Abstract

We present a novel contrast-enhanced continuous-terahertz-wave imaging modality based on magnetic induction heating of superparamagnetic iron oxide nanoparticles (SPIOs), which yields a highly sensitive increment in the reflection terahertz (THz) signal in SPIO solution upon exposure to an alternating magnetic field. In the differential and relative refection change focal-plane images before and after alternating magnetic field exposure, a dramatic contrast is demonstrated between water with and without SPIOs. This low-cost, simple, and stable contrast-enhanced continuous-THz-wave imaging system is suitable for miniaturization and real-time imaging application.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles

Jesse S. Aaron, Junghwan Oh, Timothy A. Larson, Sonia Kumar, Thomas E. Milner, and Konstantin V. Sokolov
Opt. Express 14(26) 12930-12943 (2006)

Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics

Rudolf Alwi, Sergey Telenkov, Andreas Mandelis, Timothy Leshuk, Frank Gu, Sulayman Oladepo, and Kirk Michaelian
Biomed. Opt. Express 3(10) 2500-2509 (2012)

Nanoparticle-enabled terahertz imaging for cancer diagnosis

Seung Jae Oh, Jinyoung Kang, Inhee Maeng, Jin-Suck Suh, Yong-Min Huh, Seungjoo Haam, and Joo -Hiuk Son
Opt. Express 17(5) 3469-3475 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. T. Fan, Y. Z. He, B. S. Ung, and E. Pickwell-MacPherson, “The growth of biomedical terahertz research,” J. Phys. D Appl. Phys. 47(37), 374009 (2014).
    [Crossref]
  2. P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Opt. Express 17(15), 12444–12454 (2009).
    [Crossref] [PubMed]
  3. S. Nakajima, H. Hoshina, M. Yamashita, C. Otani, and N. Miyoshi, “Terahertz imaging diagnostics of cancer tissues with a chemometrics technique,” Appl. Phys. Lett. 90(4), 041102 (2007).
    [Crossref]
  4. V. P. Wallace, A. J. Fitzgerald, E. Pickwell, R. J. Pye, P. F. Taday, N. Flanagan, and T. Ha, “Terahertz pulsed spectroscopy of human Basal cell carcinoma,” Appl. Spectrosc. 60(10), 1127–1133 (2006).
    [Crossref] [PubMed]
  5. M. A. Brun, F. Formanek, A. Yasuda, M. Sekine, N. Ando, and Y. Eishii, “Terahertz imaging applied to cancer diagnosis,” Phys. Med. Biol. 55(16), 4615–4623 (2010).
    [Crossref] [PubMed]
  6. M. H. Arbab, T. C. Dickey, D. P. Winebrenner, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz reflectometry of burn wounds in a rat model,” Biomed. Opt. Express 2(8), 2339–2347 (2011).
    [Crossref] [PubMed]
  7. S. J. Oh, S.-H. Kim, Y. B. Ji, K. Jeong, Y. Park, J. Yang, D. W. Park, S. K. Noh, S.-G. Kang, Y.-M. Huh, J.-H. Son, and J.-S. Suh, “Study of freshly excised brain tissues using terahertz imaging,” Biomed. Opt. Express 5(8), 2837–2842 (2014).
    [Crossref] [PubMed]
  8. W.-C. Kan, W.-S. Lee, W.-H. Cheung, V. P. Wallace, and E. Pickwell-Macpherson, “Terahertz pulsed imaging of knee cartilage,” Biomed. Opt. Express 1(3), 967–974 (2010).
    [Crossref] [PubMed]
  9. Y. B. Ji, S.-H. Kim, K. Jeong, Y. Choi, J.-H. Son, D. W. Park, S. K. Noh, T.-I. Jeon, Y.-M. Huh, S. Haam, S. K. Lee, S. J. Oh, and J.-S. Suh, “Terahertz spectroscopic imaging and properties of gastrointestinal tract in a rat model,” Biomed. Opt. Express 5(12), 4162–4170 (2014).
    [Crossref] [PubMed]
  10. Y. B. Ji, C. H. Park, H. Kim, S.-H. Kim, G. M. Lee, S. K. Noh, T.-I. Jeon, J.-H. Son, Y.-M. Huh, S. Haam, S. J. Oh, S. K. Lee, and J.-S. Suh, “Feasibility of terahertz reflectometry for discrimination of human early gastric cancers,” Biomed. Opt. Express 6(4), 1398–1406 (2015).
    [Crossref] [PubMed]
  11. S. J. Oh, J. Kang, I. Maeng, J. S. Suh, Y. M. Huh, S. Haam, and J.-H. Son, “Nanoparticle-enabled terahertz imaging for cancer diagnosis,” Opt. Express 17(5), 3469–3475 (2009).
    [Crossref] [PubMed]
  12. S. J. Oh, J. Choi, I. Maeng, J. Y. Park, K. Lee, Y. M. Huh, J. S. Suh, S. Haam, and J.-H. Son, “Molecular imaging with terahertz waves,” Opt. Express 19(5), 4009–4016 (2011).
    [Crossref] [PubMed]
  13. J. Y. Park, H. J. Choi, G.-E. Nam, K.-S. Cho, and J.-H. Son, “In vivo dual-modality terahertz/magnetic resonance imaging using superparamagnetic iron oxide nanoparticles as a dual contrast agent,” IEEE Trans. Terahertz Sci. Technol. 2(1), 93–98 (2012).
    [Crossref]
  14. C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).
    [Crossref]
  15. S. J. Oh, Y.-M. Huh, J.-S. Suh, J. Choi, S. Haam, and J.-H. Son, “Cancer diagnosis by terahertz molecular imaging technique,” J. Infrared Millim. Terahertz Waves 33(1), 74–81 (2012).
    [Crossref]
  16. J.-H. Son, S. J. Oh, J. Choi, J.-S. Suh, Y.-M. Huh, and S. Haam, “Imaging of nanoparticle delivery using terahertz waves,” in Intracellular Delivery: Fundamentals and Applications, ed. A Prokop (Springer, 2011).
  17. J.-H. Son, “Principle and applications of terahertz molecular imaging,” Nanotechnology 24(21), 214001 (2013).
    [Crossref] [PubMed]
  18. S. Laurent, S. Dutz, U. O. Häfeli, and M. Mahmoudi, “Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles,” Adv. Colloid Interface Sci. 166(1-2), 8–23 (2011).
    [Crossref] [PubMed]
  19. R. X. Wang, S. S. Zuo, W. D. Zhu, J. Zhang, and J. Fang, “Rapid synthesis of aqueous-phase magnetite nanoparticles by atmospheric pressure non-thermal microplasma and their application in magnetic resonance imaging,” Plasma Process. Polym. 11(5), 448–454 (2014).
    [Crossref]
  20. J.-H. Lee, J. T. Jang, J. S. Choi, S. H. Moon, S. H. Noh, J. W. Kim, J.-G. Kim, I. S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol. 6(7), 418–422 (2011).
    [Crossref] [PubMed]
  21. D. E. Bordelon, R. C. Goldstein, V. S. Nemkov, A. Kumar, J. K. Jackowski, T. L. DeWeese, and R. Ivkov, “Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications,” IEEE Trans. Magn. 48(1), 47–52 (2012).
    [Crossref] [PubMed]

2015 (1)

2014 (4)

Y. B. Ji, S.-H. Kim, K. Jeong, Y. Choi, J.-H. Son, D. W. Park, S. K. Noh, T.-I. Jeon, Y.-M. Huh, S. Haam, S. K. Lee, S. J. Oh, and J.-S. Suh, “Terahertz spectroscopic imaging and properties of gastrointestinal tract in a rat model,” Biomed. Opt. Express 5(12), 4162–4170 (2014).
[Crossref] [PubMed]

S. T. Fan, Y. Z. He, B. S. Ung, and E. Pickwell-MacPherson, “The growth of biomedical terahertz research,” J. Phys. D Appl. Phys. 47(37), 374009 (2014).
[Crossref]

S. J. Oh, S.-H. Kim, Y. B. Ji, K. Jeong, Y. Park, J. Yang, D. W. Park, S. K. Noh, S.-G. Kang, Y.-M. Huh, J.-H. Son, and J.-S. Suh, “Study of freshly excised brain tissues using terahertz imaging,” Biomed. Opt. Express 5(8), 2837–2842 (2014).
[Crossref] [PubMed]

R. X. Wang, S. S. Zuo, W. D. Zhu, J. Zhang, and J. Fang, “Rapid synthesis of aqueous-phase magnetite nanoparticles by atmospheric pressure non-thermal microplasma and their application in magnetic resonance imaging,” Plasma Process. Polym. 11(5), 448–454 (2014).
[Crossref]

2013 (1)

J.-H. Son, “Principle and applications of terahertz molecular imaging,” Nanotechnology 24(21), 214001 (2013).
[Crossref] [PubMed]

2012 (3)

J. Y. Park, H. J. Choi, G.-E. Nam, K.-S. Cho, and J.-H. Son, “In vivo dual-modality terahertz/magnetic resonance imaging using superparamagnetic iron oxide nanoparticles as a dual contrast agent,” IEEE Trans. Terahertz Sci. Technol. 2(1), 93–98 (2012).
[Crossref]

S. J. Oh, Y.-M. Huh, J.-S. Suh, J. Choi, S. Haam, and J.-H. Son, “Cancer diagnosis by terahertz molecular imaging technique,” J. Infrared Millim. Terahertz Waves 33(1), 74–81 (2012).
[Crossref]

D. E. Bordelon, R. C. Goldstein, V. S. Nemkov, A. Kumar, J. K. Jackowski, T. L. DeWeese, and R. Ivkov, “Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications,” IEEE Trans. Magn. 48(1), 47–52 (2012).
[Crossref] [PubMed]

2011 (4)

J.-H. Lee, J. T. Jang, J. S. Choi, S. H. Moon, S. H. Noh, J. W. Kim, J.-G. Kim, I. S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol. 6(7), 418–422 (2011).
[Crossref] [PubMed]

S. Laurent, S. Dutz, U. O. Häfeli, and M. Mahmoudi, “Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles,” Adv. Colloid Interface Sci. 166(1-2), 8–23 (2011).
[Crossref] [PubMed]

S. J. Oh, J. Choi, I. Maeng, J. Y. Park, K. Lee, Y. M. Huh, J. S. Suh, S. Haam, and J.-H. Son, “Molecular imaging with terahertz waves,” Opt. Express 19(5), 4009–4016 (2011).
[Crossref] [PubMed]

M. H. Arbab, T. C. Dickey, D. P. Winebrenner, A. Chen, M. B. Klein, and P. D. Mourad, “Terahertz reflectometry of burn wounds in a rat model,” Biomed. Opt. Express 2(8), 2339–2347 (2011).
[Crossref] [PubMed]

2010 (2)

M. A. Brun, F. Formanek, A. Yasuda, M. Sekine, N. Ando, and Y. Eishii, “Terahertz imaging applied to cancer diagnosis,” Phys. Med. Biol. 55(16), 4615–4623 (2010).
[Crossref] [PubMed]

W.-C. Kan, W.-S. Lee, W.-H. Cheung, V. P. Wallace, and E. Pickwell-Macpherson, “Terahertz pulsed imaging of knee cartilage,” Biomed. Opt. Express 1(3), 967–974 (2010).
[Crossref] [PubMed]

2009 (2)

2007 (1)

S. Nakajima, H. Hoshina, M. Yamashita, C. Otani, and N. Miyoshi, “Terahertz imaging diagnostics of cancer tissues with a chemometrics technique,” Appl. Phys. Lett. 90(4), 041102 (2007).
[Crossref]

2006 (1)

1997 (1)

C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).
[Crossref]

Ando, N.

M. A. Brun, F. Formanek, A. Yasuda, M. Sekine, N. Ando, and Y. Eishii, “Terahertz imaging applied to cancer diagnosis,” Phys. Med. Biol. 55(16), 4615–4623 (2010).
[Crossref] [PubMed]

Arbab, M. H.

Ashworth, P. C.

Åstrand, P.-O.

C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).
[Crossref]

Bordelon, D. E.

D. E. Bordelon, R. C. Goldstein, V. S. Nemkov, A. Kumar, J. K. Jackowski, T. L. DeWeese, and R. Ivkov, “Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications,” IEEE Trans. Magn. 48(1), 47–52 (2012).
[Crossref] [PubMed]

Brun, M. A.

M. A. Brun, F. Formanek, A. Yasuda, M. Sekine, N. Ando, and Y. Eishii, “Terahertz imaging applied to cancer diagnosis,” Phys. Med. Biol. 55(16), 4615–4623 (2010).
[Crossref] [PubMed]

Chen, A.

Cheon, J.

J.-H. Lee, J. T. Jang, J. S. Choi, S. H. Moon, S. H. Noh, J. W. Kim, J.-G. Kim, I. S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol. 6(7), 418–422 (2011).
[Crossref] [PubMed]

Cheung, W.-H.

Cho, K.-S.

J. Y. Park, H. J. Choi, G.-E. Nam, K.-S. Cho, and J.-H. Son, “In vivo dual-modality terahertz/magnetic resonance imaging using superparamagnetic iron oxide nanoparticles as a dual contrast agent,” IEEE Trans. Terahertz Sci. Technol. 2(1), 93–98 (2012).
[Crossref]

Choi, H. J.

J. Y. Park, H. J. Choi, G.-E. Nam, K.-S. Cho, and J.-H. Son, “In vivo dual-modality terahertz/magnetic resonance imaging using superparamagnetic iron oxide nanoparticles as a dual contrast agent,” IEEE Trans. Terahertz Sci. Technol. 2(1), 93–98 (2012).
[Crossref]

Choi, J.

S. J. Oh, Y.-M. Huh, J.-S. Suh, J. Choi, S. Haam, and J.-H. Son, “Cancer diagnosis by terahertz molecular imaging technique,” J. Infrared Millim. Terahertz Waves 33(1), 74–81 (2012).
[Crossref]

S. J. Oh, J. Choi, I. Maeng, J. Y. Park, K. Lee, Y. M. Huh, J. S. Suh, S. Haam, and J.-H. Son, “Molecular imaging with terahertz waves,” Opt. Express 19(5), 4009–4016 (2011).
[Crossref] [PubMed]

Choi, J. S.

J.-H. Lee, J. T. Jang, J. S. Choi, S. H. Moon, S. H. Noh, J. W. Kim, J.-G. Kim, I. S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol. 6(7), 418–422 (2011).
[Crossref] [PubMed]

Choi, Y.

DeWeese, T. L.

D. E. Bordelon, R. C. Goldstein, V. S. Nemkov, A. Kumar, J. K. Jackowski, T. L. DeWeese, and R. Ivkov, “Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications,” IEEE Trans. Magn. 48(1), 47–52 (2012).
[Crossref] [PubMed]

Dickey, T. C.

Dutz, S.

S. Laurent, S. Dutz, U. O. Häfeli, and M. Mahmoudi, “Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles,” Adv. Colloid Interface Sci. 166(1-2), 8–23 (2011).
[Crossref] [PubMed]

Eishii, Y.

M. A. Brun, F. Formanek, A. Yasuda, M. Sekine, N. Ando, and Y. Eishii, “Terahertz imaging applied to cancer diagnosis,” Phys. Med. Biol. 55(16), 4615–4623 (2010).
[Crossref] [PubMed]

Fan, S. T.

S. T. Fan, Y. Z. He, B. S. Ung, and E. Pickwell-MacPherson, “The growth of biomedical terahertz research,” J. Phys. D Appl. Phys. 47(37), 374009 (2014).
[Crossref]

Fang, J.

R. X. Wang, S. S. Zuo, W. D. Zhu, J. Zhang, and J. Fang, “Rapid synthesis of aqueous-phase magnetite nanoparticles by atmospheric pressure non-thermal microplasma and their application in magnetic resonance imaging,” Plasma Process. Polym. 11(5), 448–454 (2014).
[Crossref]

Fitzgerald, A. J.

Flanagan, N.

Formanek, F.

M. A. Brun, F. Formanek, A. Yasuda, M. Sekine, N. Ando, and Y. Eishii, “Terahertz imaging applied to cancer diagnosis,” Phys. Med. Biol. 55(16), 4615–4623 (2010).
[Crossref] [PubMed]

Goldstein, R. C.

D. E. Bordelon, R. C. Goldstein, V. S. Nemkov, A. Kumar, J. K. Jackowski, T. L. DeWeese, and R. Ivkov, “Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications,” IEEE Trans. Magn. 48(1), 47–52 (2012).
[Crossref] [PubMed]

Ha, T.

Haam, S.

Häfeli, U. O.

S. Laurent, S. Dutz, U. O. Häfeli, and M. Mahmoudi, “Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles,” Adv. Colloid Interface Sci. 166(1-2), 8–23 (2011).
[Crossref] [PubMed]

He, Y. Z.

S. T. Fan, Y. Z. He, B. S. Ung, and E. Pickwell-MacPherson, “The growth of biomedical terahertz research,” J. Phys. D Appl. Phys. 47(37), 374009 (2014).
[Crossref]

Hoshina, H.

S. Nakajima, H. Hoshina, M. Yamashita, C. Otani, and N. Miyoshi, “Terahertz imaging diagnostics of cancer tissues with a chemometrics technique,” Appl. Phys. Lett. 90(4), 041102 (2007).
[Crossref]

Huh, Y. M.

Huh, Y.-M.

Ivkov, R.

D. E. Bordelon, R. C. Goldstein, V. S. Nemkov, A. Kumar, J. K. Jackowski, T. L. DeWeese, and R. Ivkov, “Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications,” IEEE Trans. Magn. 48(1), 47–52 (2012).
[Crossref] [PubMed]

Jackowski, J. K.

D. E. Bordelon, R. C. Goldstein, V. S. Nemkov, A. Kumar, J. K. Jackowski, T. L. DeWeese, and R. Ivkov, “Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications,” IEEE Trans. Magn. 48(1), 47–52 (2012).
[Crossref] [PubMed]

Jang, J. T.

J.-H. Lee, J. T. Jang, J. S. Choi, S. H. Moon, S. H. Noh, J. W. Kim, J.-G. Kim, I. S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol. 6(7), 418–422 (2011).
[Crossref] [PubMed]

Jeon, T.-I.

Jeong, K.

Ji, Y. B.

Kan, W.-C.

Kang, J.

Kang, S.-G.

Keiding, S. R.

C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).
[Crossref]

Kim, H.

Kim, I. S.

J.-H. Lee, J. T. Jang, J. S. Choi, S. H. Moon, S. H. Noh, J. W. Kim, J.-G. Kim, I. S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol. 6(7), 418–422 (2011).
[Crossref] [PubMed]

Kim, J. W.

J.-H. Lee, J. T. Jang, J. S. Choi, S. H. Moon, S. H. Noh, J. W. Kim, J.-G. Kim, I. S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol. 6(7), 418–422 (2011).
[Crossref] [PubMed]

Kim, J.-G.

J.-H. Lee, J. T. Jang, J. S. Choi, S. H. Moon, S. H. Noh, J. W. Kim, J.-G. Kim, I. S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol. 6(7), 418–422 (2011).
[Crossref] [PubMed]

Kim, S.-H.

Klein, M. B.

Kumar, A.

D. E. Bordelon, R. C. Goldstein, V. S. Nemkov, A. Kumar, J. K. Jackowski, T. L. DeWeese, and R. Ivkov, “Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications,” IEEE Trans. Magn. 48(1), 47–52 (2012).
[Crossref] [PubMed]

Laurent, S.

S. Laurent, S. Dutz, U. O. Häfeli, and M. Mahmoudi, “Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles,” Adv. Colloid Interface Sci. 166(1-2), 8–23 (2011).
[Crossref] [PubMed]

Lee, G. M.

Lee, J.-H.

J.-H. Lee, J. T. Jang, J. S. Choi, S. H. Moon, S. H. Noh, J. W. Kim, J.-G. Kim, I. S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol. 6(7), 418–422 (2011).
[Crossref] [PubMed]

Lee, K.

Lee, S. K.

Lee, W.-S.

Maeng, I.

Mahmoudi, M.

S. Laurent, S. Dutz, U. O. Häfeli, and M. Mahmoudi, “Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles,” Adv. Colloid Interface Sci. 166(1-2), 8–23 (2011).
[Crossref] [PubMed]

Mikkelsen, K. V.

C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).
[Crossref]

Miyoshi, N.

S. Nakajima, H. Hoshina, M. Yamashita, C. Otani, and N. Miyoshi, “Terahertz imaging diagnostics of cancer tissues with a chemometrics technique,” Appl. Phys. Lett. 90(4), 041102 (2007).
[Crossref]

Moon, S. H.

J.-H. Lee, J. T. Jang, J. S. Choi, S. H. Moon, S. H. Noh, J. W. Kim, J.-G. Kim, I. S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol. 6(7), 418–422 (2011).
[Crossref] [PubMed]

Mourad, P. D.

Nakajima, S.

S. Nakajima, H. Hoshina, M. Yamashita, C. Otani, and N. Miyoshi, “Terahertz imaging diagnostics of cancer tissues with a chemometrics technique,” Appl. Phys. Lett. 90(4), 041102 (2007).
[Crossref]

Nam, G.-E.

J. Y. Park, H. J. Choi, G.-E. Nam, K.-S. Cho, and J.-H. Son, “In vivo dual-modality terahertz/magnetic resonance imaging using superparamagnetic iron oxide nanoparticles as a dual contrast agent,” IEEE Trans. Terahertz Sci. Technol. 2(1), 93–98 (2012).
[Crossref]

Nemkov, V. S.

D. E. Bordelon, R. C. Goldstein, V. S. Nemkov, A. Kumar, J. K. Jackowski, T. L. DeWeese, and R. Ivkov, “Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications,” IEEE Trans. Magn. 48(1), 47–52 (2012).
[Crossref] [PubMed]

Noh, S. H.

J.-H. Lee, J. T. Jang, J. S. Choi, S. H. Moon, S. H. Noh, J. W. Kim, J.-G. Kim, I. S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol. 6(7), 418–422 (2011).
[Crossref] [PubMed]

Noh, S. K.

Oh, S. J.

Otani, C.

S. Nakajima, H. Hoshina, M. Yamashita, C. Otani, and N. Miyoshi, “Terahertz imaging diagnostics of cancer tissues with a chemometrics technique,” Appl. Phys. Lett. 90(4), 041102 (2007).
[Crossref]

Park, C. H.

Park, D. W.

Park, J. Y.

J. Y. Park, H. J. Choi, G.-E. Nam, K.-S. Cho, and J.-H. Son, “In vivo dual-modality terahertz/magnetic resonance imaging using superparamagnetic iron oxide nanoparticles as a dual contrast agent,” IEEE Trans. Terahertz Sci. Technol. 2(1), 93–98 (2012).
[Crossref]

S. J. Oh, J. Choi, I. Maeng, J. Y. Park, K. Lee, Y. M. Huh, J. S. Suh, S. Haam, and J.-H. Son, “Molecular imaging with terahertz waves,” Opt. Express 19(5), 4009–4016 (2011).
[Crossref] [PubMed]

Park, K. I.

J.-H. Lee, J. T. Jang, J. S. Choi, S. H. Moon, S. H. Noh, J. W. Kim, J.-G. Kim, I. S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol. 6(7), 418–422 (2011).
[Crossref] [PubMed]

Park, Y.

Pepper, M.

Pickwell, E.

Pickwell-MacPherson, E.

Pinder, S. E.

Provenzano, E.

Purushotham, A. D.

Pye, R. J.

Rønne, C.

C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).
[Crossref]

Sekine, M.

M. A. Brun, F. Formanek, A. Yasuda, M. Sekine, N. Ando, and Y. Eishii, “Terahertz imaging applied to cancer diagnosis,” Phys. Med. Biol. 55(16), 4615–4623 (2010).
[Crossref] [PubMed]

Son, J.-H.

Y. B. Ji, C. H. Park, H. Kim, S.-H. Kim, G. M. Lee, S. K. Noh, T.-I. Jeon, J.-H. Son, Y.-M. Huh, S. Haam, S. J. Oh, S. K. Lee, and J.-S. Suh, “Feasibility of terahertz reflectometry for discrimination of human early gastric cancers,” Biomed. Opt. Express 6(4), 1398–1406 (2015).
[Crossref] [PubMed]

Y. B. Ji, S.-H. Kim, K. Jeong, Y. Choi, J.-H. Son, D. W. Park, S. K. Noh, T.-I. Jeon, Y.-M. Huh, S. Haam, S. K. Lee, S. J. Oh, and J.-S. Suh, “Terahertz spectroscopic imaging and properties of gastrointestinal tract in a rat model,” Biomed. Opt. Express 5(12), 4162–4170 (2014).
[Crossref] [PubMed]

S. J. Oh, S.-H. Kim, Y. B. Ji, K. Jeong, Y. Park, J. Yang, D. W. Park, S. K. Noh, S.-G. Kang, Y.-M. Huh, J.-H. Son, and J.-S. Suh, “Study of freshly excised brain tissues using terahertz imaging,” Biomed. Opt. Express 5(8), 2837–2842 (2014).
[Crossref] [PubMed]

J.-H. Son, “Principle and applications of terahertz molecular imaging,” Nanotechnology 24(21), 214001 (2013).
[Crossref] [PubMed]

S. J. Oh, Y.-M. Huh, J.-S. Suh, J. Choi, S. Haam, and J.-H. Son, “Cancer diagnosis by terahertz molecular imaging technique,” J. Infrared Millim. Terahertz Waves 33(1), 74–81 (2012).
[Crossref]

J. Y. Park, H. J. Choi, G.-E. Nam, K.-S. Cho, and J.-H. Son, “In vivo dual-modality terahertz/magnetic resonance imaging using superparamagnetic iron oxide nanoparticles as a dual contrast agent,” IEEE Trans. Terahertz Sci. Technol. 2(1), 93–98 (2012).
[Crossref]

S. J. Oh, J. Choi, I. Maeng, J. Y. Park, K. Lee, Y. M. Huh, J. S. Suh, S. Haam, and J.-H. Son, “Molecular imaging with terahertz waves,” Opt. Express 19(5), 4009–4016 (2011).
[Crossref] [PubMed]

S. J. Oh, J. Kang, I. Maeng, J. S. Suh, Y. M. Huh, S. Haam, and J.-H. Son, “Nanoparticle-enabled terahertz imaging for cancer diagnosis,” Opt. Express 17(5), 3469–3475 (2009).
[Crossref] [PubMed]

Suh, J. S.

Suh, J.-S.

Taday, P. F.

Thrane, L.

C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).
[Crossref]

Ung, B. S.

S. T. Fan, Y. Z. He, B. S. Ung, and E. Pickwell-MacPherson, “The growth of biomedical terahertz research,” J. Phys. D Appl. Phys. 47(37), 374009 (2014).
[Crossref]

Wallace, V. P.

Wallqvist, A.

C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).
[Crossref]

Wang, R. X.

R. X. Wang, S. S. Zuo, W. D. Zhu, J. Zhang, and J. Fang, “Rapid synthesis of aqueous-phase magnetite nanoparticles by atmospheric pressure non-thermal microplasma and their application in magnetic resonance imaging,” Plasma Process. Polym. 11(5), 448–454 (2014).
[Crossref]

Winebrenner, D. P.

Yamashita, M.

S. Nakajima, H. Hoshina, M. Yamashita, C. Otani, and N. Miyoshi, “Terahertz imaging diagnostics of cancer tissues with a chemometrics technique,” Appl. Phys. Lett. 90(4), 041102 (2007).
[Crossref]

Yang, J.

Yasuda, A.

M. A. Brun, F. Formanek, A. Yasuda, M. Sekine, N. Ando, and Y. Eishii, “Terahertz imaging applied to cancer diagnosis,” Phys. Med. Biol. 55(16), 4615–4623 (2010).
[Crossref] [PubMed]

Zhang, J.

R. X. Wang, S. S. Zuo, W. D. Zhu, J. Zhang, and J. Fang, “Rapid synthesis of aqueous-phase magnetite nanoparticles by atmospheric pressure non-thermal microplasma and their application in magnetic resonance imaging,” Plasma Process. Polym. 11(5), 448–454 (2014).
[Crossref]

Zhu, W. D.

R. X. Wang, S. S. Zuo, W. D. Zhu, J. Zhang, and J. Fang, “Rapid synthesis of aqueous-phase magnetite nanoparticles by atmospheric pressure non-thermal microplasma and their application in magnetic resonance imaging,” Plasma Process. Polym. 11(5), 448–454 (2014).
[Crossref]

Zuo, S. S.

R. X. Wang, S. S. Zuo, W. D. Zhu, J. Zhang, and J. Fang, “Rapid synthesis of aqueous-phase magnetite nanoparticles by atmospheric pressure non-thermal microplasma and their application in magnetic resonance imaging,” Plasma Process. Polym. 11(5), 448–454 (2014).
[Crossref]

Adv. Colloid Interface Sci. (1)

S. Laurent, S. Dutz, U. O. Häfeli, and M. Mahmoudi, “Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles,” Adv. Colloid Interface Sci. 166(1-2), 8–23 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. Nakajima, H. Hoshina, M. Yamashita, C. Otani, and N. Miyoshi, “Terahertz imaging diagnostics of cancer tissues with a chemometrics technique,” Appl. Phys. Lett. 90(4), 041102 (2007).
[Crossref]

Appl. Spectrosc. (1)

Biomed. Opt. Express (5)

IEEE Trans. Magn. (1)

D. E. Bordelon, R. C. Goldstein, V. S. Nemkov, A. Kumar, J. K. Jackowski, T. L. DeWeese, and R. Ivkov, “Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications,” IEEE Trans. Magn. 48(1), 47–52 (2012).
[Crossref] [PubMed]

IEEE Trans. Terahertz Sci. Technol. (1)

J. Y. Park, H. J. Choi, G.-E. Nam, K.-S. Cho, and J.-H. Son, “In vivo dual-modality terahertz/magnetic resonance imaging using superparamagnetic iron oxide nanoparticles as a dual contrast agent,” IEEE Trans. Terahertz Sci. Technol. 2(1), 93–98 (2012).
[Crossref]

J. Chem. Phys. (1)

C. Rønne, L. Thrane, P.-O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” J. Chem. Phys. 107(14), 5319–5331 (1997).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

S. J. Oh, Y.-M. Huh, J.-S. Suh, J. Choi, S. Haam, and J.-H. Son, “Cancer diagnosis by terahertz molecular imaging technique,” J. Infrared Millim. Terahertz Waves 33(1), 74–81 (2012).
[Crossref]

J. Phys. D Appl. Phys. (1)

S. T. Fan, Y. Z. He, B. S. Ung, and E. Pickwell-MacPherson, “The growth of biomedical terahertz research,” J. Phys. D Appl. Phys. 47(37), 374009 (2014).
[Crossref]

Nanotechnology (1)

J.-H. Son, “Principle and applications of terahertz molecular imaging,” Nanotechnology 24(21), 214001 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J.-H. Lee, J. T. Jang, J. S. Choi, S. H. Moon, S. H. Noh, J. W. Kim, J.-G. Kim, I. S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol. 6(7), 418–422 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Med. Biol. (1)

M. A. Brun, F. Formanek, A. Yasuda, M. Sekine, N. Ando, and Y. Eishii, “Terahertz imaging applied to cancer diagnosis,” Phys. Med. Biol. 55(16), 4615–4623 (2010).
[Crossref] [PubMed]

Plasma Process. Polym. (1)

R. X. Wang, S. S. Zuo, W. D. Zhu, J. Zhang, and J. Fang, “Rapid synthesis of aqueous-phase magnetite nanoparticles by atmospheric pressure non-thermal microplasma and their application in magnetic resonance imaging,” Plasma Process. Polym. 11(5), 448–454 (2014).
[Crossref]

Other (1)

J.-H. Son, S. J. Oh, J. Choi, J.-S. Suh, Y.-M. Huh, and S. Haam, “Imaging of nanoparticle delivery using terahertz waves,” in Intracellular Delivery: Fundamentals and Applications, ed. A Prokop (Springer, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Typical transmission electron microscope (TEM) image of superparamagnetic iron oxide nanoparticles (SPIOs) used in this study. (b) Histogram of the size distribution of SPIOs with average diameter of 7.7 ± 1.3 nm.
Fig. 2
Fig. 2 Schematic of superparamagnetic iron oxide nanoparticle (SPIO)-based contrast-enhanced reflection-mode continuous-terahertz-wave imaging system.
Fig. 3
Fig. 3 Alternating magnetic field strength dependence of reflected THz signal from superparamagnetic iron oxide nanoparticle (SPIO) solution with concentration of 4 g/L. (a) Time-varying reflection changes for varying alternating magnetic field intensities. (b) Reflection changes as function of alternating magnetic field strength at different time instants.
Fig. 4
Fig. 4 Superparamagnetic iron oxide nanoparticle (SPIO) solution density dependence of reflected THz signal under alternating magnetic field with strength of 15 mT. (a) Time-varying reflection changes for various SPIO solution concentrations and the temperature change for SPIO solution with concentration of 4 g/L. (b) Reflection changes with SPIO solution density at various time instants.
Fig. 5
Fig. 5 Focal-plane THz imaging results of water with and without 4 g/L superparamagnetic iron oxide nanoparticles (SPIOs) before and after 15 min of exposure to alternating magnetic field with the strength of 15 mT. For clarity, the color bar range was set to be identical for water with and without SPIOs. (a) Focal-plane imaging results of water with and without SPIOs before alternating magnetic field exposure. (b) Focal-plane imaging results of water with and without SPIOs after alternating magnetic field exposure. (For comparison, the maximum amplitude in the image of water with SPIOs after alternating magnetic field exposure was set as 1.) (c) Differential images between (b) and (a). (d) Images of relative reflection change.

Metrics