]

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82, 013805 (2010).
[Crossref]

Kumar, G. R.

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82, 013805 (2010).
[Crossref]

P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18, 21504–21510 (2010).
[Crossref] [PubMed]

La Fontaine, B.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

Lahav, O.

O. Lahav, L. Levi, I. Orr, R. A. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90, 021801 (2014).
[Crossref]

Levi, L.

O. Lahav, L. Levi, I. Orr, R. A. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90, 021801 (2014).
[Crossref]

Lim, K.

K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear- to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
[Crossref] [PubMed]

Liu, W.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

Liu, Y.

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in air,” Phys. Rev. Lett. 112, 223902 (2014).
[Crossref] [PubMed]

Mauclair, C.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[Crossref]

Mercure, H. P.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

Mermillod-Blondin, A.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[Crossref]

Milchberg, H. M.

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. B: At. Mol. Opt. 48, 094011 (2015).
[Crossref]

J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39, 1290 (2014).
[Crossref] [PubMed]

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high-power optical waveguides in air,” Phys. Rev. X 4, 011027 (2014).

Y.-H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21, 4740–4751 (2013).
[Crossref] [PubMed]

Y.-H. Chen, S. Varma, A. York, and H. M. Milchberg, “Single-shot, space- and time-resolved measurement of rotational wavepacket revivals in h2, d2, n2, o2, and n2o,” Opt. Express 15, 11341–11357 (2007).
[Crossref] [PubMed]

Milián, C.

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. B: At. Mol. Opt. 48, 094009 (2015).
[Crossref]

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in air,” Phys. Rev. Lett. 112, 223902 (2014).
[Crossref] [PubMed]

Mlejnek, M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[Crossref]

Moloney, J. V.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[Crossref]

Mondelain, D.

Mysyrowicz, A.

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. B: At. Mol. Opt. 48, 094009 (2015).
[Crossref]

Y. Brelet, A. Jarnac, J. Carbonnel, Y.-B. André, A. Mysyrowicz, A. Houard, D. Fattaccioli, R. Guillermin, and J.-P. Sessarego, “Underwater acoustic signals induced by intense ultrashort laser pulse,” J. Acoust. Soc. Am. 137, 288–292 (2015).
[Crossref]

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in air,” Phys. Rev. Lett. 112, 223902 (2014).
[Crossref] [PubMed]

G. Point, Y. Brelet, L. Arantchouk, J. Carbonnel, B. Prade, A. Mysyrowicz, and A. Houard, “Two-color interferometer for the study of laser filamentation triggered electric discharges in air,” Rev. Sci. Instrum. 85, 123101 (2014).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun. 181, 123–127 (2000).
[Crossref]

E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, n2, and o2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 650–660 (1997).
[Crossref]

Nemirovsky, J.

O. Lahav, L. Levi, I. Orr, R. A. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90, 021801 (2014).
[Crossref]

Nemirovsky, R. A.

O. Lahav, L. Levi, I. Orr, R. A. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90, 021801 (2014).
[Crossref]

Nibbering, E. T. J.

Orr, I.

O. Lahav, L. Levi, I. Orr, R. A. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90, 021801 (2014).
[Crossref]

Palastro, J. P.

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. B: At. Mol. Opt. 48, 094011 (2015).
[Crossref]

Pepin, H.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

Point, G.

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. B: At. Mol. Opt. 48, 094009 (2015).
[Crossref]

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in air,” Phys. Rev. Lett. 112, 223902 (2014).
[Crossref] [PubMed]

G. Point, Y. Brelet, L. Arantchouk, J. Carbonnel, B. Prade, A. Mysyrowicz, and A. Houard, “Two-color interferometer for the study of laser filamentation triggered electric discharges in air,” Rev. Sci. Instrum. 85, 123101 (2014).
[Crossref]

G. Point, “Energy deposition in air from femtosecond laser filamentation for the control of high voltage spark discharges,” Ph.D. thesis, Ecole Polytechnique (2015).

Ponomarev, Y. N.

Prade, B.

G. Point, Y. Brelet, L. Arantchouk, J. Carbonnel, B. Prade, A. Mysyrowicz, and A. Houard, “Two-color interferometer for the study of laser filamentation triggered electric discharges in air,” Rev. Sci. Instrum. 85, 123101 (2014).
[Crossref]

S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun. 181, 123–127 (2000).
[Crossref]

Prade, B. S.

Richardson, M.

K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear- to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
[Crossref] [PubMed]

Rizk, F. A.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

Rogier, F.

G. Dufour, B. Fornet, and F. Rogier, “Numerical modelling of supersonic flow actuated by laser-induced plasma,” Int. J. Aerodynamics 3, 122 (2013).
[Crossref]

Rosenfeld, A.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[Crossref]

Rosenthal, E. W.

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. B: At. Mol. Opt. 48, 094011 (2015).
[Crossref]

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high-power optical waveguides in air,” Phys. Rev. X 4, 011027 (2014).

J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39, 1290 (2014).
[Crossref] [PubMed]

Salmon, E.

Segev, M.

O. Lahav, L. Levi, I. Orr, R. A. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90, 021801 (2014).
[Crossref]

Seideman, T.

T. Seideman, “On the dynamics of rotationally broad, spatially aligned wave packets,” J. Chem. Phys. 115, 5965–5973 (2001).
[Crossref]

Sessarego, J.-P.

Y. Brelet, A. Jarnac, J. Carbonnel, Y.-B. André, A. Mysyrowicz, A. Houard, D. Fattaccioli, R. Guillermin, and J.-P. Sessarego, “Underwater acoustic signals induced by intense ultrashort laser pulse,” J. Acoust. Soc. Am. 137, 288–292 (2015).
[Crossref]

Simard, P. T.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

Stepanov, A. N.

Stoian, R.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[Crossref]

Théberge, F.

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

Tikhomirov, B. A.

Tzortzakis, S.

S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun. 181, 123–127 (2000).
[Crossref]

Varma, S.

Vidal, F.

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

Wahlstrand, J. K.

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. B: At. Mol. Opt. 48, 094011 (2015).
[Crossref]

J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39, 1290 (2014).
[Crossref] [PubMed]

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high-power optical waveguides in air,” Phys. Rev. X 4, 011027 (2014).

Y.-H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21, 4740–4751 (2013).
[Crossref] [PubMed]

Wolf, J.-P.

Wright, E. M.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[Crossref]

York, A.

Yu, J.

Zahedpour, S.

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. B: At. Mol. Opt. 48, 094011 (2015).
[Crossref]

J. K. Wahlstrand, N. Jhajj, E. W. Rosenthal, S. Zahedpour, and H. M. Milchberg, “Direct imaging of the acoustic waves generated by femtosecond filaments in air,” Opt. Lett. 39, 1290 (2014).
[Crossref] [PubMed]

Zigler, A.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[Crossref]

IEEE Trans. Plasma Sci. (1)

F. Vidal, D. Comtois, C.-Y. Chien, A. Desparois, B. La Fontaine, T. W. Johnston, J. Kieffer, H. P. Mercure, H. Pepin, and F. A. Rizk, “Modeling the triggering of streamers in air by ultrashort laser pulses,” IEEE Trans. Plasma Sci. 28, 418–433 (2000).
[Crossref]

Int. J. Aerodynamics (1)

G. Dufour, B. Fornet, and F. Rogier, “Numerical modelling of supersonic flow actuated by laser-induced plasma,” Int. J. Aerodynamics 3, 122 (2013).
[Crossref]

J. Acoust. Soc. Am. (1)

Y. Brelet, A. Jarnac, J. Carbonnel, Y.-B. André, A. Mysyrowicz, A. Houard, D. Fattaccioli, R. Guillermin, and J.-P. Sessarego, “Underwater acoustic signals induced by intense ultrashort laser pulse,” J. Acoust. Soc. Am. 137, 288–292 (2015).
[Crossref]

J. Chem. Phys. (1)

T. Seideman, “On the dynamics of rotationally broad, spatially aligned wave packets,” J. Chem. Phys. 115, 5965–5973 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B: At. Mol. Opt. (2)

G. Point, C. Milián, A. Couairon, A. Mysyrowicz, and A. Houard, “Generation of long-lived underdense channels using femtosecond filamentation in air,” J. Phys. B: At. Mol. Opt. 48, 094009 (2015).
[Crossref]

E. W. Rosenthal, J. P. Palastro, N. Jhajj, S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, “Sensitivity of propagation and energy deposition in femtosecond filamentation to the nonlinear refractive index,” J. Phys. B: At. Mol. Opt. 48, 094011 (2015).
[Crossref]

Opt. Commun. (1)

S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun. 181, 123–127 (2000).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Phys. Rev. A (2)

O. Lahav, L. Levi, I. Orr, R. A. Nemirovsky, J. Nemirovsky, I. Kaminer, M. Segev, and O. Cohen, “Long-lived waveguides and sound-wave generation by laser filamentation,” Phys. Rev. A 90, 021801 (2014).
[Crossref]

P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, “Focal dynamics of multiple filaments: Microscopic imaging and reconstruction,” Phys. Rev. A 82, 013805 (2010).
[Crossref]

Phys. Rev. E (1)

F. Théberge, W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006).
[Crossref]

Phys. Rev. Lett. (2)

G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “Superfilamentation in air,” Phys. Rev. Lett. 112, 223902 (2014).
[Crossref] [PubMed]

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83, 2938–2941 (1999).
[Crossref]

Phys. Rev. X (1)

N. Jhajj, E. W. Rosenthal, R. Birnbaum, J. K. Wahlstrand, and H. M. Milchberg, “Demonstration of long-lived high-power optical waveguides in air,” Phys. Rev. X 4, 011027 (2014).

Rev. Sci. Instrum. (1)

G. Point, Y. Brelet, L. Arantchouk, J. Carbonnel, B. Prade, A. Mysyrowicz, and A. Houard, “Two-color interferometer for the study of laser filamentation triggered electric discharges in air,” Rev. Sci. Instrum. 85, 123101 (2014).
[Crossref]

Sci. Rep. (1)

K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear- to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
[Crossref] [PubMed]

Other (1)

G. Point, “Energy deposition in air from femtosecond laser filamentation for the control of high voltage spark discharges,” Ph.D. thesis, Ecole Polytechnique (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Evolution of the total (red circles) and relative (blue squares) deposited energy with input energy from the filamentation of a 50 fs laser pulse at 800 nm focused at f/30. Error bars correspond to a confidence interval of one standard deviation evaluated over 500 shots.
Fig. 2
Fig. 2 Evolution of the relative deposited energy with pulse duration in the case of positive (red circles) and negative chirp (blue squares). Filamentation was generated by a 164 mJ laser pulse at 800 nm focused at f/30. Error bars correspond to a confidence interval of one standard deviation evaluated over 500 shots.
Fig. 3
Fig. 3 Evolution of the relative deposited energy with input energy using a f/3 (blue squares), a f/30 (red circles) or a f/60 focusing (green triangles). Filamentation was generated by a 50 fs laser pulse at 800 nm. Error bars correspond to a confidence interval of one standard deviation evaluated over 500 shots.
Fig. 4
Fig. 4 (a): line-integrated air density profiles at z = 1 m after the focusing lens (linear focus) for two different delays, displaying self-symmetrization. (b): radial air density profiles extracted after channel symmetrization at z = 1 m. (c): evolution of the shock wave radius rSW (blue circles) and shock wave speed uSW (red squares). Filamentation was generated by a 165 mJ, 50 fs laser pulse at 800 nm focused at f/30.
Fig. 5
Fig. 5 Line-integrated air density profiles recorded at z = 0.96 m after the focusing lens and for different times. Filamentation was generated by a 165 mJ, 50 fs laser pulse at 800 nm focused at f/30.
Fig. 6
Fig. 6 (a): example of microphone signal recorded at z = 80 cm and 30 mm away from the laser beam center, displaying only a single large overpressure peak followed by a longer underpressure phase. (b): spatial evolution of the lineic deposited energy from a 165 mJ, 50 fs laser pulse at 800 nm focused at f/30. This curve was obtained from sonographic measurements of the bundle acoustic emission and by equating the z-integral of the corresponding scan with total deposited energy. Error bars correspond to a confidence interval of one standard deviation evaluated over 200 shots.
Fig. 7
Fig. 7 Plasma luminescence from the first negative system of N 2 + at 391 nm (blue squares) and lineic energy deposition profile (red circles) along the multifilament bundle. Error bars correspond to a confidence interval of one standard deviation evaluated over 200 shots.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ U = c v n 0 3 ( T ( r ) T a i r ) d 3 r = c v k B 3 ( p ( r ) p a i r ) d 3 r ,
Δ U π c v k B ( p max ( z ) p a i r ) r 0 ( z ) 2 d z ,
Δ U ( p max ( z ) p a i r ) d z .
L ( z ) d z N e ,
L ( z ) 2 n e ( r , θ , z ) r d r d θ .
Δ U z | max = 2 n e , max ( r , z max ) U O 2 r d r d θ n e , max ( z max ) U O 2 π r 0 2 ,
Δ U z | max ~ 15 mJ cm 1 ,

Metrics