Abstract

In this paper, we demonstrate a multi-functional liquid-crystal lens (MFLC-lens) based on dual-layer electrode design. Compared with the previous 3D endoscopes, which use double fixed lens capturing, the proposed LC lens is not only switchable between 2D and 3D modes, but also is able to adjust focus in both modes. The diameter of the MFLC-lens is only 1.42mm, which is much smaller than the available 3D endoscopes with double fixed lenses. To achieve the MFLC-lens, a high-resistance layer needs to be coated on the electrode to generate an ideal gradient electric-field distribution, which can induce a lens-like form of LC molecules. The parameters of high-resistive layer are investigated and discussed with an aim to optimize the performance of the MFLC-lens.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hexagonal liquid crystal lens array for 3D endoscopy

Amir Hassanfiroozi, Yi-Pai Huang, Bahram Javidi, and Han-Ping D. Shieh
Opt. Express 23(2) 971-981 (2015)

High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display

Yu-Cheng Chang, Tai-Hsiang Jen, Chih-Hung Ting, and Yi-Pai Huang
Opt. Express 22(3) 2714-2724 (2014)

An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes

Hung-Chun Lin and Yi-Hsin Lin
Opt. Express 20(3) 2045-2052 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  2. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(5B), L571–L573 (2002).
  3. S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6(6), 471–485 (1999).
    [Crossref]
  4. T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(5B), 1643–1646 (1992).
    [Crossref]
  5. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
    [Crossref] [PubMed]
  6. H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
    [Crossref] [PubMed]
  7. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  8. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(11A), L1232–L1233 (2002).
    [Crossref]
  9. H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
    [Crossref] [PubMed]
  10. M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(9A), 6108–6111 (2004).
    [Crossref]
  11. H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
    [Crossref]
  12. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
    [Crossref]
  13. H. Ren, S. Xu, and S.-T. Wu, “Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time,” Opt. Lett. 38(16), 3144–3147 (2013).
    [Crossref] [PubMed]
  14. O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
    [Crossref] [PubMed]
  15. Y. Y. Kao and P. C. P. Chao, “A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors (Basel) 11(12), 5402–5415 (2011).
    [Crossref] [PubMed]
  16. C.-T. Lee, Y. Li, H.-Y. Lin, and S.-T. Wu, “Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19(18), 17402–17407 (2011).
    [Crossref] [PubMed]
  17. C. J. Hsu, P. C. P. Chao, and Y. Y. Kao, “A Thin Multi-Ring Negative Liquid Crystal Lens Enabled by High-k Dielectric Material,” Microsyst. Technol. 17(5–7), 923–929 (2011).
    [Crossref]
  18. Y. Li, Y. Liu, Q. Li, and S. T. Wu, “Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film,” Appl. Opt. 51(14), 2568–2572 (2012).
    [Crossref] [PubMed]
  19. M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
    [Crossref]
  20. M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express 16(6), 4302–4308 (2008).
    [Crossref] [PubMed]
  21. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
    [Crossref] [PubMed]
  22. C.-W. Chen, M. Cho, Y.-P. Huang, and B. Javidi, “Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens,” Opt. Lett. 37(19), 4125–4127 (2012).
    [Crossref] [PubMed]
  23. Y. Liu, H. Ren, S. Xu, Y. Li, and S. T. Wu, “Fast-response liquid-crystal lens for 3D displays,” Proc. SPIE 9005, 900503 (2014), doi:.
    [Crossref]
  24. Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
    [Crossref] [PubMed]
  25. V. Urruchi, J. F. Algorri, C. Marcos, and J. M. Sánchez-Pena, “Note: Electrical modeling and characterization of voltage gradient in liquid crystal microlenses,” Rev. Sci. Instrum. 84(11), 116105 (2013).
    [Crossref] [PubMed]
  26. G. Shibuya, H. Yoshida, and M. Ozaki, “High-speed driving of liquid crystal lens with weakly conductive thin films and voltage booster,” Appl. Opt. 54(27), 8145–8151 (2015).
    [Crossref] [PubMed]
  27. M. Kawamura, K. Nakamura, and S. Sato, “Liquid-crystal micro-lens array with two-divided and tetragonally hole-patterned electrodes,” Opt. Express 21(22), 26520–26526 (2013).
    [Crossref] [PubMed]
  28. H. S. Chen and Y. H. Lin, “An electrically tunable endoscopic system by adding a liquid crystal lens to enlarge and shift depth-of field,” Opt. Express 21(15), 18079–18088 (2013).
  29. S. Kuiper, “Electrowetting-based liquid lenses for endoscopy,” Proc. SPIE 7930, 793008 (2011).
    [Crossref]
  30. H.-S. Chen and Y.-H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
    [Crossref] [PubMed]
  31. S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
    [Crossref]
  32. Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
    [Crossref] [PubMed]
  33. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
    [Crossref] [PubMed]
  34. Y. P. Huang, C. W. Chen, and Y.-C. Huang, “Superzone Fresnel Liquid Crystal Lens for Temporal Scanning Auto-stereoscopic Display,” IEEE J. Display Technol. 8(11), 650–655 (2012).
    [Crossref]
  35. H. Li, F. Pan, Y. Wu, Y. Zhang, and X. Xie, “Three-dimensional imaging based on electronically adaptive liquid crystal lens,” Appl. Opt. 53(33), 7916–7923 (2014).
    [Crossref] [PubMed]
  36. H. S. Chen, M. S. Chen, and Y. H. Lin, “An electrically tunable depth-of-field endoscope using a liquid crystal lens as an active focusing element,” Proc. SPIE 8828, Liq. Cryst. XVII, 88281C (2013).
  37. A. Hassanfiroozi, Y.-P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23(2), 971–981 (2015).
    [Crossref] [PubMed]
  38. Y.-J. Wang, X. Shen, Y.-H. Lin, and B. Javidi, “Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens,” Opt. Lett. 40(15), 3564–3567 (2015).
    [Crossref] [PubMed]
  39. M. M. Fenske, Q. Liu, R. J. Sclabassi, and M. Sun, “A Design of a Liquid Crystal Based Single-Lens Stereo Endoscope,” in Proceedings of the IEEE 32nd Annual Northeast Bioengineering Conference, April 2006, pp.43–44.
    [Crossref]
  40. P. de Gennes and J. Prost, The Physics of Liquid Crystal (Clarendon, 1993).
  41. H. De Smet, J. Van den Steen, and D. Cuypers, “Electrical model of a liquid crystal pixel with dynamic, voltage history-dependent capacitance value,” Liq. Cryst. 31(5), 705–711 (2004).
    [Crossref]
  42. J. H. Kim, T.-Y. Seong, S.-I. Na, K.-B. Chung, H.-M. Lee, and H.-K. Kim, “Highly transparent Nb-doped indium oxide electrodes for organic solar cells,” J. Vac. Sci. Technol. A 32(2), 021202 (2014), doi:.
    [Crossref]
  43. X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007), doi:.
    [Crossref]
  44. S.-J. Hwang, T.-A. Chen, K.-R. Lin, and S.-C. Jeng, “Ultraviolet light treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
    [Crossref]
  45. S. Dhara and N. V. Madhusudana, “Ionic contribution to the dielectric properties of a nematic liquid crystal in thin cells,” N. V. J. Appl. Phys. 90(7), 3483–3488 (2001), doi:.
    [Crossref]
  46. A. L. Alexe-Ionescu, G. Barbero, and I. Lelidis, “Complex Dielectric Constant of a Nematic Liquid Crystal Containing Two Types of Ions: Limit of Validity of the Superposition Principle,” J. Phys. Chem. B 113(44), 14747–14753 (2009), doi:.
    [Crossref] [PubMed]

2015 (3)

2014 (4)

H. Li, F. Pan, Y. Wu, Y. Zhang, and X. Xie, “Three-dimensional imaging based on electronically adaptive liquid crystal lens,” Appl. Opt. 53(33), 7916–7923 (2014).
[Crossref] [PubMed]

Y. Liu, H. Ren, S. Xu, Y. Li, and S. T. Wu, “Fast-response liquid-crystal lens for 3D displays,” Proc. SPIE 9005, 900503 (2014), doi:.
[Crossref]

Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
[Crossref] [PubMed]

J. H. Kim, T.-Y. Seong, S.-I. Na, K.-B. Chung, H.-M. Lee, and H.-K. Kim, “Highly transparent Nb-doped indium oxide electrodes for organic solar cells,” J. Vac. Sci. Technol. A 32(2), 021202 (2014), doi:.
[Crossref]

2013 (7)

2012 (6)

2011 (4)

S. Kuiper, “Electrowetting-based liquid lenses for endoscopy,” Proc. SPIE 7930, 793008 (2011).
[Crossref]

Y. Y. Kao and P. C. P. Chao, “A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors (Basel) 11(12), 5402–5415 (2011).
[Crossref] [PubMed]

C.-T. Lee, Y. Li, H.-Y. Lin, and S.-T. Wu, “Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19(18), 17402–17407 (2011).
[Crossref] [PubMed]

C. J. Hsu, P. C. P. Chao, and Y. Y. Kao, “A Thin Multi-Ring Negative Liquid Crystal Lens Enabled by High-k Dielectric Material,” Microsyst. Technol. 17(5–7), 923–929 (2011).
[Crossref]

2010 (2)

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

2009 (2)

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

A. L. Alexe-Ionescu, G. Barbero, and I. Lelidis, “Complex Dielectric Constant of a Nematic Liquid Crystal Containing Two Types of Ions: Limit of Validity of the Superposition Principle,” J. Phys. Chem. B 113(44), 14747–14753 (2009), doi:.
[Crossref] [PubMed]

2008 (2)

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[Crossref]

M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express 16(6), 4302–4308 (2008).
[Crossref] [PubMed]

2007 (2)

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref] [PubMed]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007), doi:.
[Crossref]

2006 (2)

2004 (3)

M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(9A), 6108–6111 (2004).
[Crossref]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[Crossref] [PubMed]

H. De Smet, J. Van den Steen, and D. Cuypers, “Electrical model of a liquid crystal pixel with dynamic, voltage history-dependent capacitance value,” Liq. Cryst. 31(5), 705–711 (2004).
[Crossref]

2002 (2)

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(5B), L571–L573 (2002).

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(11A), L1232–L1233 (2002).
[Crossref]

2001 (1)

S. Dhara and N. V. Madhusudana, “Ionic contribution to the dielectric properties of a nematic liquid crystal in thin cells,” N. V. J. Appl. Phys. 90(7), 3483–3488 (2001), doi:.
[Crossref]

1999 (1)

S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6(6), 471–485 (1999).
[Crossref]

1992 (1)

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(5B), 1643–1646 (1992).
[Crossref]

1979 (2)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Alexe-Ionescu, A. L.

A. L. Alexe-Ionescu, G. Barbero, and I. Lelidis, “Complex Dielectric Constant of a Nematic Liquid Crystal Containing Two Types of Ions: Limit of Validity of the Superposition Principle,” J. Phys. Chem. B 113(44), 14747–14753 (2009), doi:.
[Crossref] [PubMed]

Algorri, J. F.

V. Urruchi, J. F. Algorri, C. Marcos, and J. M. Sánchez-Pena, “Note: Electrical modeling and characterization of voltage gradient in liquid crystal microlenses,” Rev. Sci. Instrum. 84(11), 116105 (2013).
[Crossref] [PubMed]

Barbero, G.

A. L. Alexe-Ionescu, G. Barbero, and I. Lelidis, “Complex Dielectric Constant of a Nematic Liquid Crystal Containing Two Types of Ions: Limit of Validity of the Superposition Principle,” J. Phys. Chem. B 113(44), 14747–14753 (2009), doi:.
[Crossref] [PubMed]

Chang, Y.-C.

Chao, P. C. P.

Y. Y. Kao and P. C. P. Chao, “A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors (Basel) 11(12), 5402–5415 (2011).
[Crossref] [PubMed]

C. J. Hsu, P. C. P. Chao, and Y. Y. Kao, “A Thin Multi-Ring Negative Liquid Crystal Lens Enabled by High-k Dielectric Material,” Microsyst. Technol. 17(5–7), 923–929 (2011).
[Crossref]

Chen, C. W.

Y. P. Huang, C. W. Chen, and Y.-C. Huang, “Superzone Fresnel Liquid Crystal Lens for Temporal Scanning Auto-stereoscopic Display,” IEEE J. Display Technol. 8(11), 650–655 (2012).
[Crossref]

Chen, C.-W.

Chen, H. S.

H. S. Chen, M. S. Chen, and Y. H. Lin, “An electrically tunable depth-of-field endoscope using a liquid crystal lens as an active focusing element,” Proc. SPIE 8828, Liq. Cryst. XVII, 88281C (2013).

H. S. Chen and Y. H. Lin, “An electrically tunable endoscopic system by adding a liquid crystal lens to enlarge and shift depth-of field,” Opt. Express 21(15), 18079–18088 (2013).

Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref] [PubMed]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Chen, H.-S.

Chen, M. S.

H. S. Chen, M. S. Chen, and Y. H. Lin, “An electrically tunable depth-of-field endoscope using a liquid crystal lens as an active focusing element,” Proc. SPIE 8828, Liq. Cryst. XVII, 88281C (2013).

Chen, T.-A.

S.-J. Hwang, T.-A. Chen, K.-R. Lin, and S.-C. Jeng, “Ultraviolet light treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Cho, M.

Choi, W. B.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Chung, K.-B.

J. H. Kim, T.-Y. Seong, S.-I. Na, K.-B. Chung, H.-M. Lee, and H.-K. Kim, “Highly transparent Nb-doped indium oxide electrodes for organic solar cells,” J. Vac. Sci. Technol. A 32(2), 021202 (2014), doi:.
[Crossref]

Cuypers, D.

H. De Smet, J. Van den Steen, and D. Cuypers, “Electrical model of a liquid crystal pixel with dynamic, voltage history-dependent capacitance value,” Liq. Cryst. 31(5), 705–711 (2004).
[Crossref]

De Smet, H.

H. De Smet, J. Van den Steen, and D. Cuypers, “Electrical model of a liquid crystal pixel with dynamic, voltage history-dependent capacitance value,” Liq. Cryst. 31(5), 705–711 (2004).
[Crossref]

Dhara, S.

S. Dhara and N. V. Madhusudana, “Ionic contribution to the dielectric properties of a nematic liquid crystal in thin cells,” N. V. J. Appl. Phys. 90(7), 3483–3488 (2001), doi:.
[Crossref]

Fox, D. W.

Han, S.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Hassanfiroozi, A.

Hayasaka, S.

M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(9A), 6108–6111 (2004).
[Crossref]

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(11A), L1232–L1233 (2002).
[Crossref]

Hsu, C. J.

C. J. Hsu, P. C. P. Chao, and Y. Y. Kao, “A Thin Multi-Ring Negative Liquid Crystal Lens Enabled by High-k Dielectric Material,” Microsyst. Technol. 17(5–7), 923–929 (2011).
[Crossref]

Hsu, H. K.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Huang, Y. P.

Y. P. Huang, C. W. Chen, and Y.-C. Huang, “Superzone Fresnel Liquid Crystal Lens for Temporal Scanning Auto-stereoscopic Display,” IEEE J. Display Technol. 8(11), 650–655 (2012).
[Crossref]

Huang, Y.-C.

Y. P. Huang, C. W. Chen, and Y.-C. Huang, “Superzone Fresnel Liquid Crystal Lens for Temporal Scanning Auto-stereoscopic Display,” IEEE J. Display Technol. 8(11), 650–655 (2012).
[Crossref]

Huang, Y.-P.

Hwang, S.-J.

S.-J. Hwang, T.-A. Chen, K.-R. Lin, and S.-C. Jeng, “Ultraviolet light treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Javidi, B.

Jen, T.-H.

Jeng, S.-C.

S.-J. Hwang, T.-A. Chen, K.-R. Lin, and S.-C. Jeng, “Ultraviolet light treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Kang, M. S.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Kao, Y. Y.

Y. Y. Kao and P. C. P. Chao, “A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors (Basel) 11(12), 5402–5415 (2011).
[Crossref] [PubMed]

C. J. Hsu, P. C. P. Chao, and Y. Y. Kao, “A Thin Multi-Ring Negative Liquid Crystal Lens Enabled by High-k Dielectric Material,” Microsyst. Technol. 17(5–7), 923–929 (2011).
[Crossref]

Kawamura, M.

Kim, H.-K.

J. H. Kim, T.-Y. Seong, S.-I. Na, K.-B. Chung, H.-M. Lee, and H.-K. Kim, “Highly transparent Nb-doped indium oxide electrodes for organic solar cells,” J. Vac. Sci. Technol. A 32(2), 021202 (2014), doi:.
[Crossref]

Kim, J. H.

J. H. Kim, T.-Y. Seong, S.-I. Na, K.-B. Chung, H.-M. Lee, and H.-K. Kim, “Highly transparent Nb-doped indium oxide electrodes for organic solar cells,” J. Vac. Sci. Technol. A 32(2), 021202 (2014), doi:.
[Crossref]

Kim, Y. M.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Kuiper, S.

S. Kuiper, “Electrowetting-based liquid lenses for endoscopy,” Proc. SPIE 7930, 793008 (2011).
[Crossref]

Lavrentovich, O. D.

Lee, C.-T.

Lee, H.-M.

J. H. Kim, T.-Y. Seong, S.-I. Na, K.-B. Chung, H.-M. Lee, and H.-K. Kim, “Highly transparent Nb-doped indium oxide electrodes for organic solar cells,” J. Vac. Sci. Technol. A 32(2), 021202 (2014), doi:.
[Crossref]

Lelidis, I.

A. L. Alexe-Ionescu, G. Barbero, and I. Lelidis, “Complex Dielectric Constant of a Nematic Liquid Crystal Containing Two Types of Ions: Limit of Validity of the Superposition Principle,” J. Phys. Chem. B 113(44), 14747–14753 (2009), doi:.
[Crossref] [PubMed]

Li, H.

Li, Q.

Li, W. Y.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Li, Y.

Lin, H. C.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

Lin, H.-Y.

Lin, K.-R.

S.-J. Hwang, T.-A. Chen, K.-R. Lin, and S.-C. Jeng, “Ultraviolet light treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Lin, Y. H.

H. S. Chen, M. S. Chen, and Y. H. Lin, “An electrically tunable depth-of-field endoscope using a liquid crystal lens as an active focusing element,” Proc. SPIE 8828, Liq. Cryst. XVII, 88281C (2013).

Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref] [PubMed]

H. S. Chen and Y. H. Lin, “An electrically tunable endoscopic system by adding a liquid crystal lens to enlarge and shift depth-of field,” Opt. Express 21(15), 18079–18088 (2013).

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lin, Y.-H.

Liu, Y.

Y. Liu, H. Ren, S. Xu, Y. Li, and S. T. Wu, “Fast-response liquid-crystal lens for 3D displays,” Proc. SPIE 9005, 900503 (2014), doi:.
[Crossref]

Y. Li, Y. Liu, Q. Li, and S. T. Wu, “Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film,” Appl. Opt. 51(14), 2568–2572 (2012).
[Crossref] [PubMed]

Lu, R.

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007), doi:.
[Crossref]

Madhusudana, N. V.

S. Dhara and N. V. Madhusudana, “Ionic contribution to the dielectric properties of a nematic liquid crystal in thin cells,” N. V. J. Appl. Phys. 90(7), 3483–3488 (2001), doi:.
[Crossref]

Marcos, C.

V. Urruchi, J. F. Algorri, C. Marcos, and J. M. Sánchez-Pena, “Note: Electrical modeling and characterization of voltage gradient in liquid crystal microlenses,” Rev. Sci. Instrum. 84(11), 116105 (2013).
[Crossref] [PubMed]

Masuda, S.

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(5B), 1643–1646 (1992).
[Crossref]

Min, N. K.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Na, S.-I.

J. H. Kim, T.-Y. Seong, S.-I. Na, K.-B. Chung, H.-M. Lee, and H.-K. Kim, “Highly transparent Nb-doped indium oxide electrodes for organic solar cells,” J. Vac. Sci. Technol. A 32(2), 021202 (2014), doi:.
[Crossref]

Nakamura, K.

Nie, X.

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007), doi:.
[Crossref]

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(11A), L1232–L1233 (2002).
[Crossref]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(5B), 1643–1646 (1992).
[Crossref]

Ozaki, M.

Pan, F.

Pishnyak, O.

Ren, H.

Sánchez-Pena, J. M.

V. Urruchi, J. F. Algorri, C. Marcos, and J. M. Sánchez-Pena, “Note: Electrical modeling and characterization of voltage gradient in liquid crystal microlenses,” Rev. Sci. Instrum. 84(11), 116105 (2013).
[Crossref] [PubMed]

Sato, S.

M. Kawamura, K. Nakamura, and S. Sato, “Liquid-crystal micro-lens array with two-divided and tetragonally hole-patterned electrodes,” Opt. Express 21(22), 26520–26526 (2013).
[Crossref] [PubMed]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express 16(6), 4302–4308 (2008).
[Crossref] [PubMed]

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[Crossref]

O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
[Crossref] [PubMed]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[Crossref] [PubMed]

M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(9A), 6108–6111 (2004).
[Crossref]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(11A), L1232–L1233 (2002).
[Crossref]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(5B), L571–L573 (2002).

S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6(6), 471–485 (1999).
[Crossref]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(5B), 1643–1646 (1992).
[Crossref]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Seo, J. H.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Seo, S. W.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Seong, T.-Y.

J. H. Kim, T.-Y. Seong, S.-I. Na, K.-B. Chung, H.-M. Lee, and H.-K. Kim, “Highly transparent Nb-doped indium oxide electrodes for organic solar cells,” J. Vac. Sci. Technol. A 32(2), 021202 (2014), doi:.
[Crossref]

Shen, X.

Shibuya, G.

Shieh, H.-P. D.

Sung, M. Y.

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

Takahashi, S.

Ting, C.-H.

Tsou, Y. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Uchida, M.

Urruchi, V.

V. Urruchi, J. F. Algorri, C. Marcos, and J. M. Sánchez-Pena, “Note: Electrical modeling and characterization of voltage gradient in liquid crystal microlenses,” Rev. Sci. Instrum. 84(11), 116105 (2013).
[Crossref] [PubMed]

Van den Steen, J.

H. De Smet, J. Van den Steen, and D. Cuypers, “Electrical model of a liquid crystal pixel with dynamic, voltage history-dependent capacitance value,” Liq. Cryst. 31(5), 705–711 (2004).
[Crossref]

Wang, B.

Wang, Y.-J.

Wu, B.

Wu, S. T.

Wu, S.-T.

Wu, T. X.

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007), doi:.
[Crossref]

Wu, Y.

Xianyu, H.

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007), doi:.
[Crossref]

Xie, X.

Xu, S.

Y. Liu, H. Ren, S. Xu, Y. Li, and S. T. Wu, “Fast-response liquid-crystal lens for 3D displays,” Proc. SPIE 9005, 900503 (2014), doi:.
[Crossref]

H. Ren, S. Xu, and S.-T. Wu, “Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time,” Opt. Lett. 38(16), 3144–3147 (2013).
[Crossref] [PubMed]

Yamaguchi, M.

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[Crossref]

Yanase, S.

Ye, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express 16(6), 4302–4308 (2008).
[Crossref] [PubMed]

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[Crossref]

M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(9A), 6108–6111 (2004).
[Crossref]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[Crossref] [PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(11A), L1232–L1233 (2002).
[Crossref]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(5B), L571–L573 (2002).

Yoshida, H.

Zhang, Y.

Appl. Opt. (7)

Appl. Phys. B (1)

S.-J. Hwang, T.-A. Chen, K.-R. Lin, and S.-C. Jeng, “Ultraviolet light treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Appl. Phys. Lett. (2)

H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett. 97(6), 063505 (2010).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

IEEE J. Display Technol. (1)

Y. P. Huang, C. W. Chen, and Y.-C. Huang, “Superzone Fresnel Liquid Crystal Lens for Temporal Scanning Auto-stereoscopic Display,” IEEE J. Display Technol. 8(11), 650–655 (2012).
[Crossref]

J. Appl. Phys. (1)

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101(10), 103110 (2007), doi:.
[Crossref]

J. Phys. Chem. B (1)

A. L. Alexe-Ionescu, G. Barbero, and I. Lelidis, “Complex Dielectric Constant of a Nematic Liquid Crystal Containing Two Types of Ions: Limit of Validity of the Superposition Principle,” J. Phys. Chem. B 113(44), 14747–14753 (2009), doi:.
[Crossref] [PubMed]

J. Vac. Sci. Technol. A (1)

J. H. Kim, T.-Y. Seong, S.-I. Na, K.-B. Chung, H.-M. Lee, and H.-K. Kim, “Highly transparent Nb-doped indium oxide electrodes for organic solar cells,” J. Vac. Sci. Technol. A 32(2), 021202 (2014), doi:.
[Crossref]

Jpn. J. Appl. Phys. (8)

S. W. Seo, S. Han, J. H. Seo, Y. M. Kim, M. S. Kang, N. K. Min, W. B. Choi, and M. Y. Sung, “Microelectromechanical-system-based variable-focus liquid lens for capsule endoscopes,” Jpn. J. Appl. Phys. 48(5), 052404 (2009).
[Crossref]

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[Crossref]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(5B), L571–L573 (2002).

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(11A), L1232–L1233 (2002).
[Crossref]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31(5B), 1643–1646 (1992).
[Crossref]

M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(9A), 6108–6111 (2004).
[Crossref]

Liq. Cryst. (1)

H. De Smet, J. Van den Steen, and D. Cuypers, “Electrical model of a liquid crystal pixel with dynamic, voltage history-dependent capacitance value,” Liq. Cryst. 31(5), 705–711 (2004).
[Crossref]

Microsyst. Technol. (1)

C. J. Hsu, P. C. P. Chao, and Y. Y. Kao, “A Thin Multi-Ring Negative Liquid Crystal Lens Enabled by High-k Dielectric Material,” Microsyst. Technol. 17(5–7), 923–929 (2011).
[Crossref]

N. V. J. Appl. Phys. (1)

S. Dhara and N. V. Madhusudana, “Ionic contribution to the dielectric properties of a nematic liquid crystal in thin cells,” N. V. J. Appl. Phys. 90(7), 3483–3488 (2001), doi:.
[Crossref]

Opt. Express (10)

H.-S. Chen and Y.-H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
[Crossref] [PubMed]

C.-T. Lee, Y. Li, H.-Y. Lin, and S.-T. Wu, “Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19(18), 17402–17407 (2011).
[Crossref] [PubMed]

M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express 16(6), 4302–4308 (2008).
[Crossref] [PubMed]

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref] [PubMed]

H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006).
[Crossref] [PubMed]

Y. H. Lin and H. S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref] [PubMed]

A. Hassanfiroozi, Y.-P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23(2), 971–981 (2015).
[Crossref] [PubMed]

M. Kawamura, K. Nakamura, and S. Sato, “Liquid-crystal micro-lens array with two-divided and tetragonally hole-patterned electrodes,” Opt. Express 21(22), 26520–26526 (2013).
[Crossref] [PubMed]

H. S. Chen and Y. H. Lin, “An electrically tunable endoscopic system by adding a liquid crystal lens to enlarge and shift depth-of field,” Opt. Express 21(15), 18079–18088 (2013).

Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Rev. (1)

S. Sato, “Applications of liquid crystals to variable-focusing lenses,” Opt. Rev. 6(6), 471–485 (1999).
[Crossref]

Proc. SPIE (2)

Y. Liu, H. Ren, S. Xu, Y. Li, and S. T. Wu, “Fast-response liquid-crystal lens for 3D displays,” Proc. SPIE 9005, 900503 (2014), doi:.
[Crossref]

S. Kuiper, “Electrowetting-based liquid lenses for endoscopy,” Proc. SPIE 7930, 793008 (2011).
[Crossref]

Proc. SPIE 8828, Liq. Cryst. (1)

H. S. Chen, M. S. Chen, and Y. H. Lin, “An electrically tunable depth-of-field endoscope using a liquid crystal lens as an active focusing element,” Proc. SPIE 8828, Liq. Cryst. XVII, 88281C (2013).

Rev. Sci. Instrum. (1)

V. Urruchi, J. F. Algorri, C. Marcos, and J. M. Sánchez-Pena, “Note: Electrical modeling and characterization of voltage gradient in liquid crystal microlenses,” Rev. Sci. Instrum. 84(11), 116105 (2013).
[Crossref] [PubMed]

Sensors (Basel) (1)

Y. Y. Kao and P. C. P. Chao, “A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors (Basel) 11(12), 5402–5415 (2011).
[Crossref] [PubMed]

Other (2)

M. M. Fenske, Q. Liu, R. J. Sclabassi, and M. Sun, “A Design of a Liquid Crystal Based Single-Lens Stereo Endoscope,” in Proceedings of the IEEE 32nd Annual Northeast Bioengineering Conference, April 2006, pp.43–44.
[Crossref]

P. de Gennes and J. Prost, The Physics of Liquid Crystal (Clarendon, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Cross-section of different LC lens, (a) external electrode LC lens, (b) internal electrode LC lens, (c) LC lens using a high-K layer, (d) LC lens using a high-R layer. The dashed line shows the potential.
Fig. 2
Fig. 2 Top view of the electrode patterns and cross section of the MFLC-LC lens cell.
Fig. 3
Fig. 3 POM image of rubbing quality at different voltages (a) 4 Vrms (b) 8 Vrms; P: the transmission axis of the polarizer, A: the transmission axis of the analyzer, R: the direction of alignment of the substrate.
Fig. 4
Fig. 4 AFM image of the Nb2O5 roughness for (a) sample 1, (b) sample 2, (c) sample 3, (d) sample 4, (e) sample 5, (f) sample 6, (g) sample 7, (h) sample 8 and (i) sample 9, [See Table 2], scan size is 1µm × 1µm.
Fig. 5
Fig. 5 Interference patterns for LC lens at driving frequency of 1 kHz for Sample 1-10. The applied voltage is 6.0 Vrms.
Fig. 6
Fig. 6 Interference patterns at driving frequencies of 10 kHz, 11.5 kHz, 12.5 kHz and 15 kHz for sample 4 (a) and driving frequency of 33 kHz, 40 kHz, 50 kHz and 66 kHz for sample 7 (b). The applied voltage is 6.0 Vrms.
Fig. 7
Fig. 7 (a) Experimental setup for measuring the properties of MFLC-lens. (b) Experimental setup for capturing images using a side viewing endoscope. Pol: Polarizer.
Fig. 8
Fig. 8 Interference pattern when MFLC-lens is used with different voltages (a) for 2D mode 0~12.5 Vrms (b) for 3D mode 0~8.5 Vrms.
Fig. 9
Fig. 9 Voltage dependence of phase shift for 2D LC lens (a), 3D LC lens (b).
Fig. 10
Fig. 10 Focal length as a function of the applied voltage for 2D LC lens (a), 3D LC lens (b).
Fig. 11
Fig. 11 Image performance of the MFLC-lens for different distance of ISO 3334 test chart from the MFLC-lens when lens is on and off. Distance and voltage values are: (a) 80 mm/ 12.5Vrms (b) 125 mm/ 8.5Vrms (c) 180 mm/ 6.8Vrms. (d) three 2D images taken to construct a 3D image shown in (e).

Tables (2)

Tables Icon

Table 1 Comparison of the Different Endoscopes

Tables Icon

Table 2 Condition of Sputtering Nb2O5 and Key Parameters of Nb2O5 for 10 Samples and AFM Data. RMS: Root Mean Square of Roughness.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε'= ε eq 1+ ω 2 ( ε eq σ eq ) 2
ε"= ω( ε eq / σ eq ) 1+ ω 2 ( ε eq σ eq ) 2 ε eq
2 V= ρ R d R ( ωε' d LC jV+ ωε" d LC V )

Metrics