Abstract

Conventionally, reading and writing of data holograms utilizes a fraction of the light power because of a trade off in write and read efficiencies. This system constraint can be mitigated by applying a resonator cavity. Cavities enable more efficient use of the available light leading to enhanced read and write data rates with no additional energy cost. This enhancement is inversely related to diffraction efficiency, so these techniques work well for large capacity holographic data storage having low diffraction efficiency. The enhancement in write data transfer rate is evaluated by writing plane wave holograms and image bearing holograms in Fe:LiNbO3 with a 532 nm wavelength laser. We confirmed 1.2 times enhancement in write data rate, out of a 1.4 theoretical maximum for materials absorption of 16%.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cavity-enhanced eigenmode and angular hybrid multiplexing in holographic data storage systems

Bo E. Miller and Yuzuru Takashima
Opt. Express 24(26) 29465-29476 (2016)

Holographic data storage in a DX-center material

I. R. Redmond, R. A. Linke, E. Chuang, and D. Psaltis
Opt. Lett. 22(15) 1189-1191 (1997)

Recording media that exhibit high dynamic range for digital holographic data storage

Lisa Dhar, Arturo Hale, Howard E. Katz, Marcia L. Schilling, Melinda G. Schnoes, and Fred C. Schilling
Opt. Lett. 24(7) 487-489 (1999)

References

  • View by:
  • |
  • |
  • |

  1. D. Clark, “Startups Dash Into Hot Data-Storage Sector,” http://www.wsj.com/articles/startups-dash-into-hot-data-storage-sector-1441409495 .
  2. J. Verge, “Sony Acquires Cold Storage Blu-Ray Innovator Optical Archive,” http://www.datacenterknowledge.com/archives/2015/05/27/sony-acquires-facebook-born-startup-repurposes-blu-rays-cold-storage/ .
  3. “TCO long-term archiving | DISC archiving systems/Blu-ray optical archival storage,” http://www.disc-group.com/technology/archive-requirements/ .
  4. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44(16), 3197–3207 (2005).
    [Crossref] [PubMed]
  5. I. Ichimura, K. Saito, T. Yamasaki, and K. Osato, “Proposal for a multilayer read-only-memory optical disk structure,” Appl. Opt. 45(8), 1794–1803 (2006).
    [Crossref] [PubMed]
  6. K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: science fiction or science fact,” Proc. SPIE 9201, 920102 (2014).
    [Crossref]
  7. “Blu-ray.com - Blu-ray FAQ,” http://www.blu-ray.com/faq/#bluray_speed .
  8. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18(11), 915–917 (1993).
    [Crossref] [PubMed]
  9. L. d’Auria, J. P. Huignard, C. Slezak, and E. Spitz, “Experimental holographic read-write memory using 3-d storage,” Appl. Opt. 13(4), 808–818 (1974).
    [Crossref] [PubMed]
  10. N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Control of angular intervals for angle-multiplexed holographic memory,” Jpn. J. Appl. Phys. 48(3), 03A029 (2009).
    [Crossref]
  11. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20(7), 782–784 (1995).
    [Crossref] [PubMed]
  12. Y. Jeong and B. Lee, “Effect of a random pattern through a multimode-fiber bundle on angular and spatial selectivity in volume holograms: experiments and theory,” Appl. Opt. 41(20), 4085–4091 (2002).
    [Crossref] [PubMed]
  13. Y. H. Kang, K. H. Kim, and B. Lee, “Angular and speckle multiplexing of photorefractive holograms by use of fiber speckle patterns,” Appl. Opt. 37(29), 6969–6972 (1998).
    [Crossref] [PubMed]
  14. Y. H. Kang, K. H. Kim, and B. Lee, “Volume hologram scheme using optical fiber for spatial multiplexing,” Opt. Lett. 22(10), 739–741 (1997).
    [Crossref] [PubMed]
  15. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2-3), 171–176 (1991).
    [Crossref]
  16. G. Barbastathis and D. Psaltis, “Volume holographic multiplexing methods,” in Holographic Data Storage, D. H. J. Coufal, P. D. Psaltis, and P. G. T. Sincerbox, eds. (Springer Berlin Heidelberg, 2000), pp. 21, 57–59.
  17. M. R. Ayres, Signal Modulation for Holographic Memories (ProQuest, 2007), p 252.
  18. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21(12), 896–898 (1996).
    [Crossref] [PubMed]
  19. F. Askham, M. R. Ayres, and A. C. Urness, “High dynamic range holographic data storage media,” Proc. SPIE 9587, 958708 (2015).
    [Crossref]
  20. M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1 Tbit/inch 2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52(9S2), 09LD01 (2013).
  21. A. Sinha and G. Barbastathis, “Resonant holography,” Opt. Lett. 27(6), 385–387 (2002).
    [Crossref] [PubMed]
  22. H. Takahashi, T. Naito, and Y. Tomita, “Holographic recording in methacrylate photopolymer film codoped with benzyl n -butyl phthalate and silica nanoparticles,” Jpn. J. Appl. Phys. 45(6A), 5023–5026 (2006).
    [Crossref]
  23. R. T. Ingwall and D. Waldman, “Photopolymer systems,” in Holographic Data Storage, D. H. J. Coufal, P. D. Psaltis, and P. G. T. Sincerbox, eds. (Springer Berlin Heidelberg, 2000), p. 195.
  24. A. Hoskins, B. Ihas, K. Anderson, and K. Curtis, “Monocular architecture,” Jpn. J. Appl. Phys. 47(7), 5912–5914 (2008).
    [Crossref]
  25. K. Tian and G. Barbastathis, “Cross talk in resonant holographic memories,” J. Opt. Soc. Am. A 21(5), 751–756 (2004).
    [Crossref] [PubMed]
  26. B. E. Miller and Y. Takashima, “Formalization and experimental evaluation of cavity-enhanced holographic readout,” Proc. SPIE 9201, 920104 (2014).
    [Crossref]
  27. A. E. Siegman, Lasers (University Science Books, 1986), pp. 413–426, 642–648.
  28. L. Cao, Z. Zhao, H. Gu, Q. He, and G. Jin, “Enhancement of recording and readout for the photopolymer holographic disk system by using a conjugate structure,” Proc. SPIE 6827, 68270X (2007).
    [Crossref]
  29. M. Jeganathan, M. C. Bashaw, and L. Hesselink, “Evolution and propagation of grating envelopes during erasure in bulk photorefractive media,” J. Opt. Soc. Am. B 12(7), 1370 (1995).
    [Crossref]
  30. J. M. Heaton and L. Solymar, “Transient energy transfer during hologram formation in photorefractive crystals,” Opt. Acta Int. J. Opt. 32(4), 397–408 (1985).
    [Crossref]
  31. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  32. D. Maxein, J. Bückers, D. Haertle, and K. Buse, “Photorefraction in LiNbO3:Fe crystals with femtosecond pulses at 532 nm,” Appl. Phys. B 95(3), 399–405 (2009).
    [Crossref]
  33. M. R. Gleeson, J. T. Sheridan, F.-K. Bruder, T. Rölle, H. Berneth, M.-S. Weiser, and T. Fäcke, “Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model,” Opt. Express 19(27), 26325–26342 (2011).
    [Crossref] [PubMed]
  34. T. Ishii, K. Shimada, T. Hoshizawa, and Y. Takashima, “Analysis of vibration effects on holographic data storage system,” Jpn. J. Appl. Phys. 54(9S), 09MA04 (2015).
    [Crossref]
  35. K. Shimada, T. Ishii, T. Hoshizawa, and Y. Takashima, “New optical modeling and optical compensation for mechanical instabilities on holographic data storage system using time averaged holography,” Jpn. J. Appl. Phys. 54(9S), 09MA01 (2015).
    [Crossref]
  36. C. Sigel and M. L. Leonhardt, “System and method for providing gain and thresholding to a holographic data parallel recording and replication system incorporating independent angular address assignment,” U.S. patent US7187481 B1 (March 6, 2007).
  37. T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
    [Crossref]
  38. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [Crossref]

2015 (3)

F. Askham, M. R. Ayres, and A. C. Urness, “High dynamic range holographic data storage media,” Proc. SPIE 9587, 958708 (2015).
[Crossref]

T. Ishii, K. Shimada, T. Hoshizawa, and Y. Takashima, “Analysis of vibration effects on holographic data storage system,” Jpn. J. Appl. Phys. 54(9S), 09MA04 (2015).
[Crossref]

K. Shimada, T. Ishii, T. Hoshizawa, and Y. Takashima, “New optical modeling and optical compensation for mechanical instabilities on holographic data storage system using time averaged holography,” Jpn. J. Appl. Phys. 54(9S), 09MA01 (2015).
[Crossref]

2014 (2)

K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: science fiction or science fact,” Proc. SPIE 9201, 920102 (2014).
[Crossref]

B. E. Miller and Y. Takashima, “Formalization and experimental evaluation of cavity-enhanced holographic readout,” Proc. SPIE 9201, 920104 (2014).
[Crossref]

2011 (1)

2009 (1)

D. Maxein, J. Bückers, D. Haertle, and K. Buse, “Photorefraction in LiNbO3:Fe crystals with femtosecond pulses at 532 nm,” Appl. Phys. B 95(3), 399–405 (2009).
[Crossref]

2008 (1)

A. Hoskins, B. Ihas, K. Anderson, and K. Curtis, “Monocular architecture,” Jpn. J. Appl. Phys. 47(7), 5912–5914 (2008).
[Crossref]

2007 (1)

L. Cao, Z. Zhao, H. Gu, Q. He, and G. Jin, “Enhancement of recording and readout for the photopolymer holographic disk system by using a conjugate structure,” Proc. SPIE 6827, 68270X (2007).
[Crossref]

2006 (2)

H. Takahashi, T. Naito, and Y. Tomita, “Holographic recording in methacrylate photopolymer film codoped with benzyl n -butyl phthalate and silica nanoparticles,” Jpn. J. Appl. Phys. 45(6A), 5023–5026 (2006).
[Crossref]

I. Ichimura, K. Saito, T. Yamasaki, and K. Osato, “Proposal for a multilayer read-only-memory optical disk structure,” Appl. Opt. 45(8), 1794–1803 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

2002 (2)

1998 (1)

1997 (1)

1996 (1)

1995 (2)

1993 (1)

1991 (1)

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2-3), 171–176 (1991).
[Crossref]

1985 (1)

J. M. Heaton and L. Solymar, “Transient energy transfer during hologram formation in photorefractive crystals,” Opt. Acta Int. J. Opt. 32(4), 397–408 (1985).
[Crossref]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

1980 (1)

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

1974 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Anderson, K.

K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: science fiction or science fact,” Proc. SPIE 9201, 920102 (2014).
[Crossref]

A. Hoskins, B. Ihas, K. Anderson, and K. Curtis, “Monocular architecture,” Jpn. J. Appl. Phys. 47(7), 5912–5914 (2008).
[Crossref]

Askham, F.

F. Askham, M. R. Ayres, and A. C. Urness, “High dynamic range holographic data storage media,” Proc. SPIE 9587, 958708 (2015).
[Crossref]

K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: science fiction or science fact,” Proc. SPIE 9201, 920102 (2014).
[Crossref]

Ayres, M.

K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: science fiction or science fact,” Proc. SPIE 9201, 920102 (2014).
[Crossref]

Ayres, M. R.

F. Askham, M. R. Ayres, and A. C. Urness, “High dynamic range holographic data storage media,” Proc. SPIE 9587, 958708 (2015).
[Crossref]

Barbastathis, G.

Bashaw, M. C.

Berneth, H.

Bruder, F.-K.

Bückers, J.

D. Maxein, J. Bückers, D. Haertle, and K. Buse, “Photorefraction in LiNbO3:Fe crystals with femtosecond pulses at 532 nm,” Appl. Phys. B 95(3), 399–405 (2009).
[Crossref]

Burr, G. W.

Buse, K.

D. Maxein, J. Bückers, D. Haertle, and K. Buse, “Photorefraction in LiNbO3:Fe crystals with femtosecond pulses at 532 nm,” Appl. Phys. B 95(3), 399–405 (2009).
[Crossref]

Cao, L.

L. Cao, Z. Zhao, H. Gu, Q. He, and G. Jin, “Enhancement of recording and readout for the photopolymer holographic disk system by using a conjugate structure,” Proc. SPIE 6827, 68270X (2007).
[Crossref]

Couillaud, B.

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Curtis, K.

A. Hoskins, B. Ihas, K. Anderson, and K. Curtis, “Monocular architecture,” Jpn. J. Appl. Phys. 47(7), 5912–5914 (2008).
[Crossref]

D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20(7), 782–784 (1995).
[Crossref] [PubMed]

d’Auria, L.

Daiber, A. J.

Denz, C.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2-3), 171–176 (1991).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Fäcke, T.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Gleeson, M. R.

Gu, H.

L. Cao, Z. Zhao, H. Gu, Q. He, and G. Jin, “Enhancement of recording and readout for the photopolymer holographic disk system by using a conjugate structure,” Proc. SPIE 6827, 68270X (2007).
[Crossref]

Haertle, D.

D. Maxein, J. Bückers, D. Haertle, and K. Buse, “Photorefraction in LiNbO3:Fe crystals with femtosecond pulses at 532 nm,” Appl. Phys. B 95(3), 399–405 (2009).
[Crossref]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Hansch, T. W.

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

He, Q.

L. Cao, Z. Zhao, H. Gu, Q. He, and G. Jin, “Enhancement of recording and readout for the photopolymer holographic disk system by using a conjugate structure,” Proc. SPIE 6827, 68270X (2007).
[Crossref]

Heaton, J. M.

J. M. Heaton and L. Solymar, “Transient energy transfer during hologram formation in photorefractive crystals,” Opt. Acta Int. J. Opt. 32(4), 397–408 (1985).
[Crossref]

Hesselink, L.

Hoshizawa, T.

T. Ishii, K. Shimada, T. Hoshizawa, and Y. Takashima, “Analysis of vibration effects on holographic data storage system,” Jpn. J. Appl. Phys. 54(9S), 09MA04 (2015).
[Crossref]

K. Shimada, T. Ishii, T. Hoshizawa, and Y. Takashima, “New optical modeling and optical compensation for mechanical instabilities on holographic data storage system using time averaged holography,” Jpn. J. Appl. Phys. 54(9S), 09MA01 (2015).
[Crossref]

Hoskins, A.

A. Hoskins, B. Ihas, K. Anderson, and K. Curtis, “Monocular architecture,” Jpn. J. Appl. Phys. 47(7), 5912–5914 (2008).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Huignard, J. P.

Ichimura, I.

Ihas, B.

A. Hoskins, B. Ihas, K. Anderson, and K. Curtis, “Monocular architecture,” Jpn. J. Appl. Phys. 47(7), 5912–5914 (2008).
[Crossref]

Ishii, T.

T. Ishii, K. Shimada, T. Hoshizawa, and Y. Takashima, “Analysis of vibration effects on holographic data storage system,” Jpn. J. Appl. Phys. 54(9S), 09MA04 (2015).
[Crossref]

K. Shimada, T. Ishii, T. Hoshizawa, and Y. Takashima, “New optical modeling and optical compensation for mechanical instabilities on holographic data storage system using time averaged holography,” Jpn. J. Appl. Phys. 54(9S), 09MA01 (2015).
[Crossref]

Jeganathan, M.

Jeong, Y.

Jin, G.

L. Cao, Z. Zhao, H. Gu, Q. He, and G. Jin, “Enhancement of recording and readout for the photopolymer holographic disk system by using a conjugate structure,” Proc. SPIE 6827, 68270X (2007).
[Crossref]

Kang, Y. H.

Kim, K. H.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Lee, B.

Levene, M.

Maxein, D.

D. Maxein, J. Bückers, D. Haertle, and K. Buse, “Photorefraction in LiNbO3:Fe crystals with femtosecond pulses at 532 nm,” Appl. Phys. B 95(3), 399–405 (2009).
[Crossref]

McDonald, M. E.

McLeod, R. R.

Miller, B. E.

B. E. Miller and Y. Takashima, “Formalization and experimental evaluation of cavity-enhanced holographic readout,” Proc. SPIE 9201, 920104 (2014).
[Crossref]

Mok, F. H.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Naito, T.

H. Takahashi, T. Naito, and Y. Tomita, “Holographic recording in methacrylate photopolymer film codoped with benzyl n -butyl phthalate and silica nanoparticles,” Jpn. J. Appl. Phys. 45(6A), 5023–5026 (2006).
[Crossref]

Osato, K.

Pauliat, G.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2-3), 171–176 (1991).
[Crossref]

Psaltis, D.

Pu, A.

Robertson, T. L.

Rölle, T.

Roosen, G.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2-3), 171–176 (1991).
[Crossref]

Saito, K.

Sheridan, J. T.

Shimada, K.

K. Shimada, T. Ishii, T. Hoshizawa, and Y. Takashima, “New optical modeling and optical compensation for mechanical instabilities on holographic data storage system using time averaged holography,” Jpn. J. Appl. Phys. 54(9S), 09MA01 (2015).
[Crossref]

T. Ishii, K. Shimada, T. Hoshizawa, and Y. Takashima, “Analysis of vibration effects on holographic data storage system,” Jpn. J. Appl. Phys. 54(9S), 09MA04 (2015).
[Crossref]

Sinha, A.

Sissom, B.

K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: science fiction or science fact,” Proc. SPIE 9201, 920102 (2014).
[Crossref]

Slagle, T.

Slezak, C.

Sochava, S. L.

Solymar, L.

J. M. Heaton and L. Solymar, “Transient energy transfer during hologram formation in photorefractive crystals,” Opt. Acta Int. J. Opt. 32(4), 397–408 (1985).
[Crossref]

Spitz, E.

Takahashi, H.

H. Takahashi, T. Naito, and Y. Tomita, “Holographic recording in methacrylate photopolymer film codoped with benzyl n -butyl phthalate and silica nanoparticles,” Jpn. J. Appl. Phys. 45(6A), 5023–5026 (2006).
[Crossref]

Takashima, Y.

K. Shimada, T. Ishii, T. Hoshizawa, and Y. Takashima, “New optical modeling and optical compensation for mechanical instabilities on holographic data storage system using time averaged holography,” Jpn. J. Appl. Phys. 54(9S), 09MA01 (2015).
[Crossref]

T. Ishii, K. Shimada, T. Hoshizawa, and Y. Takashima, “Analysis of vibration effects on holographic data storage system,” Jpn. J. Appl. Phys. 54(9S), 09MA04 (2015).
[Crossref]

B. E. Miller and Y. Takashima, “Formalization and experimental evaluation of cavity-enhanced holographic readout,” Proc. SPIE 9201, 920104 (2014).
[Crossref]

Tian, K.

Tomita, Y.

H. Takahashi, T. Naito, and Y. Tomita, “Holographic recording in methacrylate photopolymer film codoped with benzyl n -butyl phthalate and silica nanoparticles,” Jpn. J. Appl. Phys. 45(6A), 5023–5026 (2006).
[Crossref]

Tschudi, T.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2-3), 171–176 (1991).
[Crossref]

Urness, A. C.

F. Askham, M. R. Ayres, and A. C. Urness, “High dynamic range holographic data storage media,” Proc. SPIE 9587, 958708 (2015).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Weiser, M.-S.

Yamasaki, T.

Zhao, Z.

L. Cao, Z. Zhao, H. Gu, Q. He, and G. Jin, “Enhancement of recording and readout for the photopolymer holographic disk system by using a conjugate structure,” Proc. SPIE 6827, 68270X (2007).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (2)

D. Maxein, J. Bückers, D. Haertle, and K. Buse, “Photorefraction in LiNbO3:Fe crystals with femtosecond pulses at 532 nm,” Appl. Phys. B 95(3), 399–405 (2009).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (4)

H. Takahashi, T. Naito, and Y. Tomita, “Holographic recording in methacrylate photopolymer film codoped with benzyl n -butyl phthalate and silica nanoparticles,” Jpn. J. Appl. Phys. 45(6A), 5023–5026 (2006).
[Crossref]

A. Hoskins, B. Ihas, K. Anderson, and K. Curtis, “Monocular architecture,” Jpn. J. Appl. Phys. 47(7), 5912–5914 (2008).
[Crossref]

T. Ishii, K. Shimada, T. Hoshizawa, and Y. Takashima, “Analysis of vibration effects on holographic data storage system,” Jpn. J. Appl. Phys. 54(9S), 09MA04 (2015).
[Crossref]

K. Shimada, T. Ishii, T. Hoshizawa, and Y. Takashima, “New optical modeling and optical compensation for mechanical instabilities on holographic data storage system using time averaged holography,” Jpn. J. Appl. Phys. 54(9S), 09MA01 (2015).
[Crossref]

Opt. Acta Int. J. Opt. (1)

J. M. Heaton and L. Solymar, “Transient energy transfer during hologram formation in photorefractive crystals,” Opt. Acta Int. J. Opt. 32(4), 397–408 (1985).
[Crossref]

Opt. Commun. (2)

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85(2-3), 171–176 (1991).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Proc. SPIE (4)

F. Askham, M. R. Ayres, and A. C. Urness, “High dynamic range holographic data storage media,” Proc. SPIE 9587, 958708 (2015).
[Crossref]

K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: science fiction or science fact,” Proc. SPIE 9201, 920102 (2014).
[Crossref]

B. E. Miller and Y. Takashima, “Formalization and experimental evaluation of cavity-enhanced holographic readout,” Proc. SPIE 9201, 920104 (2014).
[Crossref]

L. Cao, Z. Zhao, H. Gu, Q. He, and G. Jin, “Enhancement of recording and readout for the photopolymer holographic disk system by using a conjugate structure,” Proc. SPIE 6827, 68270X (2007).
[Crossref]

Other (11)

C. Sigel and M. L. Leonhardt, “System and method for providing gain and thresholding to a holographic data parallel recording and replication system incorporating independent angular address assignment,” U.S. patent US7187481 B1 (March 6, 2007).

A. E. Siegman, Lasers (University Science Books, 1986), pp. 413–426, 642–648.

R. T. Ingwall and D. Waldman, “Photopolymer systems,” in Holographic Data Storage, D. H. J. Coufal, P. D. Psaltis, and P. G. T. Sincerbox, eds. (Springer Berlin Heidelberg, 2000), p. 195.

“Blu-ray.com - Blu-ray FAQ,” http://www.blu-ray.com/faq/#bluray_speed .

N. Kinoshita, T. Muroi, N. Ishii, K. Kamijo, and N. Shimidzu, “Control of angular intervals for angle-multiplexed holographic memory,” Jpn. J. Appl. Phys. 48(3), 03A029 (2009).
[Crossref]

D. Clark, “Startups Dash Into Hot Data-Storage Sector,” http://www.wsj.com/articles/startups-dash-into-hot-data-storage-sector-1441409495 .

J. Verge, “Sony Acquires Cold Storage Blu-Ray Innovator Optical Archive,” http://www.datacenterknowledge.com/archives/2015/05/27/sony-acquires-facebook-born-startup-repurposes-blu-rays-cold-storage/ .

“TCO long-term archiving | DISC archiving systems/Blu-ray optical archival storage,” http://www.disc-group.com/technology/archive-requirements/ .

M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1 Tbit/inch 2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52(9S2), 09LD01 (2013).

G. Barbastathis and D. Psaltis, “Volume holographic multiplexing methods,” in Holographic Data Storage, D. H. J. Coufal, P. D. Psaltis, and P. G. T. Sincerbox, eds. (Springer Berlin Heidelberg, 2000), pp. 21, 57–59.

M. R. Ayres, Signal Modulation for Holographic Memories (ProQuest, 2007), p 252.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Wave and grating vectors for recording geometries. (a) Recording beam geometry for normal writing as well as single and double traveling wave cavity writing. Dotted lines indicate the recirculation path of beams in traveling wave cavities. (b) Recording beam wave vectors for 1a. (c) Grating vector for 1a. (d) Recording beam geometry for single standing wave cavity writing. (e) Recording beam wave vectors for 1d. (c) Grating vectors for 1d.
Fig. 2
Fig. 2 Standing wave linear cavity used for formalization of grating strength for cavity enhanced writing: r 1 and r 2 are mirror reflection magnitudes, ρ is the reference wave vector, σ is the signal wave vector, B is the amplitude transmission for the recording material, b is the material power loss, and η 1 s the base diffraction efficiency.
Fig. 3
Fig. 3 Bow-tie cavity used for formalization of grating strength for cavity enhanced writing: r 1 to r 4 are mirror reflection magnitudes, ρ 1 to ρ 4 are the reference beam paths, ρ is the reference wave vector, σ is the signal wave vector, B is the amplitude transmission for the recording material, b is the material power loss, and η 1 is the base diffraction efficiency.
Fig. 4
Fig. 4 Schematic diagram of the experimental setup for plane wave recording.
Fig. 5
Fig. 5 Data and fitting curves for the best data set including a histogram of the write rate enhancements. The non-cavity and cavity diffraction efficiency data have a time constants of 2.86x104 sec., and 2.34x104 sec., which yield a 1.22 enhancement in write data rate. The inset shows a histogram of write rate enhancements for the eleven trial pairs.
Fig. 6
Fig. 6 Diagram of the experimental setup for cavity image recording with an enhanced reference beam.
Fig. 7
Fig. 7 Data and fitting curves for the best data set including a histogram of the enhancements. The non-cavity and cavity diffraction efficiency data have a time constants of 3.34x104 sec., and 2.57x104 sec, which yield a 1.30 enhancement in write data rate. The inset shows a histogram of write rate enhancements for the three trial pairs.
Fig. 8
Fig. 8 (a) Object recorded: Newport USAF-1951 RES-1 group 1 elements 4 through 6. Maximum spatial frequency shown is 3.56 lp/mm. (b) Reconstruction recorded with a 1.54 enhanced reference arm, anticipated write rate enhancement is 1.24.
Fig. 9
Fig. 9 Fast Fourier transform of the circulating power in the cavity as monitored by the beam sampler photo diode. This shows cavity length oscillations with frequencies around 2 Hz and 6.4 Hz.

Tables (2)

Tables Icon

Table 1 Summary of Recording Data Rate Enhancements.

Tables Icon

Table 2 Summary of Maximum Write Data Rate Enhancements for Typical HDSS Parameters.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

U cav ( r ,t)= U in e i( k r ωt) i t 1 1 t cav e iδ .
E e,cav = E e,in ( T 1 1+2 t cav 2 cos(δ) ).
G F =( T 1 1+ t cav 2 2 t cav cos(δ) ).
U tot ( r ,t)= A R e j( ρ r ωt) + A B e j( ρ r ωt) + A S e j( σ r ωt) ,
E e,tot ( r )[ A R 2 + A B 2 + A S 2 +2 A R A B cos(2 ρ r π)+2 A R A S cos(( σ ρ ) r ) 2 A R A S cos(( σ ρ ) r π) ].
A in = 2 cn 0 E e,in .
S= E e,ρ E e,σ ,
E e,ρ = S E e,in 1+S
E e,σ = E e,in 1+S .
U tot = 2 cn 0 E e,in 1+S [ S e j( ρ r ) + e i( σ r ) ],
E e,tot = E e,in 1+S [ (S+1)+2 S cos(( ρ σ ) r ) ].
E e,tot = E e,in 1+S [ (S+1)+2 S cos(( ρ σ ) r ) ].
t cav = r 1 r 2 (1bη).
G F = 1 r 1 2 1+ ( r 1 r 2 (1bη)) 2 2 r 1 r 2 (1bη) .
A R = S E e,in G F S+1 , A B = S E e,in r 2 2 (1b η 1 ) G F 1+S , A S = E e,in 1+S .
E e,tot ( r )= S E e,in 1+S [ S G F (1+ r 2 (1b η 1 ))+1 +2S G F r 2 (1b η 1 ) cos(2 ρ r π) +2 S G F cos(( σ ρ ) r ) +2 S G F r 2 2 (1b η 1 ) cos(( σ ρ ) r π) ].
f( G F )= 2 S G F 1+S .
S 2 S G F 1+S = (S+1) G F ( G F S) 1 2 2 G F S (S+1) 2 =0,
S=1.
E e,tot ( r )= E e,in 2 [ G F (1+ r 2 2 (1b η 1 ))+1 +2S G F r 2 (1b η 1 ) cos(2 ρ r π) +2 G F cos(( σ ρ ) r ) +2 G F r 2 2 (1b η 1 ) cos(( σ ρ ) r π) ].
f( G F )= G F .
t cav = r 1 r 2 r 3 r 4 1bη .
G F = 1 r 1 2 1+ ( r 1 r 2 r 3 r 4 1bη ) 2 2 r 1 r 2 r 3 r 4 1bη .
E e,tot ( r )= E e,in 1+S [ S+ G F +2 S G F cos(( ρ σ ) r ) ].
f( G F )= 2 G F 1+ G F .
A R = S E e,in G F 1+S , A B =0, A S = E e,in G F 1+S .
E e,tot ( r )= E e,in G F 1+S [ S+1+2 S cos(( ρ σ ) r ) ].
E e,tot ( r )= E e,in G F [ 1+cos(( ρ σ ) r ) ],
f( G F )= G F .
d n 1 dt = n 1 τ + n ss τ ,
n 1 (t)= n ss (1 e t/τ ).
n 1 (t)= sin 2 (A(1 e t/τ )),
G F = 1 ( r 2 (1bη)) 2 1+ ( r 2 (1bη)) 4 2 ( r 2 (1bη)) 2 ,
G F = 1 ( r 2 r 3 r 4 1bη ) 2 1+ ( r 2 r 3 r 4 (1bη) ) 4 2 ( r 2 r 3 r 4 1bη ) 2 ,
G F = 1 r 1 2 1+ ( r 1 r 2 T samp (1bη)) 2 2 r 1 r 2 T samp (1bη) 2.8.

Metrics