Abstract

A highly birefringent polarization-maintaining chalcogenide microstructured optical fiber (MOF) covering the 3-8.5 µm wavelength range has been realized for the first time. The fiber cross-section consists of 3 rings of circular air holes with 2 larger holes adjacent to the core. Birefringence properties are calculated by using the vector finite-element method and are compared to the experimental ones. The group birefringence is 1.5x10−3 and fiber losses are equal to 0.8 dB/m at 7.55 µm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala
Opt. Express 18(25) 26655-26665 (2010)

Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses

Perrine Toupin, Laurent Brilland, Johann Trolès, and Jean-Luc Adam
Opt. Mater. Express 2(10) 1359-1366 (2012)

Numerical study on mid-infrared optical parametric amplification around 5  µm by injecting signal vector beams in As2Se3 MOFs

Weiqing Gao, Peng Wang, Wenhui Jiang, Zhengxiong Zhang, Xiu Zhang, Panyun Gao, Wei Zhang, Meisong Liao, Takenobu Suzuki, Yasutake Ohishi, and Yong Zhou
J. Opt. Soc. Am. B 36(12) 3348-3356 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17(15), 530–531 (1981).
    [Crossref]
  2. R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarisation-maintaining fibres using gas-phase etching,” Electron. Lett. 18(24), 1036–1038 (1982).
    [Crossref]
  3. R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
    [Crossref]
  4. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000).
    [Crossref] [PubMed]
  5. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
    [Crossref]
  6. J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 15(10), 1375–1377 (2003).
    [Crossref]
  7. Y. Yue, G. Kai, Z. Wang, T. Sun, L. Jin, Y. Lu, C. Zhang, J. Liu, Y. Li, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice,” Opt. Lett. 32(5), 469–471 (2007).
    [Crossref] [PubMed]
  8. T. Schreiber, F. Röser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. Hansen, J. Broeng, and A. Tünnermann, “Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity,” Opt. Express 13(19), 7621–7630 (2005).
    [Crossref] [PubMed]
  9. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001).
    [Crossref] [PubMed]
  10. J.-L. Adam and X. Zhang, Chalcogenide Glasses (Woodhead Publishing, 2014), Chap. 5.
  11. P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
    [Crossref] [PubMed]
  12. P. Toupin, L. Brilland, C. Boussard-Plédel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
    [Crossref]
  13. U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
    [Crossref] [PubMed]
  14. W. Yuan, “2–10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber,” Laser Phys. Lett. 10(9), 095107 (2013).
    [Crossref]
  15. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  16. J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28(1), 11–26 (2009).
    [Crossref]
  17. K. H. Tow, Y. Leguillon, S. Fresnel, P. Besnard, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
    [Crossref]
  18. G. Ellis, G. Santoro, M. A. Gomez, and C. Marco, “Synchrotron IR microspectroscopy: Opportunities in polymer science,” in Synchrotron Radiation in Polymer Science (IOP Publishing Ltd, 2010).
  19. P. Hermann, A. Hoehl, G. Ulrich, C. Fleischmann, A. Hermelink, B. Kästner, P. Patoka, A. Hornemann, B. Beckhoff, E. Rühl, and G. Ulm, “Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy,” Opt. Express 22(15), 17948–17958 (2014).
    [Crossref] [PubMed]
  20. E. Yoxall, M. Navarro-Cia, M. Rahmani, S. A. Maier, and C. C. Phillips, “Widely tuneable scattering-type scanning near-field optical microscopy using pulsed quantum cascade lasers,” Appl. Phys. Lett. 103(21), 213110 (2013).
    [Crossref]
  21. M. Szpulak, J. Olszewski, T. Martynkien, W. Urbanczyk, and J. Wojcik, “Polarizing photonic crystal fibers with wide operation range,” Opt. Commun. 239(1-3), 91–97 (2004).
    [Crossref]
  22. J. Ju, W. Jin, and M. S. Demokan, “Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 mu m,” J. Lightwave Technol. 24(2), 825–830 (2006).
    [Crossref]
  23. B. Dabas and R. K. Sinha, “Design of highly birefringent chalcogenide glass PCF: A simplest design,” Opt. Commun. 284(5), 1186–1191 (2011).
    [Crossref]
  24. S. Luke, S. K. Sudheer, and V. P. M. Pillai, “Modeling and analysis of a highly birefringent chalcogenide photonic crystal fiber,” Optik (Stuttg.) 126(23), 3529–3532 (2015).
    [Crossref]
  25. M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theories to holey fibers,” Opt. Lett. 29(15), 1739–1741 (2004).
    [Crossref] [PubMed]
  26. M. Koshiba and K. Saitoh, “Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures,” Appl. Opt. 42(31), 6267–6275 (2003).
    [Crossref] [PubMed]
  27. C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J.-L. Adam, and J. Troles, “Photonic bandgap propagation in all-solid chalcogenide microstructured optical fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
    [Crossref]
  28. D. Marcuse, Light Transmission Optics, (Van Nostrand Reihold Co, 1982).
  29. H. G. Dantanarayana, N. Abdel-Moneim, Z. Q. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
    [Crossref]
  30. S. Legre, M. Wegmuller, and N. Gisin, “Investigation of the ratio between phase and group birefringence in optical single-mode fibers,” J. Lightwave Technol. 21(12), 3374–3378 (2003).
    [Crossref]
  31. M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(12), 763–766 (2005).
    [Crossref]
  32. Z. Q. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
    [Crossref]
  33. V. S. Shiryaev, M. F. Churbanov, G. E. Snopatin, and F. Chenard, “Preparation of low-loss core-clad As-Se glass fibers,” Opt. Mater. 48, 222–225 (2015).
    [Crossref]
  34. Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010).
    [Crossref] [PubMed]
  35. K. Kikuchi and T. Okoshi, “Wavelength-sweeping technique for measuring the beat length of linearly birefringent optical fibers,” Opt. Lett. 8(2), 122–123 (1983).
    [Crossref] [PubMed]
  36. J. Folkenberg, M. Nielsen, N. Mortensen, C. Jakobsen, and H. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12(5), 956–960 (2004).
    [Crossref] [PubMed]

2015 (4)

2014 (4)

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J.-L. Adam, and J. Troles, “Photonic bandgap propagation in all-solid chalcogenide microstructured optical fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Q. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

P. Hermann, A. Hoehl, G. Ulrich, C. Fleischmann, A. Hermelink, B. Kästner, P. Patoka, A. Hornemann, B. Beckhoff, E. Rühl, and G. Ulm, “Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy,” Opt. Express 22(15), 17948–17958 (2014).
[Crossref] [PubMed]

2013 (5)

E. Yoxall, M. Navarro-Cia, M. Rahmani, S. A. Maier, and C. C. Phillips, “Widely tuneable scattering-type scanning near-field optical microscopy using pulsed quantum cascade lasers,” Appl. Phys. Lett. 103(21), 213110 (2013).
[Crossref]

W. Yuan, “2–10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber,” Laser Phys. Lett. 10(9), 095107 (2013).
[Crossref]

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref] [PubMed]

P. Toupin, L. Brilland, C. Boussard-Plédel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

K. H. Tow, Y. Leguillon, S. Fresnel, P. Besnard, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

2011 (1)

B. Dabas and R. K. Sinha, “Design of highly birefringent chalcogenide glass PCF: A simplest design,” Opt. Commun. 284(5), 1186–1191 (2011).
[Crossref]

2010 (1)

2009 (1)

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28(1), 11–26 (2009).
[Crossref]

2007 (1)

2006 (1)

2005 (2)

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(12), 763–766 (2005).
[Crossref]

T. Schreiber, F. Röser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. Hansen, J. Broeng, and A. Tünnermann, “Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity,” Opt. Express 13(19), 7621–7630 (2005).
[Crossref] [PubMed]

2004 (3)

2003 (3)

2001 (2)

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001).
[Crossref] [PubMed]

2000 (1)

1983 (1)

1982 (1)

R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarisation-maintaining fibres using gas-phase etching,” Electron. Lett. 18(24), 1036–1038 (1982).
[Crossref]

1981 (1)

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[Crossref]

1979 (1)

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Q. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

Adam, J. L.

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28(1), 11–26 (2009).
[Crossref]

Adam, J.-L.

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J.-L. Adam, and J. Troles, “Photonic bandgap propagation in all-solid chalcogenide microstructured optical fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
[Crossref]

P. Toupin, L. Brilland, C. Boussard-Plédel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Antkowiak, M.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(12), 763–766 (2005).
[Crossref]

Arriaga, J.

Bang, O.

Beckhoff, B.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T. M.

Berghmans, F.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(12), 763–766 (2005).
[Crossref]

Besnard, P.

K. H. Tow, Y. Leguillon, S. Fresnel, P. Besnard, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

Birch, R. D.

R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarisation-maintaining fibres using gas-phase etching,” Electron. Lett. 18(24), 1036–1038 (1982).
[Crossref]

Birks, T. A.

Bjarklev, A.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Boussard-Plédel, C.

P. Toupin, L. Brilland, C. Boussard-Plédel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Brilland, L.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J.-L. Adam, and J. Troles, “Photonic bandgap propagation in all-solid chalcogenide microstructured optical fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
[Crossref]

K. H. Tow, Y. Leguillon, S. Fresnel, P. Besnard, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

P. Toupin, L. Brilland, C. Boussard-Plédel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010).
[Crossref] [PubMed]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28(1), 11–26 (2009).
[Crossref]

Broeng, J.

T. Schreiber, F. Röser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. Hansen, J. Broeng, and A. Tünnermann, “Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity,” Opt. Express 13(19), 7621–7630 (2005).
[Crossref] [PubMed]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Bureau, B.

P. Toupin, L. Brilland, C. Boussard-Plédel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Caillaud, C.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J.-L. Adam, and J. Troles, “Photonic bandgap propagation in all-solid chalcogenide microstructured optical fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
[Crossref]

Calvez, L.

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J.-L. Adam, and J. Troles, “Photonic bandgap propagation in all-solid chalcogenide microstructured optical fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
[Crossref]

Chartier, T.

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010).
[Crossref] [PubMed]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28(1), 11–26 (2009).
[Crossref]

Chenard, F.

V. S. Shiryaev, M. F. Churbanov, G. E. Snopatin, and F. Chenard, “Preparation of low-loss core-clad As-Se glass fibers,” Opt. Mater. 48, 222–225 (2015).
[Crossref]

Choi, D. Y.

Churbanov, M. F.

Coulombier, Q.

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010).
[Crossref] [PubMed]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28(1), 11–26 (2009).
[Crossref]

Cozens, J. R.

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[Crossref]

Dabas, B.

B. Dabas and R. K. Sinha, “Design of highly birefringent chalcogenide glass PCF: A simplest design,” Opt. Commun. 284(5), 1186–1191 (2011).
[Crossref]

Dantanarayana, H. G.

Debbarma, S.

Demokan, M. S.

J. Ju, W. Jin, and M. S. Demokan, “Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 mu m,” J. Lightwave Technol. 24(2), 825–830 (2006).
[Crossref]

J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 15(10), 1375–1377 (2003).
[Crossref]

Désévédavy, F.

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28(1), 11–26 (2009).
[Crossref]

Dong, X.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Dyott, R. B.

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[Crossref]

Edahiro, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[Crossref]

Fleischmann, C.

Folkenberg, J.

Fresnel, S.

K. H. Tow, Y. Leguillon, S. Fresnel, P. Besnard, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

Fujita, M.

Furniss, D.

Gai, X.

Gisin, N.

Hansen, K.

Hansen, T. P.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Hermann, P.

Hermelink, A.

Hoehl, A.

Hornemann, A.

Hosaka, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[Crossref]

Houizot, P.

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010).
[Crossref] [PubMed]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28(1), 11–26 (2009).
[Crossref]

Iliew, R.

Jacobsen, C.

Jakobsen, C.

Jensen, J. R.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Jin, L.

Jin, W.

J. Ju, W. Jin, and M. S. Demokan, “Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 mu m,” J. Lightwave Technol. 24(2), 825–830 (2006).
[Crossref]

J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 15(10), 1375–1377 (2003).
[Crossref]

Ju, J.

J. Ju, W. Jin, and M. S. Demokan, “Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 mu m,” J. Lightwave Technol. 24(2), 825–830 (2006).
[Crossref]

J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 15(10), 1375–1377 (2003).
[Crossref]

Kai, G.

Kästner, B.

Kawanishi, S.

Kikuchi, K.

Knight, J. C.

Knudsen, E.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Koshiba, M.

Kotynski, R.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(12), 763–766 (2005).
[Crossref]

Kubat, I.

Kubota, H.

Lederer, F.

Legre, S.

Leguillon, Y.

K. H. Tow, Y. Leguillon, S. Fresnel, P. Besnard, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

Lesiak, P.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(12), 763–766 (2005).
[Crossref]

Li, Y.

Libori, S. E. B.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Limpert, J.

Liu, J.

Liu, Y.

Lu, Y.

Luke, S.

S. Luke, S. K. Sudheer, and V. P. M. Pillai, “Modeling and analysis of a highly birefringent chalcogenide photonic crystal fiber,” Optik (Stuttg.) 126(23), 3529–3532 (2015).
[Crossref]

Luther-Davies, B.

Ma, P.

Madden, S.

Maier, S. A.

E. Yoxall, M. Navarro-Cia, M. Rahmani, S. A. Maier, and C. C. Phillips, “Widely tuneable scattering-type scanning near-field optical microscopy using pulsed quantum cascade lasers,” Appl. Phys. Lett. 103(21), 213110 (2013).
[Crossref]

Mangan, B. J.

Martynkien, T.

M. Szpulak, J. Olszewski, T. Martynkien, W. Urbanczyk, and J. Wojcik, “Polarizing photonic crystal fibers with wide operation range,” Opt. Commun. 239(1-3), 91–97 (2004).
[Crossref]

Mechin, D.

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J.-L. Adam, and J. Troles, “Photonic bandgap propagation in all-solid chalcogenide microstructured optical fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
[Crossref]

K. H. Tow, Y. Leguillon, S. Fresnel, P. Besnard, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

P. Toupin, L. Brilland, C. Boussard-Plédel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Méchin, D.

Miya, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[Crossref]

Møller, U.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Monteville, A.

Morris, D. G.

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[Crossref]

Mortensen, N.

N’guyen, T. N.

Nasilowski, T.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(12), 763–766 (2005).
[Crossref]

Navarro-Cia, M.

E. Yoxall, M. Navarro-Cia, M. Rahmani, S. A. Maier, and C. C. Phillips, “Widely tuneable scattering-type scanning near-field optical microscopy using pulsed quantum cascade lasers,” Appl. Phys. Lett. 103(21), 213110 (2013).
[Crossref]

Nguyen, T. N.

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28(1), 11–26 (2009).
[Crossref]

Nielsen, M.

Okamoto, K.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[Crossref]

Okoshi, T.

Olszewski, J.

M. Szpulak, J. Olszewski, T. Martynkien, W. Urbanczyk, and J. Wojcik, “Polarizing photonic crystal fibers with wide operation range,” Opt. Commun. 239(1-3), 91–97 (2004).
[Crossref]

Orain, H.

Ortigosa-Blanch, A.

Pain, T.

Patoka, P.

Payne, D. N.

R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarisation-maintaining fibres using gas-phase etching,” Electron. Lett. 18(24), 1036–1038 (1982).
[Crossref]

Petersen, C. R.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Petersson, A.

Phillips, C. C.

E. Yoxall, M. Navarro-Cia, M. Rahmani, S. A. Maier, and C. C. Phillips, “Widely tuneable scattering-type scanning near-field optical microscopy using pulsed quantum cascade lasers,” Appl. Phys. Lett. 103(21), 213110 (2013).
[Crossref]

Pillai, V. P. M.

S. Luke, S. K. Sudheer, and V. P. M. Pillai, “Modeling and analysis of a highly birefringent chalcogenide photonic crystal fiber,” Optik (Stuttg.) 126(23), 3529–3532 (2015).
[Crossref]

Rahmani, M.

E. Yoxall, M. Navarro-Cia, M. Rahmani, S. A. Maier, and C. C. Phillips, “Widely tuneable scattering-type scanning near-field optical microscopy using pulsed quantum cascade lasers,” Appl. Phys. Lett. 103(21), 213110 (2013).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Renversez, G.

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J.-L. Adam, and J. Troles, “Photonic bandgap propagation in all-solid chalcogenide microstructured optical fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
[Crossref]

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010).
[Crossref] [PubMed]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28(1), 11–26 (2009).
[Crossref]

Röser, F.

Rühl, E.

Russell, P. S. J.

Saitoh, K.

Sangleboeuf, J.-C.

Sasaki, Y.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[Crossref]

Schmidt, O.

Schreiber, T.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Seddon, A. B.

Shiryaev, V. S.

Simonsen, H.

J. Folkenberg, M. Nielsen, N. Mortensen, C. Jakobsen, and H. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12(5), 956–960 (2004).
[Crossref] [PubMed]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Sinha, R. K.

B. Dabas and R. K. Sinha, “Design of highly birefringent chalcogenide glass PCF: A simplest design,” Opt. Commun. 284(5), 1186–1191 (2011).
[Crossref]

Smektala, F.

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010).
[Crossref] [PubMed]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28(1), 11–26 (2009).
[Crossref]

Snopatin, G. E.

V. S. Shiryaev, M. F. Churbanov, G. E. Snopatin, and F. Chenard, “Preparation of low-loss core-clad As-Se glass fibers,” Opt. Mater. 48, 222–225 (2015).
[Crossref]

Sojka, L.

Sudheer, S. K.

S. Luke, S. K. Sudheer, and V. P. M. Pillai, “Modeling and analysis of a highly birefringent chalcogenide photonic crystal fiber,” Optik (Stuttg.) 126(23), 3529–3532 (2015).
[Crossref]

Sujecki, S.

Sun, T.

Suzuki, K.

Szpulak, M.

M. Szpulak, J. Olszewski, T. Martynkien, W. Urbanczyk, and J. Wojcik, “Polarizing photonic crystal fibers with wide operation range,” Opt. Commun. 239(1-3), 91–97 (2004).
[Crossref]

Tanaka, M.

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tang, Z. Q.

Thienpont, H.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(12), 763–766 (2005).
[Crossref]

Toupin, P.

K. H. Tow, Y. Leguillon, S. Fresnel, P. Besnard, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

P. Toupin, L. Brilland, C. Boussard-Plédel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

Tow, K. H.

K. H. Tow, Y. Leguillon, S. Fresnel, P. Besnard, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

Traynor, N.

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28(1), 11–26 (2009).
[Crossref]

Troles, J.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J.-L. Adam, and J. Troles, “Photonic bandgap propagation in all-solid chalcogenide microstructured optical fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
[Crossref]

K. H. Tow, Y. Leguillon, S. Fresnel, P. Besnard, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

P. Toupin, L. Brilland, C. Boussard-Plédel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28(1), 11–26 (2009).
[Crossref]

Trolès, J.

Tünnermann, A.

Ulm, G.

Ulrich, G.

Urbanczyk, W.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(12), 763–766 (2005).
[Crossref]

M. Szpulak, J. Olszewski, T. Martynkien, W. Urbanczyk, and J. Wojcik, “Polarizing photonic crystal fibers with wide operation range,” Opt. Commun. 239(1-3), 91–97 (2004).
[Crossref]

Varnham, M. P.

R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarisation-maintaining fibres using gas-phase etching,” Electron. Lett. 18(24), 1036–1038 (1982).
[Crossref]

Wadsworth, W. J.

Wang, Z.

Wegmuller, M.

Wojcik, J.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(12), 763–766 (2005).
[Crossref]

M. Szpulak, J. Olszewski, T. Martynkien, W. Urbanczyk, and J. Wojcik, “Polarizing photonic crystal fibers with wide operation range,” Opt. Commun. 239(1-3), 91–97 (2004).
[Crossref]

Yang, Z.

Yoxall, E.

E. Yoxall, M. Navarro-Cia, M. Rahmani, S. A. Maier, and C. C. Phillips, “Widely tuneable scattering-type scanning near-field optical microscopy using pulsed quantum cascade lasers,” Appl. Phys. Lett. 103(21), 213110 (2013).
[Crossref]

Yu, Y.

Yuan, S.

Yuan, W.

W. Yuan, “2–10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber,” Laser Phys. Lett. 10(9), 095107 (2013).
[Crossref]

Yue, Y.

Zhang, C.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Yoxall, M. Navarro-Cia, M. Rahmani, S. A. Maier, and C. C. Phillips, “Widely tuneable scattering-type scanning near-field optical microscopy using pulsed quantum cascade lasers,” Appl. Phys. Lett. 103(21), 213110 (2013).
[Crossref]

Electron. Lett. (3)

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-loss single polarization fibers with asymmetrical strain birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[Crossref]

R. D. Birch, D. N. Payne, and M. P. Varnham, “Fabrication of polarisation-maintaining fibres using gas-phase etching,” Electron. Lett. 18(24), 1036–1038 (1982).
[Crossref]

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[Crossref]

Fiber Integr. Opt. (1)

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28(1), 11–26 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (3)

K. H. Tow, Y. Leguillon, S. Fresnel, P. Besnard, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Toward more coherent sources using a microstructured chalcogenide brillouin fiber laser,” IEEE Photonics Technol. Lett. 25(3), 238–241 (2013).
[Crossref]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 15(10), 1375–1377 (2003).
[Crossref]

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (1)

P. Toupin, L. Brilland, C. Boussard-Plédel, B. Bureau, D. Mechin, J.-L. Adam, and J. Troles, “Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing,” J. Non-Cryst. Solids 377, 217–219 (2013).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Phase and group modal birefringence of triple-defect photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(12), 763–766 (2005).
[Crossref]

Laser Phys. Lett. (1)

W. Yuan, “2–10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber,” Laser Phys. Lett. 10(9), 095107 (2013).
[Crossref]

Materials (Basel) (1)

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J.-L. Adam, and J. Troles, “Photonic bandgap propagation in all-solid chalcogenide microstructured optical fibers,” Materials (Basel) 7(9), 6120–6129 (2014).
[Crossref]

Nat. Photonics (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Commun. (2)

B. Dabas and R. K. Sinha, “Design of highly birefringent chalcogenide glass PCF: A simplest design,” Opt. Commun. 284(5), 1186–1191 (2011).
[Crossref]

M. Szpulak, J. Olszewski, T. Martynkien, W. Urbanczyk, and J. Wojcik, “Polarizing photonic crystal fibers with wide operation range,” Opt. Commun. 239(1-3), 91–97 (2004).
[Crossref]

Opt. Express (7)

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010).
[Crossref] [PubMed]

J. Folkenberg, M. Nielsen, N. Mortensen, C. Jakobsen, and H. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12(5), 956–960 (2004).
[Crossref] [PubMed]

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

P. Ma, D. Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref] [PubMed]

P. Hermann, A. Hoehl, G. Ulrich, C. Fleischmann, A. Hermelink, B. Kästner, P. Patoka, A. Hornemann, B. Beckhoff, E. Rühl, and G. Ulm, “Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy,” Opt. Express 22(15), 17948–17958 (2014).
[Crossref] [PubMed]

T. Schreiber, F. Röser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. Hansen, J. Broeng, and A. Tünnermann, “Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity,” Opt. Express 13(19), 7621–7630 (2005).
[Crossref] [PubMed]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. (1)

V. S. Shiryaev, M. F. Churbanov, G. E. Snopatin, and F. Chenard, “Preparation of low-loss core-clad As-Se glass fibers,” Opt. Mater. 48, 222–225 (2015).
[Crossref]

Opt. Mater. Express (2)

Optik (Stuttg.) (1)

S. Luke, S. K. Sudheer, and V. P. M. Pillai, “Modeling and analysis of a highly birefringent chalcogenide photonic crystal fiber,” Optik (Stuttg.) 126(23), 3529–3532 (2015).
[Crossref]

Other (3)

D. Marcuse, Light Transmission Optics, (Van Nostrand Reihold Co, 1982).

J.-L. Adam and X. Zhang, Chalcogenide Glasses (Woodhead Publishing, 2014), Chap. 5.

G. Ellis, G. Santoro, M. A. Gomez, and C. Marco, “Synchrotron IR microspectroscopy: Opportunities in polymer science,” in Synchrotron Radiation in Polymer Science (IOP Publishing Ltd, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic cross-section of PM-MOF. (b) MSC-ESC combination, applied on a quarter of a MOF, used to compute the y-polarized HE11 mode.
Fig. 2
Fig. 2 (a) Phase birefringence and (b) group birefringence as a function of wavelength from 2.0 to 10.0 µm and for different values of dh/Λ ratio. (The hole-to-hole pitch Λ is fixed at 8.0 µm).
Fig. 3
Fig. 3 (a) As38Se62 preform, and (b) Scanning electron microscope image of the As38Se62 MOF.
Fig. 4
Fig. 4 (a) near field observation of 3.39 µm beam at the output of the AsSe MOF, and (b) 3D-representation of the near-field intensity distribution.
Fig. 5
Fig. 5 Optical losses of the core of the PM-MOF.
Fig. 6
Fig. 6 (a) SEM picture of the manufactured PM-MOF with the boundaries and the mean diameter values of the air holes deduced from image processing. (b) Phase birefringence and beat length of the manufactured PM-MOF as a function of wavelength from 4 to 10 µm.
Fig. 7
Fig. 7 Measured polarization oscillations at (a) 5.55µm and (b) at 7.55µm. Spectrometer resolution and fiber length are 0.25cm−1 and 2.6 m respectively to observe distinct oscillations. Note that the overall transmitted intensity is not constant because of inhomogeneity in the FP-QCL gain profile.
Fig. 8
Fig. 8 Wavelength dependence of PM-MOF (a) group birefringence, and (b) phase birefringence. The red solid curve shows the calculated results and the blue shaded curve the fitted results.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n²(λ)= A 0 + A 1 λ² λ² a 1 ² + A 2 λ² λ² a 2 ² .
B g (λ)=B(λ)λ dB(λ) dλ .
T cos 2 (ΔβL/2).
Δφ=L Δβ(λ) λ Δλ= 2πL λ 2 [ B(λ) λ B(λ) ]Δλ= 2πL λ 2 B g (λ)Δλ.

Metrics