Abstract

The average output power of Yb-doped fiber amplifier systems is currently limited by the onset of transverse mode instabilities. Besides, it has been recently shown that the transverse mode instability threshold can be significantly reduced by the presence of photodarkening in the fiber. Therefore, reducing the photodarkening level of the core material composition is the most straightforward way to increase the output average power of fiber amplifier systems but, unfortunately, this is not always easy or possible. In this paper we present guidelines to optimize the output average power of fiber amplifiers affected by transverse mode instabilities and photodarkening. The guidelines derived from the simulations do not involve changes in the composition of the active material (except for its doping concentration), but can still lead to a significant increase of the transverse mode instability threshold. The dependence of this parameter on the active ion concentration and the core conformation, among others, will be studied and discussed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening

Cesar Jauregui, Hans-Jürgen Otto, F. Stutzki, J. Limpert, and A. Tünnermann
Opt. Express 23(16) 20203-20218 (2015)

Thermal analysis of Yb-doped high-power fiber amplifiers with Al:P co-doped cores

Cesar Jauregui, Fabian Stutzki, A. Tünnermann, and J. Limpert
Opt. Express 26(6) 7614-7624 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  2. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
    [Crossref] [PubMed]
  3. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [Crossref] [PubMed]
  4. H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
    [Crossref] [PubMed]
  5. F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
    [Crossref] [PubMed]
  6. H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
    [Crossref] [PubMed]
  7. C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19(4), 3258–3271 (2011).
    [Crossref] [PubMed]
  8. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref] [PubMed]
  9. C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20(1), 440–451 (2012).
    [Crossref] [PubMed]
  10. A. V. Smith and J. J. Smith, “Steady-periodic method for modeling mode instability in fiber amplifiers,” Opt. Express 21(3), 2606–2623 (2013).
    [Crossref] [PubMed]
  11. C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
    [Crossref] [PubMed]
  12. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
    [Crossref] [PubMed]
  13. S. Naderi, I. Dajani, T. Madden, and C. Robin, “Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations,” Opt. Express 21(13), 16111–16129 (2013).
    [Crossref] [PubMed]
  14. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermally induced mode coupling in rare-earth doped fiber amplifiers,” Opt. Lett. 37(12), 2382–2384 (2012).
    [Crossref] [PubMed]
  15. L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
    [Crossref] [PubMed]
  16. C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
    [Crossref] [PubMed]
  17. A. V. Smith and J. J. Smith, “Increasing mode instability thresholds of fiber amplifiers by gain saturation,” Opt. Express 21(13), 15168–15182 (2013).
    [Crossref] [PubMed]
  18. S. Naderi, I. Dajani, J. Grosek, T. Madden, and T.-N. Dinh, “Theoretical analysis of effect of pump and signal wavelengths on modal instabilities in Yb-doped fiber amplifiers,” in K. L. Vodopyanov, ed. (2014), Vol. 8964, p. 89641W.
  19. H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
    [Crossref] [PubMed]
  20. T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, J. Rothhardt, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Preferential gain photonic-crystal fiber for mode stabilization at high average powers,” Opt. Express 19(9), 8656–8661 (2011).
    [Crossref] [PubMed]
  21. C. Robin, I. Dajani, and B. Pulford, “Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power,” Opt. Lett. 39(3), 666–669 (2014).
    [Crossref] [PubMed]
  22. J. Koponen, “Photodarkening in ytterbium-doped silica fibers,” in Proc. SPIE 5990, Optically Based Biological and Chemical Sensing, and Optically Based Materials for Defence, J. C. Carrano, A. Zukauskas, A. W. Vere, J. G. Grote, and F. Kajzar, eds. (2005), pp. 599008.
  23. H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
    [Crossref] [PubMed]
  24. H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Mitigation of mode instabilities by dynamic excitation of fiber modes,” in Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications (2013), 8601, p. 86010A.
  25. M. M. Jørgensen, M. Laurila, D. Noordegraaf, T. T. Alkeskjold, and J. Lægsgaard, “Thermal-recovery of modal instability in rod fiber amplifiers,” in S. T. Hendow, ed. (2013), p. 86010U.
  26. C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203–20218 (2015).
    [Crossref] [PubMed]
  27. J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
    [Crossref]
  28. S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
    [Crossref] [PubMed]
  29. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
    [Crossref] [PubMed]
  30. S. Nagel, J. MacChesney, and K. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
    [Crossref]
  31. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  32. F. Stutzki, F. Jansen, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233 (2014).
    [Crossref]
  33. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51, 1–6 (2015).
  34. F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium- doped low NA fiber amplifier,” Opt. Express, submitted.
  35. K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
    [Crossref]
  36. K. Brar, M. Savage-leuchs, J. Henrie, S. Courtney, C. Dilley, and R. Afzal, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” in SPIE Photonics West 2014-LASE: Lasers and Sources (2014), Vol. 8961, pp. 1–9.
  37. H. Yu, H. Zhang, H. Lv, X. Wang, J. Leng, H. Xiao, S. Guo, P. Zhou, X. Xu, and J. Chen, “3.15 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser,” Appl. Opt. 54(14), 4556–4560 (2015).
    [Crossref] [PubMed]
  38. Z. Sanjabi Eznaveh, G. López-Galmiche, E. Antonio-López, and R. Amezcua Correa, “Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers,” in Proc. SPIE 9344, Fiber Lasers XII: Technology, Systems, and Applications, L. B. Shaw, ed. (2015), p. 93442G.
  39. K. R. Hansen and J. Lægsgaard, “Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers,” Opt. Express 22(9), 11267–11278 (2014).
    [Crossref] [PubMed]

2015 (4)

2014 (5)

2013 (7)

2012 (7)

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermally induced mode coupling in rare-earth doped fiber amplifiers,” Opt. Lett. 37(12), 2382–2384 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
[Crossref] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20(1), 440–451 (2012).
[Crossref] [PubMed]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
[Crossref] [PubMed]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

2011 (5)

2010 (1)

2007 (1)

2003 (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

1982 (1)

S. Nagel, J. MacChesney, and K. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[Crossref]

Alkeskjold, T. T.

Andersen, T. V.

Babazadeh, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Beier, F.

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium- doped low NA fiber amplifier,” Opt. Express, submitted.

Broeng, J.

Carstens, H.

Chen, J.

Dajani, I.

Dong, L.

Eberhardt, R.

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium- doped low NA fiber amplifier,” Opt. Express, submitted.

Eidam, T.

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20(1), 440–451 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, J. Rothhardt, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Preferential gain photonic-crystal fiber for mode stabilization at high average powers,” Opt. Express 19(9), 8656–8661 (2011).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19(4), 3258–3271 (2011).
[Crossref] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[Crossref] [PubMed]

Gabler, T.

Gaida, C.

Guo, S.

Haarlammert, N.

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium- doped low NA fiber amplifier,” Opt. Express, submitted.

Hädrich, S.

Hamedani Golshan, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Hanf, S.

Hansen, K. R.

Heidariazar, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Hein, S.

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium- doped low NA fiber amplifier,” Opt. Express, submitted.

Hejaz, K.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Hupel, C.

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium- doped low NA fiber amplifier,” Opt. Express, submitted.

Ihring, J.

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium- doped low NA fiber amplifier,” Opt. Express, submitted.

Jansen, F.

F. Stutzki, F. Jansen, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233 (2014).
[Crossref]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[Crossref] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20(1), 440–451 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, J. Rothhardt, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Preferential gain photonic-crystal fiber for mode stabilization at high average powers,” Opt. Express 19(9), 8656–8661 (2011).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

Jauregui, C.

H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203–20218 (2015).
[Crossref] [PubMed]

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233 (2014).
[Crossref]

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[Crossref] [PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20(1), 440–451 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, J. Rothhardt, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Preferential gain photonic-crystal fiber for mode stabilization at high average powers,” Opt. Express 19(9), 8656–8661 (2011).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19(4), 3258–3271 (2011).
[Crossref] [PubMed]

Jetschke, S.

Kirchhof, J.

Kuhn, S.

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium- doped low NA fiber amplifier,” Opt. Express, submitted.

Lægsgaard, J.

Lafouti, M.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Leng, J.

Limpert, J.

H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203–20218 (2015).
[Crossref] [PubMed]

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233 (2014).
[Crossref]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20(1), 440–451 (2012).
[Crossref] [PubMed]

F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19(4), 3258–3271 (2011).
[Crossref] [PubMed]

T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, J. Rothhardt, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Preferential gain photonic-crystal fiber for mode stabilization at high average powers,” Opt. Express 19(9), 8656–8661 (2011).
[Crossref] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[Crossref] [PubMed]

Liu, Z.

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51, 1–6 (2015).

Lv, H.

Ma, P.

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51, 1–6 (2015).

MacChesney, J.

S. Nagel, J. MacChesney, and K. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[Crossref]

Madden, T.

Modsching, N.

Naderi, S.

Nagel, S.

S. Nagel, J. MacChesney, and K. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[Crossref]

Nold, J.

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium- doped low NA fiber amplifier,” Opt. Express, submitted.

Norouzey, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Otto, H. J.

Otto, H.-J.

H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203–20218 (2015).
[Crossref] [PubMed]

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233 (2014).
[Crossref]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
[Crossref] [PubMed]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

Poozesh, R.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Pulford, B.

Rezaei Nasirabad, R.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Robin, C.

Roohforouz, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Röpke, U.

Rothhardt, J.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Sattler, B.

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium- doped low NA fiber amplifier,” Opt. Express, submitted.

Schmidt, O.

Schreiber, T.

Seise, E.

Smith, A. V.

Smith, J. J.

Stutzki, F.

C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203–20218 (2015).
[Crossref] [PubMed]

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233 (2014).
[Crossref]

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[Crossref] [PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20(1), 440–451 (2012).
[Crossref] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, J. Rothhardt, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Preferential gain photonic-crystal fiber for mode stabilization at high average powers,” Opt. Express 19(9), 8656–8661 (2011).
[Crossref] [PubMed]

F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Tabatabaei Jafari, N.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Tao, R.

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51, 1–6 (2015).

Tünnermann, A.

H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203–20218 (2015).
[Crossref] [PubMed]

H.-J. Otto, F. Stutzki, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “2 kW average power from a pulsed Yb-doped rod-type fiber amplifier,” Opt. Lett. 39(22), 6446–6449 (2014).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233 (2014).
[Crossref]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[Crossref] [PubMed]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20(1), 440–451 (2012).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, “High-speed modal decomposition of mode instabilities in high-power fiber lasers,” Opt. Lett. 36(23), 4572–4574 (2011).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, J. Rothhardt, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Preferential gain photonic-crystal fiber for mode stabilization at high average powers,” Opt. Express 19(9), 8656–8661 (2011).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19(4), 3258–3271 (2011).
[Crossref] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[Crossref] [PubMed]

Unger, S.

Walker, K.

S. Nagel, J. MacChesney, and K. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[Crossref]

Wang, X.

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51, 1–6 (2015).

H. Yu, H. Zhang, H. Lv, X. Wang, J. Leng, H. Xiao, S. Guo, P. Zhou, X. Xu, and J. Chen, “3.15 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser,” Appl. Opt. 54(14), 4556–4560 (2015).
[Crossref] [PubMed]

Ward, B.

Wirth, C.

Xiao, H.

Xu, X.

Yu, H.

Zhang, H.

Zhou, P.

H. Yu, H. Zhang, H. Lv, X. Wang, J. Leng, H. Xiao, S. Guo, P. Zhou, X. Xu, and J. Chen, “3.15 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser,” Appl. Opt. 54(14), 4556–4560 (2015).
[Crossref] [PubMed]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51, 1–6 (2015).

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

S. Nagel, J. MacChesney, and K. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51, 1–6 (2015).

Laser Phys. (1)

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Light Sci. Appl. (1)

J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation,” Light Sci. Appl. 1(4), e8 (2012).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (19)

H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref] [PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref] [PubMed]

T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, J. Rothhardt, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Preferential gain photonic-crystal fiber for mode stabilization at high average powers,” Opt. Express 19(9), 8656–8661 (2011).
[Crossref] [PubMed]

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
[Crossref] [PubMed]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203–20218 (2015).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19(4), 3258–3271 (2011).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20(1), 440–451 (2012).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Steady-periodic method for modeling mode instability in fiber amplifiers,” Opt. Express 21(3), 2606–2623 (2013).
[Crossref] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref] [PubMed]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
[Crossref] [PubMed]

S. Naderi, I. Dajani, T. Madden, and C. Robin, “Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations,” Opt. Express 21(13), 16111–16129 (2013).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710–15722 (2012).
[Crossref] [PubMed]

L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[Crossref] [PubMed]

A. V. Smith and J. J. Smith, “Increasing mode instability thresholds of fiber amplifiers by gain saturation,” Opt. Express 21(13), 15168–15182 (2013).
[Crossref] [PubMed]

K. R. Hansen and J. Lægsgaard, “Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers,” Opt. Express 22(9), 11267–11278 (2014).
[Crossref] [PubMed]

Opt. Lett. (5)

Optica (1)

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Other (7)

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, and R. Eberhardt, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium- doped low NA fiber amplifier,” Opt. Express, submitted.

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Mitigation of mode instabilities by dynamic excitation of fiber modes,” in Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications (2013), 8601, p. 86010A.

M. M. Jørgensen, M. Laurila, D. Noordegraaf, T. T. Alkeskjold, and J. Lægsgaard, “Thermal-recovery of modal instability in rod fiber amplifiers,” in S. T. Hendow, ed. (2013), p. 86010U.

J. Koponen, “Photodarkening in ytterbium-doped silica fibers,” in Proc. SPIE 5990, Optically Based Biological and Chemical Sensing, and Optically Based Materials for Defence, J. C. Carrano, A. Zukauskas, A. W. Vere, J. G. Grote, and F. Kajzar, eds. (2005), pp. 599008.

S. Naderi, I. Dajani, J. Grosek, T. Madden, and T.-N. Dinh, “Theoretical analysis of effect of pump and signal wavelengths on modal instabilities in Yb-doped fiber amplifiers,” in K. L. Vodopyanov, ed. (2014), Vol. 8964, p. 89641W.

K. Brar, M. Savage-leuchs, J. Henrie, S. Courtney, C. Dilley, and R. Afzal, “Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers,” in SPIE Photonics West 2014-LASE: Lasers and Sources (2014), Vol. 8961, pp. 1–9.

Z. Sanjabi Eznaveh, G. López-Galmiche, E. Antonio-López, and R. Amezcua Correa, “Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers,” in Proc. SPIE 9344, Fiber Lasers XII: Technology, Systems, and Applications, L. B. Shaw, ed. (2015), p. 93442G.

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (8601 KB)      Evolution of the pump intensity along a fiber with transversally inhomogeneous absorbing sections

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Normalized contribution to the heat-load caused by the PD-induced absorption of pump photons.
Fig. 2
Fig. 2 Generation of an asymmetric pump intensity profile in a fiber with transversally asymmetric absorption sections. The upper- and lowermost insets are two frames of a movie (Visualization 1) showing the imaginary part of the fiber cross-section (left) and the pump intensity distribution in the fiber (right) at two different positions along the fiber. The middle section of the image shows a longitudinal section of the imaginary part of the refractive index (up) and of the pump intensity distribution along the fiber. The dark blue areas of the imaginary part of the refractive index represent sections of high absorption. As can be seen, these get imprinted in the pump intensity distribution generating a transversal asymmetry in it (as highlighted by the yellow arrows).
Fig. 3
Fig. 3 The two most extended types of core conformation today in Yb-doped fibers: filled (left-hand side) and nano-structured (right-hand side). The fractional area of the doped region that has been covered with Yb-ions is called area-filling factor (AFF).
Fig. 4
Fig. 4 Dependence of the TMI threshold on the MFD of the fundamental mode of a fiber which size is increased while keeping the V-parameter constant.
Fig. 5
Fig. 5 Dependence on the AFF of: a) the TMI threshold and PD-induced heat load for the signal (red) and pump (green), and b) pump power required to reach the TMI threshold in each case.
Fig. 6
Fig. 6 Dependence of the TMI threshold on the bulk ion concentration (Nbulk) and the AFF. The isolines represent fiber designs with the same effective ion concentration ( N= N bulk AFF ) and, therefore, with the same geometrical dimensions. The labels in each isoline provide the corresponding value N/ 10 25 . The horizontal dashed line represents the cross-section corresponding to Fig. 5(a).
Fig. 7
Fig. 7 Dependence of the TMI threshold on the pump wavelength for a fixed fiber length of 1.2m with PD (blue solid line). The pump cladding diameter (red line) has been changed to achieve always the same small-signal pump absorption.
Fig. 8
Fig. 8 Dependence of the TMI threshold on the pump wavelength for a fiber with 63µm/200µm core/clad diameter when considering PD (blue solid line). The fiber length (red line) has been changed for each pump wavelength to achieve always the same small-signal pump absorption.
Fig. 9
Fig. 9 Dependence of the TMI threshold on the pump direction. The plot represents the evolution of the signal power along the test LPF for co-propagating pump (red lines), bi-directional pump (green lines) and counter-propagating pump (blue lines) configurations with (solid lines) and without (dashed lines) PD.

Tables (1)

Tables Icon

Table 1 Measured and expected TMI thresholds for the bendable LPF

Metrics