Abstract

A novel backside-illuminated mesa-structure dual-drifting layer (DDL) uni-traveling-carrier photodiode (UTC-PD) is reported to demonstrate high-power performance at sub-THz frequencies. The DDL structure consists of a velocity overshoot layer and a velocity saturation layer, formed by inserting a 20 nm p-type cliff layer into the thick depletion region. In the overshoot layer, photo-generated electrons drift at overshoot velocity under the carefully designed electric field profile, thus resulting in a short electron transit time. The saturation layer serves as a voltage sacrificing layer to enable high bias voltage operation, which leads to alleviated load voltage swing effect, as well as improved saturation performance. Our DDL UTC-PD exhibits a 3-dB bandwidth of 106 GHz with a responsivity of 0.17 A/W under a wide bias voltage range from 4 to 8 V. The photocurrent reaches up to 28 mA, corresponding to an output power of 7.3 dBm at 105 GHz.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of broadband and high-output power uni-traveling-carrier photodiodes

Rong Zhang, Bouchaib Hraimel, Xue Li, Peng Zhang, and Xiupu Zhang
Opt. Express 21(6) 6943-6954 (2013)

Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model

Jin Li, Bing Xiong, Changzheng Sun, Di Miao, and Yi Luo
Opt. Express 23(17) 21615-21623 (2015)

Uni-traveling-carrier variable confinement waveguide photodiodes

Jonathan Klamkin, Shannon M. Madison, Douglas C. Oakley, Antonio Napoleone, Frederick J. O’Donnell, Michael Sheehan, Leo J. Missaggia, Janice M. Caissie, Jason J. Plant, and Paul W. Juodawlkis
Opt. Express 19(11) 10199-10205 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  3. J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Mater. 3(4), 41–48 (2011).
    [Crossref]
  4. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
    [Crossref]
  5. T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009).
    [Crossref]
  6. J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
    [Crossref]
  7. X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
    [Crossref]
  8. T. Shi, B. Xiong, C.-Z. Sun, and Y. Luo, “Back-to-Back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
    [Crossref]
  9. A. Beling, A.-S. Cross, M. Piels, J. Peters, Q. Zhou, J.-E. Bowers, and J. C. Campbell, “InP-based waveguide photodiodes heterogeneously integrated on silicon-on-insulator for photonic microwave generation,” Opt. Express 21(22), 25901–25906 (2013).
    [Crossref] [PubMed]
  10. Y.-S. Wu and J.-W. Shi, “Dynamic analysis of high-power and high-speed near-ballistic uni-traveling carrier photodiodes at w-band,” IEEE Photonics Technol. Lett. 20(13), 1160–1162 (2008).
    [Crossref]
  11. J.-W. Shi, F.-M. Kuo, and J.-E. Bowers, “Design and Analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50Ω load for high-power performance,” IEEE Photonics Technol. Lett. 24(7), 533–535 (2012).
    [Crossref]
  12. J. Li, B. Xiong, C.-Z. Sun, and Y. Luo, “Dual-drifting-layer uni-traveling carrier photodiode for wide bandwidth and high power performance,” in Conference on Lasers & Electro-Optics (CLEO) (2015), 1–2.
  13. T. J. Maloney and J. Frey, “Transient and steady-state electron transport properties of GaAs and InP,” J. Appl. Phys. 48(2), 781–787 (1977).
    [Crossref]
  14. T. H. Windhorn, L. W. Cook, M. A. Haase, and G. E. Stillman, “Electron transport in InP at high electric fields,” Appl. Phys. Lett. 42(8), 725–727 (1983).
    [Crossref]
  15. J. Li, B. Xiong, C. Sun, D. Miao, and Y. Luo, “Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model,” Opt. Express 23(17), 21615–21623 (2015).
    [Crossref] [PubMed]
  16. Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J.-E. Bowers, and J. C. Campbell, “High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express 19(26), B385–B390 (2011).
    [Crossref] [PubMed]
  17. J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
    [Crossref]

2015 (2)

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

J. Li, B. Xiong, C. Sun, D. Miao, and Y. Luo, “Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model,” Opt. Express 23(17), 21615–21623 (2015).
[Crossref] [PubMed]

2013 (3)

T. Shi, B. Xiong, C.-Z. Sun, and Y. Luo, “Back-to-Back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
[Crossref]

A. Beling, A.-S. Cross, M. Piels, J. Peters, Q. Zhou, J.-E. Bowers, and J. C. Campbell, “InP-based waveguide photodiodes heterogeneously integrated on silicon-on-insulator for photonic microwave generation,” Opt. Express 21(22), 25901–25906 (2013).
[Crossref] [PubMed]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

2012 (1)

J.-W. Shi, F.-M. Kuo, and J.-E. Bowers, “Design and Analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50Ω load for high-power performance,” IEEE Photonics Technol. Lett. 24(7), 533–535 (2012).
[Crossref]

2011 (2)

J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Mater. 3(4), 41–48 (2011).
[Crossref]

Z. Li, Y. Fu, M. Piels, H. Pan, A. Beling, J.-E. Bowers, and J. C. Campbell, “High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express 19(26), B385–B390 (2011).
[Crossref] [PubMed]

2010 (1)

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

2009 (2)

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

2008 (1)

Y.-S. Wu and J.-W. Shi, “Dynamic analysis of high-power and high-speed near-ballistic uni-traveling carrier photodiodes at w-band,” IEEE Photonics Technol. Lett. 20(13), 1160–1162 (2008).
[Crossref]

2007 (2)

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

1983 (1)

T. H. Windhorn, L. W. Cook, M. A. Haase, and G. E. Stillman, “Electron transport in InP at high electric fields,” Appl. Phys. Lett. 42(8), 725–727 (1983).
[Crossref]

1977 (1)

T. J. Maloney and J. Frey, “Transient and steady-state electron transport properties of GaAs and InP,” J. Appl. Phys. 48(2), 781–787 (1977).
[Crossref]

Ambacher, O.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Antes, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Beling, A.

Boes, F.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Bowers, J.-E.

Campbell, J. C.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chang, C. L.

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Chen, Ch. Y.

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Chen, H.

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

Chyi, J.-I.

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Cook, L. W.

T. H. Windhorn, L. W. Cook, M. A. Haase, and G. E. Stillman, “Electron transport in InP at high electric fields,” Appl. Phys. Lett. 42(8), 725–727 (1983).
[Crossref]

Cross, A.-S.

Duan, N.

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

Freude, W.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Frey, J.

T. J. Maloney and J. Frey, “Transient and steady-state electron transport properties of GaAs and InP,” J. Appl. Phys. 48(2), 781–787 (1977).
[Crossref]

Fu, Y.

Haase, M. A.

T. H. Windhorn, L. W. Cook, M. A. Haase, and G. E. Stillman, “Electron transport in InP at high electric fields,” Appl. Phys. Lett. 42(8), 725–727 (1983).
[Crossref]

Han, Y.-J.

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

Hao, Z.-B.

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

Henneberger, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hillerkuss, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Huang, C.-B.

J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Mater. 3(4), 41–48 (2011).
[Crossref]

Ishibashi, T.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009).
[Crossref]

Ito, H.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009).
[Crossref]

Kallfass, I.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Koenig, S.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Koos, C.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kuo, F.-M.

J.-W. Shi, F.-M. Kuo, and J.-E. Bowers, “Design and Analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50Ω load for high-power performance,” IEEE Photonics Technol. Lett. 24(7), 533–535 (2012).
[Crossref]

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Leuther, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Leuthold, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Li, H.-T.

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

Li, J.

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

J. Li, B. Xiong, C. Sun, D. Miao, and Y. Luo, “Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model,” Opt. Express 23(17), 21615–21623 (2015).
[Crossref] [PubMed]

J. Li, B. Xiong, C.-Z. Sun, and Y. Luo, “Dual-drifting-layer uni-traveling carrier photodiode for wide bandwidth and high power performance,” in Conference on Lasers & Electro-Optics (CLEO) (2015), 1–2.

Li, Z.

Liu, Ch.-Y.

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Lopez-Diaz, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Luo, Y.

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

J. Li, B. Xiong, C. Sun, D. Miao, and Y. Luo, “Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model,” Opt. Express 23(17), 21615–21623 (2015).
[Crossref] [PubMed]

T. Shi, B. Xiong, C.-Z. Sun, and Y. Luo, “Back-to-Back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
[Crossref]

J. Li, B. Xiong, C.-Z. Sun, and Y. Luo, “Dual-drifting-layer uni-traveling carrier photodiode for wide bandwidth and high power performance,” in Conference on Lasers & Electro-Optics (CLEO) (2015), 1–2.

Maloney, T. J.

T. J. Maloney and J. Frey, “Transient and steady-state electron transport properties of GaAs and InP,” J. Appl. Phys. 48(2), 781–787 (1977).
[Crossref]

Miao, D.

Nagatsuma, T.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Palmer, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Pan, C.-L.

J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Mater. 3(4), 41–48 (2011).
[Crossref]

Pan, H.

Peters, J.

Piels, M.

Schmogrow, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Shi, J.-W.

J.-W. Shi, F.-M. Kuo, and J.-E. Bowers, “Design and Analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50Ω load for high-power performance,” IEEE Photonics Technol. Lett. 24(7), 533–535 (2012).
[Crossref]

J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Mater. 3(4), 41–48 (2011).
[Crossref]

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Y.-S. Wu and J.-W. Shi, “Dynamic analysis of high-power and high-speed near-ballistic uni-traveling carrier photodiodes at w-band,” IEEE Photonics Technol. Lett. 20(13), 1160–1162 (2008).
[Crossref]

Shi, T.

T. Shi, B. Xiong, C.-Z. Sun, and Y. Luo, “Back-to-Back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
[Crossref]

Stillman, G. E.

T. H. Windhorn, L. W. Cook, M. A. Haase, and G. E. Stillman, “Electron transport in InP at high electric fields,” Appl. Phys. Lett. 42(8), 725–727 (1983).
[Crossref]

Sun, C.

Sun, C.-Z.

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

T. Shi, B. Xiong, C.-Z. Sun, and Y. Luo, “Back-to-Back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
[Crossref]

J. Li, B. Xiong, C.-Z. Sun, and Y. Luo, “Dual-drifting-layer uni-traveling carrier photodiode for wide bandwidth and high power performance,” in Conference on Lasers & Electro-Optics (CLEO) (2015), 1–2.

Tessmann, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Wang, J.

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

Wang, L.

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

Wang, X.

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

Windhorn, T. H.

T. H. Windhorn, L. W. Cook, M. A. Haase, and G. E. Stillman, “Electron transport in InP at high electric fields,” Appl. Phys. Lett. 42(8), 725–727 (1983).
[Crossref]

Wu, C.-J.

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

Wu, Y.-S.

Y.-S. Wu and J.-W. Shi, “Dynamic analysis of high-power and high-speed near-ballistic uni-traveling carrier photodiodes at w-band,” IEEE Photonics Technol. Lett. 20(13), 1160–1162 (2008).
[Crossref]

Xiong, B.

J. Li, B. Xiong, C. Sun, D. Miao, and Y. Luo, “Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model,” Opt. Express 23(17), 21615–21623 (2015).
[Crossref] [PubMed]

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

T. Shi, B. Xiong, C.-Z. Sun, and Y. Luo, “Back-to-Back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
[Crossref]

J. Li, B. Xiong, C.-Z. Sun, and Y. Luo, “Dual-drifting-layer uni-traveling carrier photodiode for wide bandwidth and high power performance,” in Conference on Lasers & Electro-Optics (CLEO) (2015), 1–2.

Yao, J.

Zhou, Q.

Zwick, T.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Appl. Phys. Lett. (1)

T. H. Windhorn, L. W. Cook, M. A. Haase, and G. E. Stillman, “Electron transport in InP at high electric fields,” Appl. Phys. Lett. 42(8), 725–727 (1983).
[Crossref]

Chin. Phys. B (1)

J. Li, B. Xiong, C.-Z. Sun, Y. Luo, J. Wang, Z.-B. Hao, Y.-J. Han, L. Wang, and H.-T. Li, “Bandwidth improvement of high power uni-traveling-carrier photodiodes by reducing the series resistance and capacitance,” Chin. Phys. B 24(7), 078503 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, Ch.-Y. Liu, Ch. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron. 46(1), 80–86 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (4)

Y.-S. Wu and J.-W. Shi, “Dynamic analysis of high-power and high-speed near-ballistic uni-traveling carrier photodiodes at w-band,” IEEE Photonics Technol. Lett. 20(13), 1160–1162 (2008).
[Crossref]

J.-W. Shi, F.-M. Kuo, and J.-E. Bowers, “Design and Analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50Ω load for high-power performance,” IEEE Photonics Technol. Lett. 24(7), 533–535 (2012).
[Crossref]

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs/InP photodiodes with high responsivity and high saturation power,” IEEE Photonics Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

T. Shi, B. Xiong, C.-Z. Sun, and Y. Luo, “Back-to-Back UTC-PDs with high responsivity, high saturation current and wide bandwidth,” IEEE Photonics Technol. Lett. 25(2), 136–139 (2013).
[Crossref]

J. Appl. Phys. (1)

T. J. Maloney and J. Frey, “Transient and steady-state electron transport properties of GaAs and InP,” J. Appl. Phys. 48(2), 781–787 (1977).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009).
[Crossref]

Nat. Photonics (2)

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

NPG Asia Mater. (1)

J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Mater. 3(4), 41–48 (2011).
[Crossref]

Opt. Express (3)

Other (1)

J. Li, B. Xiong, C.-Z. Sun, and Y. Luo, “Dual-drifting-layer uni-traveling carrier photodiode for wide bandwidth and high power performance,” in Conference on Lasers & Electro-Optics (CLEO) (2015), 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Epitaxial layer structure and (b) energy band diagram of the reverse biased DDL UTC-PD.
Fig. 2
Fig. 2 Electric field profiles within (a) UTC-PD and (b) DDL UTC-PD under different reverse biases.
Fig. 3
Fig. 3 (a) Schematic view and (b) I-V curves of the 6-μm diameter DDL UTC-PD.
Fig. 4
Fig. 4 (a) Bias dependent frequency response at a photocurrent of 10 mA. Measured data are depicted by open squares and circles, whereas fitted ones are given by solid lines. (b) 3-dB bandwidth of the device at a photocurrent of 10 mA under different reverse biases.
Fig. 5
Fig. 5 Output RF power versus dc photocurrent of the 6-μm diameter DDL UTC-PD at 105 GHz under different reverse biases.
Fig. 6
Fig. 6 (a): Equivalent circuit model of the DDL UTC-PD [15]. (b) Smith chart: The measured and simulated S22 parameter of the device under 6V reverse bias when the photocurrent is 10 mA.
Fig. 7
Fig. 7 Transit time and average drifting velocity of electron in the DDL UTC-PD at a photocurrent of 10 mA under different reverse biases.

Metrics