Abstract

Due to their low reflectivity and effective light trapping properties black silicon nanostructured surfaces are promising front side structures for thin crystalline silicon solar cells. For further optimization of the light trapping effect, particularly in combination with rear side structures, it is necessary to simulate the optical properties of black silicon. Especially, the angular distribution of light in the silicon bulk after passage through the front side structure is relevant. In this paper, a rigorous coupled wave analysis of black silicon is presented, where the black silicon needle shaped structure is approximated by a randomized cone structure. The simulated absorptance agrees well with measurement data. Furthermore, the simulated angular light distribution within the silicon bulk shows that about 70% of the light can be subjected to internal reflection, highlighting the good light trapping properties.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Field stitching approach for the wave optical modeling of black silicon structures

Nico Tucher, Habtamu T. Gebrewold, and Benedikt Bläsi
Opt. Express 26(22) A937-A945 (2018)

3D optical simulation formalism OPTOS for textured silicon solar cells

Nico Tucher, Johannes Eisenlohr, Peter Kiefel, Oliver Höhn, Hubert Hauser, Marius Peters, Claas Müller, Jan Christoph Goldschmidt, and Benedikt Bläsi
Opt. Express 23(24) A1720-A1734 (2015)

Light trapping efficiency comparison of Si solar cell textures using spectral photoluminescence

Chog Barugkin, Thomas Allen, Teck K. Chong, Thomas P. White, Klaus J. Weber, and Kylie R. Catchpole
Opt. Express 23(7) A391-A400 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
    [Crossref]
  2. M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
    [Crossref]
  3. H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface. Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
    [Crossref]
  4. P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective passivation of black silicon surfaces by atomic layer deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
    [Crossref]
  5. S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
    [Crossref]
  6. J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3085–3093 (2006).
    [Crossref]
  7. M. Otto, M. Kroll, T. Käsebier, X. Li, B. Gesemann, K. Füchsel, J. Ziegler, A. N. Sprafke, and R. Wehrspohn, “Opto-electronic properties of different black silicon structures passivated by thermal ALD deposited Al2O3,” in Renewable Energy and the Environment, OSA Technical Digest (Optical Society of America, 2013), paper PM1C.3.
  8. Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, “A novel method to produce black silicon for solar cells,” Sol. Energy 85(7), 1574–1578 (2011).
    [Crossref]
  9. A. Y. Vorobyev and C. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257(16), 7291–7294 (2011).
    [Crossref]
  10. L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
    [Crossref]
  11. IEC, Photovoltaic Devices - Part 3. Measurement Principles for Terrestrial Photovoltaic (PV) Solar Devices with Reference Spectral Irradiance Data, 2nd ed. (International Electrotechnical Commission, 2008).
  12. S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovolt. Res. Appl. 19(4), 406–416 (2011).
    [Crossref]
  13. M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012).
    [Crossref]
  14. M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, R. B. Wehrspohn, and A. Gombert, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
    [Crossref]
  15. A. Ingenito, O. Isabella, and M. Zeman, “Experimental demonstration of 4 n2 classical absorption limit in nanotextured ultrathin solar cells with dielectric omnidirectional back reflector,” ACS Photonics 1(3), 270–278 (2014).
    [Crossref]
  16. J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. Sol. Cells 142, 60–65 (2015).
    [Crossref]
  17. N. Tucher, J. Eisenlohr, H. Hauser, J. Benick, M. Graf, C. Müller, M. Hermle, J. C. Goldschmidt, and B. Bläsi, “Crystalline silicon solar cells with enhanced light trapping via rear side diffraction grating,” Energy Procedia 77, 253–262 (2015).
    [Crossref]
  18. J. Eisenlohr, N. Tucher, O. Höhn, H. Hauser, M. Peters, P. Kiefel, J. C. Goldschmidt, and B. Bläsi, “Matrix formalism for light propagation and absorption in thick textured optical sheets,” Opt. Express 23(11), A502–A518 (2015).
    [Crossref] [PubMed]
  19. N. Tucher, J. Eisenlohr, P. Kiefel, O. Höhn, H. Hauser, M. Peters, C. Müller, J. C. Goldschmidt, and B. Bläsi, “3D optical simulation formalism OPTOS for textured silicon solar cells,” Opt. Express 23(24), A1720 (2015).
    [Crossref]
  20. T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
    [Crossref]
  21. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  22. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings. enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [Crossref]
  23. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 2758–2767 (1997).
    [Crossref]
  24. P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled wave method for transverse magnetic polarization,” J. Mod. Opt. 45(7), 1357–1374 (1998).
    [Crossref]
  25. J. P. Hugonin and P. Lalanne, “RETICOLO CODE 2D for the diffraction by stacks of lamellar 2D crossed gratings,” Institut d'Optique, Plaiseau, France (2005).
  26. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
    [Crossref]
  27. H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Taylor and Francis, 2001).
  28. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
    [Crossref]
  29. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
    [Crossref]
  30. A. Goetzberger, “Optical confinement in thin Si-solar cells by diffuse back reflectors,” in Proceedings of the 15th IEEE Photovoltaic Specialists Conference (IEEE, 1981), pp. 867–870.

2015 (4)

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. Sol. Cells 142, 60–65 (2015).
[Crossref]

N. Tucher, J. Eisenlohr, H. Hauser, J. Benick, M. Graf, C. Müller, M. Hermle, J. C. Goldschmidt, and B. Bläsi, “Crystalline silicon solar cells with enhanced light trapping via rear side diffraction grating,” Energy Procedia 77, 253–262 (2015).
[Crossref]

J. Eisenlohr, N. Tucher, O. Höhn, H. Hauser, M. Peters, P. Kiefel, J. C. Goldschmidt, and B. Bläsi, “Matrix formalism for light propagation and absorption in thick textured optical sheets,” Opt. Express 23(11), A502–A518 (2015).
[Crossref] [PubMed]

N. Tucher, J. Eisenlohr, P. Kiefel, O. Höhn, H. Hauser, M. Peters, C. Müller, J. C. Goldschmidt, and B. Bläsi, “3D optical simulation formalism OPTOS for textured silicon solar cells,” Opt. Express 23(24), A1720 (2015).
[Crossref]

2014 (1)

A. Ingenito, O. Isabella, and M. Zeman, “Experimental demonstration of 4 n2 classical absorption limit in nanotextured ultrathin solar cells with dielectric omnidirectional back reflector,” ACS Photonics 1(3), 270–278 (2014).
[Crossref]

2013 (1)

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective passivation of black silicon surfaces by atomic layer deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
[Crossref]

2012 (2)

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012).
[Crossref]

2011 (3)

Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, “A novel method to produce black silicon for solar cells,” Sol. Energy 85(7), 1574–1578 (2011).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257(16), 7291–7294 (2011).
[Crossref]

S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovolt. Res. Appl. 19(4), 406–416 (2011).
[Crossref]

2010 (1)

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, R. B. Wehrspohn, and A. Gombert, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

2009 (2)

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface. Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

2007 (1)

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

2006 (3)

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3085–3093 (2006).
[Crossref]

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

1998 (1)

P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled wave method for transverse magnetic polarization,” J. Mod. Opt. 45(7), 1357–1374 (1998).
[Crossref]

1997 (1)

1995 (3)

1985 (1)

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
[Crossref]

1982 (1)

Arafune, K.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

Baker-Finch, S. C.

S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovolt. Res. Appl. 19(4), 406–416 (2011).
[Crossref]

Benick, J.

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. Sol. Cells 142, 60–65 (2015).
[Crossref]

N. Tucher, J. Eisenlohr, H. Hauser, J. Benick, M. Graf, C. Müller, M. Hermle, J. C. Goldschmidt, and B. Bläsi, “Crystalline silicon solar cells with enhanced light trapping via rear side diffraction grating,” Energy Procedia 77, 253–262 (2015).
[Crossref]

Bläsi, B.

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. Sol. Cells 142, 60–65 (2015).
[Crossref]

N. Tucher, J. Eisenlohr, H. Hauser, J. Benick, M. Graf, C. Müller, M. Hermle, J. C. Goldschmidt, and B. Bläsi, “Crystalline silicon solar cells with enhanced light trapping via rear side diffraction grating,” Energy Procedia 77, 253–262 (2015).
[Crossref]

J. Eisenlohr, N. Tucher, O. Höhn, H. Hauser, M. Peters, P. Kiefel, J. C. Goldschmidt, and B. Bläsi, “Matrix formalism for light propagation and absorption in thick textured optical sheets,” Opt. Express 23(11), A502–A518 (2015).
[Crossref] [PubMed]

N. Tucher, J. Eisenlohr, P. Kiefel, O. Höhn, H. Hauser, M. Peters, C. Müller, J. C. Goldschmidt, and B. Bläsi, “3D optical simulation formalism OPTOS for textured silicon solar cells,” Opt. Express 23(24), A1720 (2015).
[Crossref]

Brandt, M. S.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

Branz, H. M.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface. Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Dhungel, S. K.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3085–3093 (2006).
[Crossref]

Ding, X. M.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

Drießen, M.

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. Sol. Cells 142, 60–65 (2015).
[Crossref]

Eisenlohr, J.

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. Sol. Cells 142, 60–65 (2015).
[Crossref]

N. Tucher, J. Eisenlohr, H. Hauser, J. Benick, M. Graf, C. Müller, M. Hermle, J. C. Goldschmidt, and B. Bläsi, “Crystalline silicon solar cells with enhanced light trapping via rear side diffraction grating,” Energy Procedia 77, 253–262 (2015).
[Crossref]

N. Tucher, J. Eisenlohr, P. Kiefel, O. Höhn, H. Hauser, M. Peters, C. Müller, J. C. Goldschmidt, and B. Bläsi, “3D optical simulation formalism OPTOS for textured silicon solar cells,” Opt. Express 23(24), A1720 (2015).
[Crossref]

J. Eisenlohr, N. Tucher, O. Höhn, H. Hauser, M. Peters, P. Kiefel, J. C. Goldschmidt, and B. Bläsi, “Matrix formalism for light propagation and absorption in thick textured optical sheets,” Opt. Express 23(11), A502–A518 (2015).
[Crossref] [PubMed]

Feldmann, F.

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. Sol. Cells 142, 60–65 (2015).
[Crossref]

Füchsel, K.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

Gangopadhyay, U.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3085–3093 (2006).
[Crossref]

Gaylord, T. K.

Ge, J.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

Goetzberger, A.

A. Goetzberger, “Optical confinement in thin Si-solar cells by diffuse back reflectors,” in Proceedings of the 15th IEEE Photovoltaic Specialists Conference (IEEE, 1981), pp. 867–870.

Goldschmidt, J. C.

N. Tucher, J. Eisenlohr, P. Kiefel, O. Höhn, H. Hauser, M. Peters, C. Müller, J. C. Goldschmidt, and B. Bläsi, “3D optical simulation formalism OPTOS for textured silicon solar cells,” Opt. Express 23(24), A1720 (2015).
[Crossref]

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. Sol. Cells 142, 60–65 (2015).
[Crossref]

N. Tucher, J. Eisenlohr, H. Hauser, J. Benick, M. Graf, C. Müller, M. Hermle, J. C. Goldschmidt, and B. Bläsi, “Crystalline silicon solar cells with enhanced light trapping via rear side diffraction grating,” Energy Procedia 77, 253–262 (2015).
[Crossref]

J. Eisenlohr, N. Tucher, O. Höhn, H. Hauser, M. Peters, P. Kiefel, J. C. Goldschmidt, and B. Bläsi, “Matrix formalism for light propagation and absorption in thick textured optical sheets,” Opt. Express 23(11), A502–A518 (2015).
[Crossref] [PubMed]

Gombert, A.

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, R. B. Wehrspohn, and A. Gombert, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

Graf, M.

N. Tucher, J. Eisenlohr, H. Hauser, J. Benick, M. Graf, C. Müller, M. Hermle, J. C. Goldschmidt, and B. Bläsi, “Crystalline silicon solar cells with enhanced light trapping via rear side diffraction grating,” Energy Procedia 77, 253–262 (2015).
[Crossref]

Grann, E. B.

Green, M. A.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

Guo, C.

A. Y. Vorobyev and C. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257(16), 7291–7294 (2011).
[Crossref]

Haarahiltunen, A.

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective passivation of black silicon surfaces by atomic layer deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
[Crossref]

Hauser, H.

Hermle, M.

N. Tucher, J. Eisenlohr, H. Hauser, J. Benick, M. Graf, C. Müller, M. Hermle, J. C. Goldschmidt, and B. Bläsi, “Crystalline silicon solar cells with enhanced light trapping via rear side diffraction grating,” Energy Procedia 77, 253–262 (2015).
[Crossref]

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. Sol. Cells 142, 60–65 (2015).
[Crossref]

Höhn, O.

Hou, X. Y.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

Ingenito, A.

A. Ingenito, O. Isabella, and M. Zeman, “Experimental demonstration of 4 n2 classical absorption limit in nanotextured ultrathin solar cells with dielectric omnidirectional back reflector,” ACS Photonics 1(3), 270–278 (2014).
[Crossref]

Isabella, O.

A. Ingenito, O. Isabella, and M. Zeman, “Experimental demonstration of 4 n2 classical absorption limit in nanotextured ultrathin solar cells with dielectric omnidirectional back reflector,” ACS Photonics 1(3), 270–278 (2014).
[Crossref]

Jiang, N.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

Jones, K. M.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Jurek, M. P.

P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled wave method for transverse magnetic polarization,” J. Mod. Opt. 45(7), 1357–1374 (1998).
[Crossref]

Kanamori, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

Käsebier, T.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012).
[Crossref]

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, R. B. Wehrspohn, and A. Gombert, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

Keevers, M. J.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

Kiefel, P.

Kim, K.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3085–3093 (2006).
[Crossref]

Kley, E.-B.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, R. B. Wehrspohn, and A. Gombert, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

Koynov, S.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

Kroll, M.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012).
[Crossref]

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, R. B. Wehrspohn, and A. Gombert, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

Lalanne, P.

P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled wave method for transverse magnetic polarization,” J. Mod. Opt. 45(7), 1357–1374 (1998).
[Crossref]

Lee, B. G.

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. Sol. Cells 142, 60–65 (2015).
[Crossref]

Li, C.

Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, “A novel method to produce black silicon for solar cells,” Sol. Energy 85(7), 1574–1578 (2011).
[Crossref]

Li, L.

Liu, B.

Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, “A novel method to produce black silicon for solar cells,” Sol. Energy 85(7), 1574–1578 (2011).
[Crossref]

Liu, J.

Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, “A novel method to produce black silicon for solar cells,” Sol. Energy 85(7), 1574–1578 (2011).
[Crossref]

Lu, W.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

Lu, X.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

Ma, L. L.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

Mangalaraj, D.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3085–3093 (2006).
[Crossref]

McIntosh, K. R.

S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovolt. Res. Appl. 19(4), 406–416 (2011).
[Crossref]

Meier, D. L.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface. Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Milenkovic, N.

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. Sol. Cells 142, 60–65 (2015).
[Crossref]

Moharam, M. G.

Müller, C.

N. Tucher, J. Eisenlohr, P. Kiefel, O. Höhn, H. Hauser, M. Peters, C. Müller, J. C. Goldschmidt, and B. Bläsi, “3D optical simulation formalism OPTOS for textured silicon solar cells,” Opt. Express 23(24), A1720 (2015).
[Crossref]

N. Tucher, J. Eisenlohr, H. Hauser, J. Benick, M. Graf, C. Müller, M. Hermle, J. C. Goldschmidt, and B. Bläsi, “Crystalline silicon solar cells with enhanced light trapping via rear side diffraction grating,” Energy Procedia 77, 253–262 (2015).
[Crossref]

Ohshita, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

Otto, M.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012).
[Crossref]

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, R. B. Wehrspohn, and A. Gombert, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

Page, M. R.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface. Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Parm, I. O.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3085–3093 (2006).
[Crossref]

Pertsch, T.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, R. B. Wehrspohn, and A. Gombert, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

Peters, M.

Pommet, D. A.

Repo, P.

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective passivation of black silicon surfaces by atomic layer deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
[Crossref]

Sai, H.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

Sainiemi, L.

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective passivation of black silicon surfaces by atomic layer deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
[Crossref]

Salzer, R.

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012).
[Crossref]

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, R. B. Wehrspohn, and A. Gombert, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

Savin, H.

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective passivation of black silicon surfaces by atomic layer deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
[Crossref]

Schubert, M. C.

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective passivation of black silicon surfaces by atomic layer deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
[Crossref]

Shao, J.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

Shen, Z.

Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, “A novel method to produce black silicon for solar cells,” Sol. Energy 85(7), 1574–1578 (2011).
[Crossref]

Stradins, P.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface. Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Stutzmann, M.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

Talvitie, H.

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective passivation of black silicon surfaces by atomic layer deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
[Crossref]

To, B.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Tucher, N.

Tünnermann, A.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012).
[Crossref]

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, R. B. Wehrspohn, and A. Gombert, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257(16), 7291–7294 (2011).
[Crossref]

Ward, S.

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Wehrspohn, R.

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, R. B. Wehrspohn, and A. Gombert, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

Wehrspohn, R. B.

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012).
[Crossref]

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, R. B. Wehrspohn, and A. Gombert, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

Xia, Y.

Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, “A novel method to produce black silicon for solar cells,” Sol. Energy 85(7), 1574–1578 (2011).
[Crossref]

Yablonovitch, E.

Yamaguchi, M.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

Yi, J.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3085–3093 (2006).
[Crossref]

Yli-Koski, M.

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective passivation of black silicon surfaces by atomic layer deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
[Crossref]

Yoo, J. S.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3085–3093 (2006).
[Crossref]

Yost, V. E.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface. Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

Yuan, H.-C.

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface. Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Zeman, M.

A. Ingenito, O. Isabella, and M. Zeman, “Experimental demonstration of 4 n2 classical absorption limit in nanotextured ultrathin solar cells with dielectric omnidirectional back reflector,” ACS Photonics 1(3), 270–278 (2014).
[Crossref]

Zhou, Y. C.

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

ACS Photonics (1)

A. Ingenito, O. Isabella, and M. Zeman, “Experimental demonstration of 4 n2 classical absorption limit in nanotextured ultrathin solar cells with dielectric omnidirectional back reflector,” ACS Photonics 1(3), 270–278 (2014).
[Crossref]

Appl. Phys. Lett. (5)

H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett. 94(23), 231121 (2009).
[Crossref]

H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface. Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88(20), 203107 (2006).
[Crossref]

L. L. Ma, Y. C. Zhou, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, “Wide-band “black silicon” based on porous silicon,” Appl. Phys. Lett. 88(17), 171907 (2006).
[Crossref]

M. Otto, M. Kroll, T. Käsebier, R. Salzer, A. Tünnermann, and R. B. Wehrspohn, “Extremely low surface recombination velocities in black silicon passivated by atomic layer deposition,” Appl. Phys. Lett. 100(19), 191603 (2012).
[Crossref]

Appl. Surf. Sci. (1)

A. Y. Vorobyev and C. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257(16), 7291–7294 (2011).
[Crossref]

Energy Procedia (1)

N. Tucher, J. Eisenlohr, H. Hauser, J. Benick, M. Graf, C. Müller, M. Hermle, J. C. Goldschmidt, and B. Bläsi, “Crystalline silicon solar cells with enhanced light trapping via rear side diffraction grating,” Energy Procedia 77, 253–262 (2015).
[Crossref]

IEEE J. Photovolt. (1)

P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin, “Effective passivation of black silicon surfaces by atomic layer deposition,” IEEE J. Photovolt. 3(1), 90–94 (2013).
[Crossref]

J. Mod. Opt. (1)

P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled wave method for transverse magnetic polarization,” J. Mod. Opt. 45(7), 1357–1374 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Opt. Express (2)

Proc. IEEE (1)

T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985).
[Crossref]

Proc. SPIE (2)

M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, E.-B. Kley, A. Tünnermann, T. Pertsch, R. B. Wehrspohn, and A. Gombert, “Optical modeling of needle like silicon surfaces produced by an ICP-RIE process,” Proc. SPIE 7725, 772505 (2010).
[Crossref]

M. Kroll, M. Otto, T. Käsebier, K. Füchsel, R. Wehrspohn, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Black silicon for solar cell applications,” Proc. SPIE 8438, 843817 (2012).
[Crossref]

Prog. Photovolt. Res. Appl. (3)

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovolt. Res. Appl. 19(4), 406–416 (2011).
[Crossref]

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15(5), 415–423 (2007).
[Crossref]

Sol. Energy (1)

Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, “A novel method to produce black silicon for solar cells,” Sol. Energy 85(7), 1574–1578 (2011).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18–19), 3085–3093 (2006).
[Crossref]

J. Eisenlohr, B. G. Lee, J. Benick, F. Feldmann, M. Drießen, N. Milenkovic, B. Bläsi, J. C. Goldschmidt, and M. Hermle, “Rear side sphere gratings for improved light trapping in crystalline silicon single junction and silicon-based tandem solar cells,” Sol. Energy Mater. Sol. Cells 142, 60–65 (2015).
[Crossref]

Other (5)

H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Taylor and Francis, 2001).

J. P. Hugonin and P. Lalanne, “RETICOLO CODE 2D for the diffraction by stacks of lamellar 2D crossed gratings,” Institut d'Optique, Plaiseau, France (2005).

A. Goetzberger, “Optical confinement in thin Si-solar cells by diffuse back reflectors,” in Proceedings of the 15th IEEE Photovoltaic Specialists Conference (IEEE, 1981), pp. 867–870.

M. Otto, M. Kroll, T. Käsebier, X. Li, B. Gesemann, K. Füchsel, J. Ziegler, A. N. Sprafke, and R. Wehrspohn, “Opto-electronic properties of different black silicon structures passivated by thermal ALD deposited Al2O3,” in Renewable Energy and the Environment, OSA Technical Digest (Optical Society of America, 2013), paper PM1C.3.

IEC, Photovoltaic Devices - Part 3. Measurement Principles for Terrestrial Photovoltaic (PV) Solar Devices with Reference Spectral Irradiance Data, 2nd ed. (International Electrotechnical Commission, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Scanning electron microscope (SEM) picture of black silicon fabricated by inductively coupled plasma reactive ion etching as considered in this work. (b) Measured reflectance of a 250 µm thick wafer with black silicon on the front side and a planar rear side. The reflectance in the range of 280 nm to 1000 nm weighted by the Air Mass 1.5 global spectrum (AM1.5g) [11] is only 1.2%.
Fig. 2
Fig. 2 (a) Sketch of the three regions required for the RCWA simulation. Incidence medium (I) and substrate (III) are homogenous. In between is a periodic structure (II). The z direction is discretized in a certain number of layers which are periodic in the x and y directions, respectively. (b) For the simulation of reflectance R, transmittance T and absorptance A, silicon is considered as a thick layer in region II. (c) For the simulation of the angular distribution in the silicon bulk, also the substrate is simulated as silicon.
Fig. 3
Fig. 3 SEM pictures of black silicon (left) compared to the implemented randomized cone structure (right). The cone parameters (height, diameter) were extracted from the cross section (a). The number of cones per area can be determined from the SEM picture in (b). In (c) the area covered by the cones is shown for four different sectional planes. z = 0 µm is the level of the silicon bulk. Blue represents silicon, white represents air. In (d) a complete unit cell is shown. The unit cell presented in (c) and (d) has an edge length of 2.01 µm filled with 89 cones corresponding to a cone density of 21.99 cones per µm2.
Fig. 4
Fig. 4 (a) The simulated reflectance and transmittance of a 250 µm thick silicon wafer with black silicon at the front side agrees well with the measured data. (b) Simulated and measured absorptance compared to the absorptance of a graded index layer and an ideal diffuse scatterer (Yablonovitch limit).
Fig. 5
Fig. 5 Angular distribution at a wavelength of 1.04 µm for two unit cell sizes. In the case of the unit cell size of 1.40 µm, 15 structures were considered for averaging. For the unit cell size of 2.01 µm, 10 structures were averaged. The error bars represent the standard deviation.
Fig. 6
Fig. 6 Simulated angular distribution of light in the silicon bulk after passage through a black silicon structure for different wavelengths compared to the distribution of a Lambertian scatterer. Three different unit cell sizes were considered, each with 20 random structures.
Fig. 7
Fig. 7 Difference between simulated and measured transmittance for different periods.
Fig. 8
Fig. 8 Angular distributions for a period of 1.49 µm at wavelengths of 1.04 µm and 1.08 µm. At 1.04 µm three polar angles associated with propagating modes are smaller than the critical angle marked by the vertical line. At a wavelength of 1.08 µm only two polar angles corresponding to propagating modes are within the loss cone.

Tables (1)

Tables Icon

Table 1 Number of polar angles associated with propagating modes and number of polar angles associated with propagating modes smaller than the angle of total internal reflection for different wavelengths.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dsinθ= p 2 + q 2 λ n .
A=1RT.
I= 0 2π θ 1 θ 2 cosθsinθdθdφ 0 2π 0 90° cosθsinθdθdφ .

Metrics