Abstract

We report a new approach to preparing a lenticular microlens array (LMA) using polyvinyl chloride (PVC)/dibutyl phthalate (DBP) gels. The PVD/DBP gels coated on a glass substrate form a membrane. With the aid of electrostatic repulsive force, the surface of the membrane can be reconfigured with sinusoidal waves by a DC voltage. The membrane with wavy surface functions as a LMA. By switching over the anode and cathode, the convex shape of each lenticular microlens in the array can be converted to the concave shape. Therefore, the LMA can present a large dynamic range. The response time is relatively fast and the driving voltage is low. With the advantages of compact structure, optical isotropy, and good mechanical stability, our LMA has potential applications in imaging, information processing, biometrics, and displays.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Focus-tunable double convex lens based on non-ionic electroactive gel

Dong-Soo Choi, Jaeu Jeong, Eun-Jae Shin, and Sang-Youn Kim
Opt. Express 25(17) 20133-20141 (2017)

Liquid-crystal microlens arrays using patterned polymer networks

Hongwen Ren, Yun-Hsing Fan, and Shin-Tson Wu
Opt. Lett. 29(14) 1608-1610 (2004)

Dielectric liquid lens with chevron-patterned electrode

Boya Jin, Hongwen Ren, and Wing-Kit Choi
Opt. Express 25(26) 32411-32419 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE 6135, 61350K (2006).
    [Crossref]
  2. J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereocopic display,” Proc. SPIE 6490, 64900M (2007).
    [Crossref]
  3. M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2D/3D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
    [Crossref]
  4. Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
    [Crossref]
  5. Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol. 8(11), 650–655 (2012).
    [Crossref]
  6. J.-H. Na, S.-C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20(2), 864–869 (2012).
    [Crossref] [PubMed]
  7. H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21(7), 7916–7925 (2013).
    [Crossref] [PubMed]
  8. Y.-J. Lee, J.-H. Baek, Y. Kim, J.-U. Heo, Y.-K. Moon, J. S. Gwag, C.-J. Yu, and J.-H. Kim, “Polarizer-free liquid crystal display with electrically switchable microlens array,” Opt. Express 21(1), 129–134 (2013).
    [Crossref] [PubMed]
  9. T.-H. Jen, X. Shen, G. Yao, Y.-P. Huang, H.-P. D. Shieh, and B. Javidi, “Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens,” Opt. Express 23(14), 18415–18421 (2015).
    [Crossref] [PubMed]
  10. R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, “Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems,” Appl. Opt. 52(14), 3172–3177 (2013).
    [Crossref] [PubMed]
  11. C.-C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
    [Crossref] [PubMed]
  12. C. V. Brown, G. G. Wells, M. I. Newton, and G. McHale, “Voltage-programmable liquid optical interface,” Nat. Photonics 3(7), 403–405 (2009).
    [Crossref]
  13. H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
    [Crossref]
  14. Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
    [Crossref] [PubMed]
  15. J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
    [Crossref]
  16. B. T. Hirai, T. Ogiwara, K. Fujii, T. Ueki, K. Kinoshita, and M. Takasaki, “Electrically active artificial pupil showing amoeba-like pseudophodial deformation,” Adv. Mater. 21(28), 2886–2888 (2009).
    [Crossref]
  17. H. Xia, M. Takasaki, and T. Hirai, “Actuation mechanism of plasticized PVC by electric field,” Sens. Actuators A Phys. 157(2), 307–312 (2010).
    [Crossref]
  18. M. Ali, T. Ueki, D. Tsurumi, and T. Hirai, “Influence of plasticizer content on the transition of electromechanical behavior of PVC gel actuator,” Langmuir 27(12), 7902–7908 (2011).
    [Crossref] [PubMed]
  19. S.-Y. Kim, M. Yeo, E.-J. Shin, W.-H. Park, J.-S. Jang, B.-U. Nam, and J. W. Bae, “Fabrication and evaluation of variable focus and large deformation plano-convex microlens based on non-ionic poly(vinyl chloride)/dibutyl adipate gels,” Smart Mater. Struct. 24(11), 115006 (2015).
    [Crossref]
  20. J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. C. J. Moita, and G. Douhéret, “Refractive index of liquid mixtures: theory and experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
    [Crossref] [PubMed]

2015 (2)

T.-H. Jen, X. Shen, G. Yao, Y.-P. Huang, H.-P. D. Shieh, and B. Javidi, “Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens,” Opt. Express 23(14), 18415–18421 (2015).
[Crossref] [PubMed]

S.-Y. Kim, M. Yeo, E.-J. Shin, W.-H. Park, J.-S. Jang, B.-U. Nam, and J. W. Bae, “Fabrication and evaluation of variable focus and large deformation plano-convex microlens based on non-ionic poly(vinyl chloride)/dibutyl adipate gels,” Smart Mater. Struct. 24(11), 115006 (2015).
[Crossref]

2013 (3)

2012 (2)

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

J.-H. Na, S.-C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express 20(2), 864–869 (2012).
[Crossref] [PubMed]

2011 (4)

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[Crossref] [PubMed]

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

M. Ali, T. Ueki, D. Tsurumi, and T. Hirai, “Influence of plasticizer content on the transition of electromechanical behavior of PVC gel actuator,” Langmuir 27(12), 7902–7908 (2011).
[Crossref] [PubMed]

2010 (2)

H. Xia, M. Takasaki, and T. Hirai, “Actuation mechanism of plasticized PVC by electric field,” Sens. Actuators A Phys. 157(2), 307–312 (2010).
[Crossref]

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. C. J. Moita, and G. Douhéret, “Refractive index of liquid mixtures: theory and experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref] [PubMed]

2009 (2)

B. T. Hirai, T. Ogiwara, K. Fujii, T. Ueki, K. Kinoshita, and M. Takasaki, “Electrically active artificial pupil showing amoeba-like pseudophodial deformation,” Adv. Mater. 21(28), 2886–2888 (2009).
[Crossref]

C. V. Brown, G. G. Wells, M. I. Newton, and G. McHale, “Voltage-programmable liquid optical interface,” Nat. Photonics 3(7), 403–405 (2009).
[Crossref]

2008 (1)

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2D/3D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[Crossref]

2007 (1)

J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereocopic display,” Proc. SPIE 6490, 64900M (2007).
[Crossref]

2006 (2)

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE 6135, 61350K (2006).
[Crossref]

C.-C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006).
[Crossref] [PubMed]

2005 (1)

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
[Crossref]

Ali, M.

M. Ali, T. Ueki, D. Tsurumi, and T. Hirai, “Influence of plasticizer content on the transition of electromechanical behavior of PVC gel actuator,” Langmuir 27(12), 7902–7908 (2011).
[Crossref] [PubMed]

Bae, J. W.

S.-Y. Kim, M. Yeo, E.-J. Shin, W.-H. Park, J.-S. Jang, B.-U. Nam, and J. W. Bae, “Fabrication and evaluation of variable focus and large deformation plano-convex microlens based on non-ionic poly(vinyl chloride)/dibutyl adipate gels,” Smart Mater. Struct. 24(11), 115006 (2015).
[Crossref]

Baek, J.-H.

Bright, V. M.

Brown, C. V.

C. V. Brown, G. G. Wells, M. I. Newton, and G. McHale, “Voltage-programmable liquid optical interface,” Nat. Photonics 3(7), 403–405 (2009).
[Crossref]

Chang, C. A.

Chen, C. W.

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

Chen, Y.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Cheng, C.-C.

Cheng, H. C.

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

Choi, Y.

Cogswell, C. J.

Cormack, R. H.

de Boer, D. K. G.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2D/3D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[Crossref]

de Zwart, S. T.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2D/3D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[Crossref]

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE 6135, 61350K (2006).
[Crossref]

Dekker, T.

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE 6135, 61350K (2006).
[Crossref]

Douhéret, G.

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. C. J. Moita, and G. Douhéret, “Refractive index of liquid mixtures: theory and experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref] [PubMed]

Fan, Y.-H.

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
[Crossref]

Flack, J.

J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereocopic display,” Proc. SPIE 6490, 64900M (2007).
[Crossref]

Fujii, K.

B. T. Hirai, T. Ogiwara, K. Fujii, T. Ueki, K. Kinoshita, and M. Takasaki, “Electrically active artificial pupil showing amoeba-like pseudophodial deformation,” Adv. Mater. 21(28), 2886–2888 (2009).
[Crossref]

Gopinath, J. T.

Gwag, J. S.

Harrold, J.

J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereocopic display,” Proc. SPIE 6490, 64900M (2007).
[Crossref]

Heo, J.-U.

Hiddink, M. G. H.

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE 6135, 61350K (2006).
[Crossref]

Hirai, B. T.

B. T. Hirai, T. Ogiwara, K. Fujii, T. Ueki, K. Kinoshita, and M. Takasaki, “Electrically active artificial pupil showing amoeba-like pseudophodial deformation,” Adv. Mater. 21(28), 2886–2888 (2009).
[Crossref]

Hirai, T.

M. Ali, T. Ueki, D. Tsurumi, and T. Hirai, “Influence of plasticizer content on the transition of electromechanical behavior of PVC gel actuator,” Langmuir 27(12), 7902–7908 (2011).
[Crossref] [PubMed]

H. Xia, M. Takasaki, and T. Hirai, “Actuation mechanism of plasticized PVC by electric field,” Sens. Actuators A Phys. 157(2), 307–312 (2010).
[Crossref]

Huang, Y. C.

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

Huang, Y. P.

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

Huang, Y.-P.

IJzerman, W. L.

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE 6135, 61350K (2006).
[Crossref]

Ishinabe, T.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Jang, J.-S.

S.-Y. Kim, M. Yeo, E.-J. Shin, W.-H. Park, J.-S. Jang, B.-U. Nam, and J. W. Bae, “Fabrication and evaluation of variable focus and large deformation plano-convex microlens based on non-ionic poly(vinyl chloride)/dibutyl adipate gels,” Smart Mater. Struct. 24(11), 115006 (2015).
[Crossref]

Javidi, B.

Jen, T.-H.

Jiao, M.

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

Kim, J.-H.

Kim, S.-U.

Kim, S.-Y.

S.-Y. Kim, M. Yeo, E.-J. Shin, W.-H. Park, J.-S. Jang, B.-U. Nam, and J. W. Bae, “Fabrication and evaluation of variable focus and large deformation plano-convex microlens based on non-ionic poly(vinyl chloride)/dibutyl adipate gels,” Smart Mater. Struct. 24(11), 115006 (2015).
[Crossref]

Kim, Y.

Kinoshita, K.

B. T. Hirai, T. Ogiwara, K. Fujii, T. Ueki, K. Kinoshita, and M. Takasaki, “Electrically active artificial pupil showing amoeba-like pseudophodial deformation,” Adv. Mater. 21(28), 2886–2888 (2009).
[Crossref]

Krijn, M. P. C. M.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2D/3D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[Crossref]

Lampreia, I. M. S.

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. C. J. Moita, and G. Douhéret, “Refractive index of liquid mixtures: theory and experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref] [PubMed]

Lee, S.-D.

Lee, Y.-J.

Li, Y.

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[Crossref] [PubMed]

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

Lin, Y.-H.

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
[Crossref]

Liu, Y.

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21(7), 7916–7925 (2013).
[Crossref] [PubMed]

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

McHale, G.

C. V. Brown, G. G. Wells, M. I. Newton, and G. McHale, “Voltage-programmable liquid optical interface,” Nat. Photonics 3(7), 403–405 (2009).
[Crossref]

Moita, M. L. C. J.

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. C. J. Moita, and G. Douhéret, “Refractive index of liquid mixtures: theory and experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref] [PubMed]

Moon, Y.-K.

Na, J.-H.

Nam, B.-U.

S.-Y. Kim, M. Yeo, E.-J. Shin, W.-H. Park, J.-S. Jang, B.-U. Nam, and J. W. Bae, “Fabrication and evaluation of variable focus and large deformation plano-convex microlens based on non-ionic poly(vinyl chloride)/dibutyl adipate gels,” Smart Mater. Struct. 24(11), 115006 (2015).
[Crossref]

Newton, M. I.

C. V. Brown, G. G. Wells, M. I. Newton, and G. McHale, “Voltage-programmable liquid optical interface,” Nat. Photonics 3(7), 403–405 (2009).
[Crossref]

Niederriter, R. D.

Ogiwara, T.

B. T. Hirai, T. Ogiwara, K. Fujii, T. Ueki, K. Kinoshita, and M. Takasaki, “Electrically active artificial pupil showing amoeba-like pseudophodial deformation,” Adv. Mater. 21(28), 2886–2888 (2009).
[Crossref]

Park, S.-C.

Park, W.-H.

S.-Y. Kim, M. Yeo, E.-J. Shin, W.-H. Park, J.-S. Jang, B.-U. Nam, and J. W. Bae, “Fabrication and evaluation of variable focus and large deformation plano-convex microlens based on non-ionic poly(vinyl chloride)/dibutyl adipate gels,” Smart Mater. Struct. 24(11), 115006 (2015).
[Crossref]

Rao, L.

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Reis, J. C. R.

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. C. J. Moita, and G. Douhéret, “Refractive index of liquid mixtures: theory and experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref] [PubMed]

Ren, H.

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21(7), 7916–7925 (2013).
[Crossref] [PubMed]

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
[Crossref]

Santos, A. F. S.

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. C. J. Moita, and G. Douhéret, “Refractive index of liquid mixtures: theory and experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref] [PubMed]

Shen, X.

Shieh, H.-P. D.

Shin, E.-J.

S.-Y. Kim, M. Yeo, E.-J. Shin, W.-H. Park, J.-S. Jang, B.-U. Nam, and J. W. Bae, “Fabrication and evaluation of variable focus and large deformation plano-convex microlens based on non-ionic poly(vinyl chloride)/dibutyl adipate gels,” Smart Mater. Struct. 24(11), 115006 (2015).
[Crossref]

Sluijter, M.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2D/3D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[Crossref]

Takasaki, M.

H. Xia, M. Takasaki, and T. Hirai, “Actuation mechanism of plasticized PVC by electric field,” Sens. Actuators A Phys. 157(2), 307–312 (2010).
[Crossref]

B. T. Hirai, T. Ogiwara, K. Fujii, T. Ueki, K. Kinoshita, and M. Takasaki, “Electrically active artificial pupil showing amoeba-like pseudophodial deformation,” Adv. Mater. 21(28), 2886–2888 (2009).
[Crossref]

Tsurumi, D.

M. Ali, T. Ueki, D. Tsurumi, and T. Hirai, “Influence of plasticizer content on the transition of electromechanical behavior of PVC gel actuator,” Langmuir 27(12), 7902–7908 (2011).
[Crossref] [PubMed]

Ueki, T.

M. Ali, T. Ueki, D. Tsurumi, and T. Hirai, “Influence of plasticizer content on the transition of electromechanical behavior of PVC gel actuator,” Langmuir 27(12), 7902–7908 (2011).
[Crossref] [PubMed]

B. T. Hirai, T. Ogiwara, K. Fujii, T. Ueki, K. Kinoshita, and M. Takasaki, “Electrically active artificial pupil showing amoeba-like pseudophodial deformation,” Adv. Mater. 21(28), 2886–2888 (2009).
[Crossref]

Watson, A. M.

Wells, G. G.

C. V. Brown, G. G. Wells, M. I. Newton, and G. McHale, “Voltage-programmable liquid optical interface,” Nat. Photonics 3(7), 403–405 (2009).
[Crossref]

Willemsen, O. H.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2D/3D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[Crossref]

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE 6135, 61350K (2006).
[Crossref]

Woodgate, J.

J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereocopic display,” Proc. SPIE 6490, 64900M (2007).
[Crossref]

Wu, S. T.

Wu, S.-T.

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
[Crossref]

Xia, H.

H. Xia, M. Takasaki, and T. Hirai, “Actuation mechanism of plasticized PVC by electric field,” Sens. Actuators A Phys. 157(2), 307–312 (2010).
[Crossref]

Xu, S.

H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express 21(7), 7916–7925 (2013).
[Crossref] [PubMed]

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Yan, J.

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

Yao, G.

Yeh, J. A.

Yeo, M.

S.-Y. Kim, M. Yeo, E.-J. Shin, W.-H. Park, J.-S. Jang, B.-U. Nam, and J. W. Bae, “Fabrication and evaluation of variable focus and large deformation plano-convex microlens based on non-ionic poly(vinyl chloride)/dibutyl adipate gels,” Smart Mater. Struct. 24(11), 115006 (2015).
[Crossref]

Yu, C.-J.

Zahreddine, R. N.

Adv. Mater. (1)

B. T. Hirai, T. Ogiwara, K. Fujii, T. Ueki, K. Kinoshita, and M. Takasaki, “Electrically active artificial pupil showing amoeba-like pseudophodial deformation,” Adv. Mater. 21(28), 2886–2888 (2009).
[Crossref]

Appl. Opt. (1)

ChemPhysChem (1)

J. C. R. Reis, I. M. S. Lampreia, A. F. S. Santos, M. L. C. J. Moita, and G. Douhéret, “Refractive index of liquid mixtures: theory and experiment,” ChemPhysChem 11(17), 3722–3733 (2010).
[Crossref] [PubMed]

J. Disp. Technol. (2)

Y. Liu, H. Ren, S. Xu, Y. Chen, L. Rao, T. Ishinabe, and S.-T. Wu, “Adaptive focus integral image system design based on fast-response liquid crystal microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol. 8(11), 650–655 (2012).
[Crossref]

J. Mater. Chem. (1)

J. Yan, L. Rao, M. Jiao, Y. Li, H. C. Cheng, and S. T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[Crossref]

J. Soc. Inf. Disp. (1)

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2D/3D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[Crossref]

Langmuir (1)

M. Ali, T. Ueki, D. Tsurumi, and T. Hirai, “Influence of plasticizer content on the transition of electromechanical behavior of PVC gel actuator,” Langmuir 27(12), 7902–7908 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

C. V. Brown, G. G. Wells, M. I. Newton, and G. McHale, “Voltage-programmable liquid optical interface,” Nat. Photonics 3(7), 403–405 (2009).
[Crossref]

Opt. Commun. (1)

H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247(1–3), 101–106 (2005).
[Crossref]

Opt. Express (6)

Proc. SPIE (2)

T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE 6135, 61350K (2006).
[Crossref]

J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereocopic display,” Proc. SPIE 6490, 64900M (2007).
[Crossref]

Sens. Actuators A Phys. (1)

H. Xia, M. Takasaki, and T. Hirai, “Actuation mechanism of plasticized PVC by electric field,” Sens. Actuators A Phys. 157(2), 307–312 (2010).
[Crossref]

Smart Mater. Struct. (1)

S.-Y. Kim, M. Yeo, E.-J. Shin, W.-H. Park, J.-S. Jang, B.-U. Nam, and J. W. Bae, “Fabrication and evaluation of variable focus and large deformation plano-convex microlens based on non-ionic poly(vinyl chloride)/dibutyl adipate gels,” Smart Mater. Struct. 24(11), 115006 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Structure and operation mechanism of the LMA. (a) cross-sectional structure, (b) the pattern of the electrode, (c) anode to terminal A and cathode to terminal B, and (d) anode to terminal B and cathode to terminal A.
Fig. 2
Fig. 2 Image of the resolution target observed through the PVC/DBP membrane, the ITO stripe of the substrate is placed in vertical position. (a) V = 0, (b) V = 50 V.
Fig. 3
Fig. 3 Experimental setup for measuring the focus of the LMA
Fig. 4
Fig. 4 Light intensity distribution. From (a) (see Visualization 1) to (b) to (c), the driven voltage is V = 0, V = 30 V and V = 50 V, respectively. From (d) to (e) to (f) (see Visualization 2) the time of V = −50 V impacting on the device is 4 s, 7 s and 12 s, respectively. The dynamic video is recorded by switching over the anode and cathode when V = 50 V.
Fig. 5
Fig. 5 Focal length of one lenticular microlens at different voltages.
Fig. 6
Fig. 6 Surface profile of cured NOA 81 taken by SEM. (a) partial area of NOA81 cured at V = 0, (b) the left NOA81 cured at V = 50 V, and (c) cross-sectional configuration of the cured NOA81 with three periods shown in (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F= r n1

Metrics