M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).

[Crossref]
[PubMed]

J.-Y. Chang, Y. Yang, and L. P. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).

[Crossref]

S. Basu, Y. Yang, and L. P. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106(3), 033106 (2015).

[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B 91(19), 195136 (2015).

[Crossref]

K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).

[Crossref]

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23(7), A240–A253 (2015).

[Crossref]
[PubMed]

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat. Transfer 136(6), 062701 (2014).

[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).

[Crossref]

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).

[Crossref]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).

[Crossref]
[PubMed]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).

[Crossref]

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).

[Crossref]

S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic metamaterials,” Opt. Express 21(12), 14982–14987 (2013).

[Crossref]
[PubMed]

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).

[Crossref]
[PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21(19), 22173–22185 (2013).

[Crossref]
[PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(S3), A366–A384 (2012).

[Crossref]
[PubMed]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012452502 (2012).

[Crossref]

M. Tschikin, P. Ben-Abdallah, and S.-A. Biehs, “Coherent thermal conductance of 1-D photonic crystals,” Phys. Lett. A 376(45), 3462–3465 (2012).

[Crossref]

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).

[Crossref]
[PubMed]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conver. 26(2), 686–698 (2011).

[Crossref]

S. V. Zhukovsky, “Perfect transmission and highly asymmetric light localization in photonic multilayers,” Phys. Rev. A 81(5), 053808 (2010).

[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).

[Crossref]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2010).

[Crossref]

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).

[Crossref]

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008).

[Crossref]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).

[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).

[Crossref]

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31(6), 689–716 (2007).

[Crossref]

S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B 58(4), 423–431 (2007).

[Crossref]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).

[Crossref]

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).

[Crossref]

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).

[Crossref]

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).

[Crossref]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).

[Crossref]

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energy Conver. 17(1), 130–142 (2002).

[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).

[Crossref]

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III – V compounds applicable in device simulation codes,” J. Appl. Phys. 87(6), 2890–2900 (2000).

[Crossref]

K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).

[Crossref]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303 (1971).

[Crossref]

J. R. Dixon and J. M. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev. 123(5), 1560 (1961).

[Crossref]

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).

[Crossref]

S. Basu, Y. Yang, and L. P. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106(3), 033106 (2015).

[Crossref]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2010).

[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).

[Crossref]

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31(6), 689–716 (2007).

[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).

[Crossref]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).

[Crossref]
[PubMed]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).

[Crossref]

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).

[Crossref]
[PubMed]

M. Tschikin, P. Ben-Abdallah, and S.-A. Biehs, “Coherent thermal conductance of 1-D photonic crystals,” Phys. Lett. A 376(45), 3462–3465 (2012).

[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).

[Crossref]
[PubMed]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).

[Crossref]

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).

[Crossref]
[PubMed]

M. Tschikin, P. Ben-Abdallah, and S.-A. Biehs, “Coherent thermal conductance of 1-D photonic crystals,” Phys. Lett. A 376(45), 3462–3465 (2012).

[Crossref]

S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B 58(4), 423–431 (2007).

[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).

[Crossref]
[PubMed]

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).

[Crossref]

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat. Transfer 136(6), 062701 (2014).

[Crossref]

V. Shalaev and W. Cai, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).

[Crossref]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).

[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).

[Crossref]

J.-Y. Chang, Y. Yang, and L. P. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).

[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).

[Crossref]
[PubMed]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).

[Crossref]

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31(6), 689–716 (2007).

[Crossref]

D. Chubb, Fundamentals of Thermophotovoltaic Energy Conversion (Elsevier, 2007).

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012452502 (2012).

[Crossref]

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energy Conver. 17(1), 130–142 (2002).

[Crossref]

J. R. Dixon and J. M. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev. 123(5), 1560 (1961).

[Crossref]

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).

[Crossref]
[PubMed]

J. R. Dixon and J. M. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev. 123(5), 1560 (1961).

[Crossref]

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).

[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).

[Crossref]
[PubMed]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conver. 26(2), 686–698 (2011).

[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).

[Crossref]

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).

[Crossref]

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).

[Crossref]

K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).

[Crossref]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).

[Crossref]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).

[Crossref]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).

[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).

[Crossref]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).

[Crossref]

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).

[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).

[Crossref]

K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).

[Crossref]

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).

[Crossref]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).

[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).

[Crossref]

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III – V compounds applicable in device simulation codes,” J. Appl. Phys. 87(6), 2890–2900 (2000).

[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).

[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).

[Crossref]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).

[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B 91(19), 195136 (2015).

[Crossref]

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23(7), A240–A253 (2015).

[Crossref]
[PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21(19), 22173–22185 (2013).

[Crossref]
[PubMed]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2010).

[Crossref]

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008).

[Crossref]

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).

[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B 91(19), 195136 (2015).

[Crossref]

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23(7), A240–A253 (2015).

[Crossref]
[PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21(19), 22173–22185 (2013).

[Crossref]
[PubMed]

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23(7), A240–A253 (2015).

[Crossref]
[PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B 91(19), 195136 (2015).

[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21(19), 22173–22185 (2013).

[Crossref]
[PubMed]

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).

[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).

[Crossref]

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

P. Markos and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials (Princeton University, 2008).

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).

[Crossref]

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).

[Crossref]

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).

[Crossref]

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).

[Crossref]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conver. 26(2), 686–698 (2011).

[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).

[Crossref]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).

[Crossref]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).

[Crossref]
[PubMed]

K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).

[Crossref]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).

[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).

[Crossref]

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).

[Crossref]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012452502 (2012).

[Crossref]

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).

[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).

[Crossref]

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).

[Crossref]

K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).

[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).

[Crossref]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303 (1971).

[Crossref]

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).

[Crossref]

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III – V compounds applicable in device simulation codes,” J. Appl. Phys. 87(6), 2890–2900 (2000).

[Crossref]

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).

[Crossref]

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).

[Crossref]

V. Shalaev and W. Cai, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III – V compounds applicable in device simulation codes,” J. Appl. Phys. 87(6), 2890–2900 (2000).

[Crossref]

P. Markos and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials (Princeton University, 2008).

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).

[Crossref]

K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).

[Crossref]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).

[Crossref]

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).

[Crossref]
[PubMed]

M. Tschikin, P. Ben-Abdallah, and S.-A. Biehs, “Coherent thermal conductance of 1-D photonic crystals,” Phys. Lett. A 376(45), 3462–3465 (2012).

[Crossref]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).

[Crossref]
[PubMed]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conver. 26(2), 686–698 (2011).

[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).

[Crossref]

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).

[Crossref]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303 (1971).

[Crossref]

K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).

[Crossref]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).

[Crossref]

J.-Y. Chang, Y. Yang, and L. P. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).

[Crossref]

S. Basu, Y. Yang, and L. P. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106(3), 033106 (2015).

[Crossref]

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat. Transfer 136(6), 062701 (2014).

[Crossref]

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energy Conver. 17(1), 130–142 (2002).

[Crossref]

J.-Y. Chang, Y. Yang, and L. P. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).

[Crossref]

S. Basu, Y. Yang, and L. P. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106(3), 033106 (2015).

[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).

[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).

[Crossref]

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).

[Crossref]

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat. Transfer 136(6), 062701 (2014).

[Crossref]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2010).

[Crossref]

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008).

[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).

[Crossref]

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31(6), 689–716 (2007).

[Crossref]

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).

[Crossref]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. OptoElectron. 2012452502 (2012).

[Crossref]

S. Basu, Y. Yang, and L. P. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106(3), 033106 (2015).

[Crossref]

K. Ito, A. Miura, H. Iizuka, and H. Toshiyoshi, “Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer,” Appl. Phys. Lett. 106(8), 083504 (2015).

[Crossref]

S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett. 102(13), 131106 (2013).

[Crossref]

S.-A. Biehs, “Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials,” Eur. Phys. J. B 58(4), 423–431 (2007).

[Crossref]

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energy Conver. 17(1), 130–142 (2002).

[Crossref]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energy Conver. 26(2), 686–698 (2011).

[Crossref]

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices-a review,” Int. J. Energy Res. 31(6), 689–716 (2007).

[Crossref]

X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer 73, 389–398 (2014).

[Crossref]

J.-Y. Chang, Y. Yang, and L. P. Wang, “Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications,” Int. J. Heat Mass Transfer 87, 237–247 (2015).

[Crossref]

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49(23), 4454–4468 (2006).

[Crossref]

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006).

[Crossref]

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III – V compounds applicable in device simulation codes,” J. Appl. Phys. 87(6), 2890–2900 (2000).

[Crossref]

S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2010).

[Crossref]

X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(9), 092703 (2014).

[Crossref]

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat. Transfer 136(6), 062701 (2014).

[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two thin silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010).

[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).

[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002).

[Crossref]

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng. 12, 238–250 (2008).

[Crossref]

H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, “Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy,” Nanotechnology 24(21), 214006 (2013).

[Crossref]
[PubMed]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).

[Crossref]

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45(4), 044001 (2006).

[Crossref]

Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express 21(12), 15014–15019 (2013).

[Crossref]
[PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(S3), A366–A384 (2012).

[Crossref]
[PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21(19), 22173–22185 (2013).

[Crossref]
[PubMed]

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23(7), A240–A253 (2015).

[Crossref]
[PubMed]

S. V. Zhukovsky, O. Kidwai, and J. E. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic metamaterials,” Opt. Express 21(12), 14982–14987 (2013).

[Crossref]
[PubMed]

M. Tschikin, P. Ben-Abdallah, and S.-A. Biehs, “Coherent thermal conductance of 1-D photonic crystals,” Phys. Lett. A 376(45), 3462–3465 (2012).

[Crossref]

J. R. Dixon and J. M. Ellis, “Optical properties of n-type indium arsenide in the fundamental absorption edge region,” Phys. Rev. 123(5), 1560 (1961).

[Crossref]

S. V. Zhukovsky, “Perfect transmission and highly asymmetric light localization in photonic multilayers,” Phys. Rev. A 81(5), 053808 (2010).

[Crossref]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303 (1971).

[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B 91(19), 195136 (2015).

[Crossref]

R. Ortuño, C. García-Meca, F. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).

[Crossref]

K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, “Picosecond carrier dynamics and studies of Auger recombination processes in indium arsenide at room temperature,” Phys. Rev. B 46(20), 13194 (1992).

[Crossref]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).

[Crossref]

S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).

[Crossref]
[PubMed]

M. P. Bernardi, O. Dupré, E. Blandre, P.-O. Chapuis, R. Vaillon, and M. Francoeur, “Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators,” Sci. Rep. 5, 11626 (2015).

[Crossref]
[PubMed]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3, 1383 (2013).

[Crossref]
[PubMed]

K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3), 59–112 (2005).

[Crossref]

V. Shalaev and W. Cai, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).

D. Chubb, Fundamentals of Thermophotovoltaic Energy Conversion (Elsevier, 2007).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).

P. Markos and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-handed Materials (Princeton University, 2008).