Abstract

We compare the performance characteristics of Tm:YAP and Ho:YAG in ultrashort pulse regenerative amplification. Both systems follow the same amplification concept and use nearly the same experimental setup reaching similar output energies of >700 µJ.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
700 MW peak power of a 380 fs regenerative amplifier with Tm:YAP

Andreas Wienke, Dieter Wandt, Uwe Morgner, Jörg Neumann, and Dietmar Kracht
Opt. Express 23(13) 16884-16889 (2015)

Millijoule femtosecond pulses at 1937 nm from a diode-pumped ring cavity Tm:YAP regenerative amplifier

Seyed Ali Rezvani, Makoto Suzuki, Pavel Malevich, Clement Livache, Jean Vincent de Montgolfier, Yutaka Nomura, Noriaki Tsurumachi, Andrius Baltuška, and Takao Fuji
Opt. Express 26(22) 29460-29470 (2018)

High repetition rate, µJ-level, CPA-free ultrashort pulse multipass amplifier based on Ho:YLF

Moritz Hinkelmann, Dieter Wandt, Uwe Morgner, Jörg Neumann, and Dietmar Kracht
Opt. Express 26(14) 18125-18130 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Sánchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, V. Smirnov, H. Hoogland, R. Holzwarth, O. Chalus, C. Simon-Boisson, and J. Biegert, “Broadband 7 µm OPCPA pumped by a 2 µm picosecond Ho:YLF CPA system,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW4O.5.
  2. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6–6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20, 7046–7053 (2012).
    [Crossref]
  3. K.-H. Hong, C.-J. Lai, J. P. Siqueira, P. Krogen, J. Moses, C.-L. Chang, G. J. Stein, L. E. Zapata, and F. X. Krtner, “Multi-mJ, kHz, 2.1m optical parametric chirped-pulse amplifier and high-flux soft x-ray high-harmonic generation,” Opt. Lett. 39, 3145–3148 (2014).
    [Crossref] [PubMed]
  4. P. Kadwani, R. Sims, J. Chia, F. Altat, L. Shah, and M. Richardson, ”Atmospheric Propagation Testing Using Broadband Thulium Fiber Systems,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FWB3.
    [Crossref]
  5. F. Stutzki, C. Gaida, M. Gebhardt, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, “Tm-based fiber-laser system with more than 200 MW peak power,” Opt. Lett. 40, 9–12 (2015).
    [Crossref]
  6. M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses,” Opt. Express 23, 13776–13787 (2015).
    [Crossref] [PubMed]
  7. P. Malevich, G. Andriukaitis, T. Flöry, A. J. Verhoef, A. Fernández, S. Ališauskas, A. Pugžlys, A. Baltuška, L. H. Tan, C. F. Chua, and P. B. Phua, “High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers,” Opt. Lett. 38, 2746–2748 (2013).
    [Crossref] [PubMed]
  8. P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuska, and A. Pugzlys, “Millijoule 1-ps Pulses from a kHz Ho:YAG Regenerative Amplifier Seeded with a Tm,Ho-Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM1P.4.
  9. A. Wienke, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “700 MW peak power of a 380 fs regenerative amplifier with Tm:YAP,” Opt. Express 23, 16884–16889 (2015).
    [Crossref] [PubMed]
  10. L. von Grafenstein, M. Bock, D. Ueberschaer, U. Griebner, and T. Elsaesser, “Picosecond 34 mJ pulses at kHz repetition rates from a Ho:YLF amplifier at 2 m wavelength,” Opt. Express 23, 33142–33149 (2015).
    [Crossref]
  11. P. Kroetz, A. Ruehl, G. Chatterjee, A.-L. Calendron, K. Murari, H. Cankaya, P. Li, F. X. Kärtner, I. Hartl, and R. J. D. Miller, “Overcoming bifurcation instability in high-repetition-rate Ho:YLF regenerative amplifiers,” Opt. Lett. 40, 5427–5430 (2015).
    [Crossref] [PubMed]
  12. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quant. Electron. 28, 2619–2630 (1992).
    [Crossref]
  13. B. M. Walsh, N. P. Barnes, and B. di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
    [Crossref]
  14. G. Li, B. Q. Yao, P. B. Meng, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Diode-pumped efficient laser operation and spectroscopy of Tm,Ho:YVO4,” Opt. Mater. 33, 937–941 (2011).
    [Crossref]
  15. J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6, 531–534 (2009).
    [Crossref]
  16. A. Wienke, F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management,” Opt. Lett. 37, 2466–2468 (2012).
    [Crossref] [PubMed]
  17. O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A 1, 1003–1006 (1984).
    [Crossref]
  18. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80300K temperature range,” J. Appl. Phys. 98, 103514 (2005).
    [Crossref]
  19. H. Ehlers, T. Gross, M. Lappschies, and D. Ristau, “Ion-assisted deposition processes for precision and laser optics,” Proc. SPIE 5250, 519–527 (2004).
    [Crossref]
  20. L. Jensen, M. Jupé, H. Mädebach, H. Ehlers, K. Starke, D. Ristau, W. Riede, P. Allenspacher, and H. Schroeder, “Damage threshold investigations of high-power laser optics under atmospheric and vacuum conditions,” Proc. SPIE 6403, 64030U (2006).
    [Crossref]
  21. A. Seilmeier, M. Wörner, H.-J. Hübner, and W. Kaiser, “Distortion of infrared picosecond pulses after propagation in atmospheric air,” App. Phys. Lett. 53, 2468–2470 (1988).
    [Crossref]
  22. Kronig R. de L., “On the theory of dispersion of X-Rays,” J. Opt. Soc. Am. 12, 547–556 (1926).
    [Crossref]
  23. A. Hildenbrand-Dhollande and F. R. Wagner, “Materials for Lasers: Frequency Conversion, Q-Switching, and Active Materials,” in Laser-Induced Damage in Optical Materials,E.D. D. Ristau, ed. (CRC Press, 2014).
  24. K. S. Sree Harsha, Principles of Physical Vapor Deposition of Thin Films (Elsevier, 2006).

2015 (5)

2014 (1)

2013 (1)

2012 (2)

2011 (1)

G. Li, B. Q. Yao, P. B. Meng, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Diode-pumped efficient laser operation and spectroscopy of Tm,Ho:YVO4,” Opt. Mater. 33, 937–941 (2011).
[Crossref]

2009 (1)

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6, 531–534 (2009).
[Crossref]

2006 (1)

L. Jensen, M. Jupé, H. Mädebach, H. Ehlers, K. Starke, D. Ristau, W. Riede, P. Allenspacher, and H. Schroeder, “Damage threshold investigations of high-power laser optics under atmospheric and vacuum conditions,” Proc. SPIE 6403, 64030U (2006).
[Crossref]

2005 (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80300K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

2004 (1)

H. Ehlers, T. Gross, M. Lappschies, and D. Ristau, “Ion-assisted deposition processes for precision and laser optics,” Proc. SPIE 5250, 519–527 (2004).
[Crossref]

1998 (1)

B. M. Walsh, N. P. Barnes, and B. di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[Crossref]

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quant. Electron. 28, 2619–2630 (1992).
[Crossref]

1988 (1)

A. Seilmeier, M. Wörner, H.-J. Hübner, and W. Kaiser, “Distortion of infrared picosecond pulses after propagation in atmospheric air,” App. Phys. Lett. 53, 2468–2470 (1988).
[Crossref]

1984 (1)

1926 (1)

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80300K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Ališauskas, S.

Allenspacher, P.

L. Jensen, M. Jupé, H. Mädebach, H. Ehlers, K. Starke, D. Ristau, W. Riede, P. Allenspacher, and H. Schroeder, “Damage threshold investigations of high-power laser optics under atmospheric and vacuum conditions,” Proc. SPIE 6403, 64030U (2006).
[Crossref]

Altat, F.

P. Kadwani, R. Sims, J. Chia, F. Altat, L. Shah, and M. Richardson, ”Atmospheric Propagation Testing Using Broadband Thulium Fiber Systems,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FWB3.
[Crossref]

Andriukaitis, G.

Baltuska, A.

P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuska, and A. Pugzlys, “Millijoule 1-ps Pulses from a kHz Ho:YAG Regenerative Amplifier Seeded with a Tm,Ho-Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM1P.4.

Baltuška, A.

Barnes, N. P.

B. M. Walsh, N. P. Barnes, and B. di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[Crossref]

Baudisch, M.

D. Sánchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, V. Smirnov, H. Hoogland, R. Holzwarth, O. Chalus, C. Simon-Boisson, and J. Biegert, “Broadband 7 µm OPCPA pumped by a 2 µm picosecond Ho:YLF CPA system,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW4O.5.

Biegert, J.

D. Sánchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, V. Smirnov, H. Hoogland, R. Holzwarth, O. Chalus, C. Simon-Boisson, and J. Biegert, “Broadband 7 µm OPCPA pumped by a 2 µm picosecond Ho:YLF CPA system,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW4O.5.

Bock, M.

Byer, R. L.

Calendron, A.-L.

Cankaya, H.

Chalus, O.

D. Sánchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, V. Smirnov, H. Hoogland, R. Holzwarth, O. Chalus, C. Simon-Boisson, and J. Biegert, “Broadband 7 µm OPCPA pumped by a 2 µm picosecond Ho:YLF CPA system,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW4O.5.

Chang, C.-L.

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quant. Electron. 28, 2619–2630 (1992).
[Crossref]

Chatterjee, G.

Chia, J.

P. Kadwani, R. Sims, J. Chia, F. Altat, L. Shah, and M. Richardson, ”Atmospheric Propagation Testing Using Broadband Thulium Fiber Systems,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FWB3.
[Crossref]

Chua, C. F.

Cousin, S. L.

D. Sánchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, V. Smirnov, H. Hoogland, R. Holzwarth, O. Chalus, C. Simon-Boisson, and J. Biegert, “Broadband 7 µm OPCPA pumped by a 2 µm picosecond Ho:YLF CPA system,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW4O.5.

di Bartolo, B.

B. M. Walsh, N. P. Barnes, and B. di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[Crossref]

Duan, X. M.

G. Li, B. Q. Yao, P. B. Meng, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Diode-pumped efficient laser operation and spectroscopy of Tm,Ho:YVO4,” Opt. Mater. 33, 937–941 (2011).
[Crossref]

Ehlers, H.

L. Jensen, M. Jupé, H. Mädebach, H. Ehlers, K. Starke, D. Ristau, W. Riede, P. Allenspacher, and H. Schroeder, “Damage threshold investigations of high-power laser optics under atmospheric and vacuum conditions,” Proc. SPIE 6403, 64030U (2006).
[Crossref]

H. Ehlers, T. Gross, M. Lappschies, and D. Ristau, “Ion-assisted deposition processes for precision and laser optics,” Proc. SPIE 5250, 519–527 (2004).
[Crossref]

Elsaesser, T.

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80300K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Fermann, M.

Fernández, A.

Flöry, T.

Fork, R. L.

Gaida, C.

Gebhardt, M.

Gorajek, L.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6, 531–534 (2009).
[Crossref]

Gordon, J. P.

Griebner, U.

Gross, T.

H. Ehlers, T. Gross, M. Lappschies, and D. Ristau, “Ion-assisted deposition processes for precision and laser optics,” Proc. SPIE 5250, 519–527 (2004).
[Crossref]

Hädrich, S.

Hartl, I.

Haxsen, F.

Hemmer, M.

D. Sánchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, V. Smirnov, H. Hoogland, R. Holzwarth, O. Chalus, C. Simon-Boisson, and J. Biegert, “Broadband 7 µm OPCPA pumped by a 2 µm picosecond Ho:YLF CPA system,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW4O.5.

Hildenbrand-Dhollande, A.

A. Hildenbrand-Dhollande and F. R. Wagner, “Materials for Lasers: Frequency Conversion, Q-Switching, and Active Materials,” in Laser-Induced Damage in Optical Materials,E.D. D. Ristau, ed. (CRC Press, 2014).

Holzwarth, R.

D. Sánchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, V. Smirnov, H. Hoogland, R. Holzwarth, O. Chalus, C. Simon-Boisson, and J. Biegert, “Broadband 7 µm OPCPA pumped by a 2 µm picosecond Ho:YLF CPA system,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW4O.5.

P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuska, and A. Pugzlys, “Millijoule 1-ps Pulses from a kHz Ho:YAG Regenerative Amplifier Seeded with a Tm,Ho-Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM1P.4.

Hong, K.-H.

Hoogland, H.

P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuska, and A. Pugzlys, “Millijoule 1-ps Pulses from a kHz Ho:YAG Regenerative Amplifier Seeded with a Tm,Ho-Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM1P.4.

D. Sánchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, V. Smirnov, H. Hoogland, R. Holzwarth, O. Chalus, C. Simon-Boisson, and J. Biegert, “Broadband 7 µm OPCPA pumped by a 2 µm picosecond Ho:YLF CPA system,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW4O.5.

Hübner, H.-J.

A. Seilmeier, M. Wörner, H.-J. Hübner, and W. Kaiser, “Distortion of infrared picosecond pulses after propagation in atmospheric air,” App. Phys. Lett. 53, 2468–2470 (1988).
[Crossref]

Jabczynski, J. K.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6, 531–534 (2009).
[Crossref]

Jansen, F.

Jauregui, C.

Jelínková, H.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6, 531–534 (2009).
[Crossref]

Jensen, L.

L. Jensen, M. Jupé, H. Mädebach, H. Ehlers, K. Starke, D. Ristau, W. Riede, P. Allenspacher, and H. Schroeder, “Damage threshold investigations of high-power laser optics under atmospheric and vacuum conditions,” Proc. SPIE 6403, 64030U (2006).
[Crossref]

Jiang, J.

Ju, Y. L.

G. Li, B. Q. Yao, P. B. Meng, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Diode-pumped efficient laser operation and spectroscopy of Tm,Ho:YVO4,” Opt. Mater. 33, 937–941 (2011).
[Crossref]

Jupé, M.

L. Jensen, M. Jupé, H. Mädebach, H. Ehlers, K. Starke, D. Ristau, W. Riede, P. Allenspacher, and H. Schroeder, “Damage threshold investigations of high-power laser optics under atmospheric and vacuum conditions,” Proc. SPIE 6403, 64030U (2006).
[Crossref]

Kadwani, P.

P. Kadwani, R. Sims, J. Chia, F. Altat, L. Shah, and M. Richardson, ”Atmospheric Propagation Testing Using Broadband Thulium Fiber Systems,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FWB3.
[Crossref]

Kaiser, W.

A. Seilmeier, M. Wörner, H.-J. Hübner, and W. Kaiser, “Distortion of infrared picosecond pulses after propagation in atmospheric air,” App. Phys. Lett. 53, 2468–2470 (1988).
[Crossref]

Kanai, T.

P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuska, and A. Pugzlys, “Millijoule 1-ps Pulses from a kHz Ho:YAG Regenerative Amplifier Seeded with a Tm,Ho-Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM1P.4.

Kärtner, F. X.

Koranda, P.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6, 531–534 (2009).
[Crossref]

Kracht, D.

Kroetz, P.

Krogen, P.

Krtner, F. X.

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quant. Electron. 28, 2619–2630 (1992).
[Crossref]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quant. Electron. 28, 2619–2630 (1992).
[Crossref]

Kwiatkowski, J.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6, 531–534 (2009).
[Crossref]

Lai, C.-J.

Lappschies, M.

H. Ehlers, T. Gross, M. Lappschies, and D. Ristau, “Ion-assisted deposition processes for precision and laser optics,” Proc. SPIE 5250, 519–527 (2004).
[Crossref]

Leindecker, N.

Li, G.

G. Li, B. Q. Yao, P. B. Meng, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Diode-pumped efficient laser operation and spectroscopy of Tm,Ho:YVO4,” Opt. Mater. 33, 937–941 (2011).
[Crossref]

Li, P.

Limpert, J.

Mädebach, H.

L. Jensen, M. Jupé, H. Mädebach, H. Ehlers, K. Starke, D. Ristau, W. Riede, P. Allenspacher, and H. Schroeder, “Damage threshold investigations of high-power laser optics under atmospheric and vacuum conditions,” Proc. SPIE 6403, 64030U (2006).
[Crossref]

Malevich, P.

P. Malevich, G. Andriukaitis, T. Flöry, A. J. Verhoef, A. Fernández, S. Ališauskas, A. Pugžlys, A. Baltuška, L. H. Tan, C. F. Chua, and P. B. Phua, “High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers,” Opt. Lett. 38, 2746–2748 (2013).
[Crossref] [PubMed]

P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuska, and A. Pugzlys, “Millijoule 1-ps Pulses from a kHz Ho:YAG Regenerative Amplifier Seeded with a Tm,Ho-Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM1P.4.

Marandi, A.

Martinez, O. E.

Meng, P. B.

G. Li, B. Q. Yao, P. B. Meng, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Diode-pumped efficient laser operation and spectroscopy of Tm,Ho:YVO4,” Opt. Mater. 33, 937–941 (2011).
[Crossref]

Miller, R. J. D.

Morgner, U.

Moses, J.

Murari, K.

Nemec, M.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6, 531–534 (2009).
[Crossref]

Neumann, J.

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80300K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quant. Electron. 28, 2619–2630 (1992).
[Crossref]

Phua, P. B.

Pugzlys, A.

P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuska, and A. Pugzlys, “Millijoule 1-ps Pulses from a kHz Ho:YAG Regenerative Amplifier Seeded with a Tm,Ho-Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM1P.4.

Pugžlys, A.

R. de L., Kronig

Richardson, M.

P. Kadwani, R. Sims, J. Chia, F. Altat, L. Shah, and M. Richardson, ”Atmospheric Propagation Testing Using Broadband Thulium Fiber Systems,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FWB3.
[Crossref]

Riede, W.

L. Jensen, M. Jupé, H. Mädebach, H. Ehlers, K. Starke, D. Ristau, W. Riede, P. Allenspacher, and H. Schroeder, “Damage threshold investigations of high-power laser optics under atmospheric and vacuum conditions,” Proc. SPIE 6403, 64030U (2006).
[Crossref]

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80300K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

Ristau, D.

L. Jensen, M. Jupé, H. Mädebach, H. Ehlers, K. Starke, D. Ristau, W. Riede, P. Allenspacher, and H. Schroeder, “Damage threshold investigations of high-power laser optics under atmospheric and vacuum conditions,” Proc. SPIE 6403, 64030U (2006).
[Crossref]

H. Ehlers, T. Gross, M. Lappschies, and D. Ristau, “Ion-assisted deposition processes for precision and laser optics,” Proc. SPIE 5250, 519–527 (2004).
[Crossref]

Ruehl, A.

Sánchez, D.

D. Sánchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, V. Smirnov, H. Hoogland, R. Holzwarth, O. Chalus, C. Simon-Boisson, and J. Biegert, “Broadband 7 µm OPCPA pumped by a 2 µm picosecond Ho:YLF CPA system,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW4O.5.

Schroeder, H.

L. Jensen, M. Jupé, H. Mädebach, H. Ehlers, K. Starke, D. Ristau, W. Riede, P. Allenspacher, and H. Schroeder, “Damage threshold investigations of high-power laser optics under atmospheric and vacuum conditions,” Proc. SPIE 6403, 64030U (2006).
[Crossref]

Schunemann, P.

D. Sánchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, V. Smirnov, H. Hoogland, R. Holzwarth, O. Chalus, C. Simon-Boisson, and J. Biegert, “Broadband 7 µm OPCPA pumped by a 2 µm picosecond Ho:YLF CPA system,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW4O.5.

Schunemann, P. G.

Seilmeier, A.

A. Seilmeier, M. Wörner, H.-J. Hübner, and W. Kaiser, “Distortion of infrared picosecond pulses after propagation in atmospheric air,” App. Phys. Lett. 53, 2468–2470 (1988).
[Crossref]

Shah, L.

P. Kadwani, R. Sims, J. Chia, F. Altat, L. Shah, and M. Richardson, ”Atmospheric Propagation Testing Using Broadband Thulium Fiber Systems,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FWB3.
[Crossref]

Simon-Boisson, C.

D. Sánchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, V. Smirnov, H. Hoogland, R. Holzwarth, O. Chalus, C. Simon-Boisson, and J. Biegert, “Broadband 7 µm OPCPA pumped by a 2 µm picosecond Ho:YLF CPA system,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW4O.5.

Sims, R.

P. Kadwani, R. Sims, J. Chia, F. Altat, L. Shah, and M. Richardson, ”Atmospheric Propagation Testing Using Broadband Thulium Fiber Systems,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FWB3.
[Crossref]

Siqueira, J. P.

Smirnov, V.

D. Sánchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, V. Smirnov, H. Hoogland, R. Holzwarth, O. Chalus, C. Simon-Boisson, and J. Biegert, “Broadband 7 µm OPCPA pumped by a 2 µm picosecond Ho:YLF CPA system,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW4O.5.

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quant. Electron. 28, 2619–2630 (1992).
[Crossref]

Sree Harsha, K. S.

K. S. Sree Harsha, Principles of Physical Vapor Deposition of Thin Films (Elsevier, 2006).

Starke, K.

L. Jensen, M. Jupé, H. Mädebach, H. Ehlers, K. Starke, D. Ristau, W. Riede, P. Allenspacher, and H. Schroeder, “Damage threshold investigations of high-power laser optics under atmospheric and vacuum conditions,” Proc. SPIE 6403, 64030U (2006).
[Crossref]

Stein, G. J.

Stutzki, F.

Šulc, J.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6, 531–534 (2009).
[Crossref]

Tan, L. H.

Tünnermann, A.

Ueberschaer, D.

Verhoef, A. J.

Vodopyanov, K. L.

von Grafenstein, L.

Wagner, F. R.

A. Hildenbrand-Dhollande and F. R. Wagner, “Materials for Lasers: Frequency Conversion, Q-Switching, and Active Materials,” in Laser-Induced Damage in Optical Materials,E.D. D. Ristau, ed. (CRC Press, 2014).

Walsh, B. M.

B. M. Walsh, N. P. Barnes, and B. di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[Crossref]

Wandt, D.

Wang, Y. Z.

G. Li, B. Q. Yao, P. B. Meng, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Diode-pumped efficient laser operation and spectroscopy of Tm,Ho:YVO4,” Opt. Mater. 33, 937–941 (2011).
[Crossref]

Wienke, A.

Wörner, M.

A. Seilmeier, M. Wörner, H.-J. Hübner, and W. Kaiser, “Distortion of infrared picosecond pulses after propagation in atmospheric air,” App. Phys. Lett. 53, 2468–2470 (1988).
[Crossref]

Yao, B. Q.

G. Li, B. Q. Yao, P. B. Meng, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Diode-pumped efficient laser operation and spectroscopy of Tm,Ho:YVO4,” Opt. Mater. 33, 937–941 (2011).
[Crossref]

Zapata, L. E.

Zawilski, K.

D. Sánchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, V. Smirnov, H. Hoogland, R. Holzwarth, O. Chalus, C. Simon-Boisson, and J. Biegert, “Broadband 7 µm OPCPA pumped by a 2 µm picosecond Ho:YLF CPA system,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW4O.5.

Zendzian, W.

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6, 531–534 (2009).
[Crossref]

App. Phys. Lett. (1)

A. Seilmeier, M. Wörner, H.-J. Hübner, and W. Kaiser, “Distortion of infrared picosecond pulses after propagation in atmospheric air,” App. Phys. Lett. 53, 2468–2470 (1988).
[Crossref]

IEEE J. Quant. Electron. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quant. Electron. 28, 2619–2630 (1992).
[Crossref]

J. Appl. Phys. (2)

B. M. Walsh, N. P. Barnes, and B. di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998).
[Crossref]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80300K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Laser Phys. Lett. (1)

J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. Šulc, M. Němec, and P. Koranda, “Resonantly pumped tunable Ho:YAG laser,” Laser Phys. Lett. 6, 531–534 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Opt. Mater. (1)

G. Li, B. Q. Yao, P. B. Meng, X. M. Duan, Y. L. Ju, and Y. Z. Wang, “Diode-pumped efficient laser operation and spectroscopy of Tm,Ho:YVO4,” Opt. Mater. 33, 937–941 (2011).
[Crossref]

Proc. SPIE (2)

H. Ehlers, T. Gross, M. Lappschies, and D. Ristau, “Ion-assisted deposition processes for precision and laser optics,” Proc. SPIE 5250, 519–527 (2004).
[Crossref]

L. Jensen, M. Jupé, H. Mädebach, H. Ehlers, K. Starke, D. Ristau, W. Riede, P. Allenspacher, and H. Schroeder, “Damage threshold investigations of high-power laser optics under atmospheric and vacuum conditions,” Proc. SPIE 6403, 64030U (2006).
[Crossref]

Other (5)

A. Hildenbrand-Dhollande and F. R. Wagner, “Materials for Lasers: Frequency Conversion, Q-Switching, and Active Materials,” in Laser-Induced Damage in Optical Materials,E.D. D. Ristau, ed. (CRC Press, 2014).

K. S. Sree Harsha, Principles of Physical Vapor Deposition of Thin Films (Elsevier, 2006).

D. Sánchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, V. Smirnov, H. Hoogland, R. Holzwarth, O. Chalus, C. Simon-Boisson, and J. Biegert, “Broadband 7 µm OPCPA pumped by a 2 µm picosecond Ho:YLF CPA system,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW4O.5.

P. Kadwani, R. Sims, J. Chia, F. Altat, L. Shah, and M. Richardson, ”Atmospheric Propagation Testing Using Broadband Thulium Fiber Systems,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FWB3.
[Crossref]

P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuska, and A. Pugzlys, “Millijoule 1-ps Pulses from a kHz Ho:YAG Regenerative Amplifier Seeded with a Tm,Ho-Fiber Laser,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SM1P.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup of the system. PC: Pockels cell, CCM1: Concave mirror (600 mm ROC), CCM2: Concave mirror (300 mm ROC), xtal: laser crystal (Tm:YAP or Ho:YAG), DM: dichroic mirror, GR: Grating.
Fig. 2
Fig. 2 Output power / pulse energy vs. absorbed pump at 1 kHz (insets: beam profile). (a) Tm:YAP after 34 round trips with 24.8 nJ seed energy. (b) Ho:YAG after 10 round trips with 25.6 nJ seed energy (22 nJ shaped).
Fig. 3
Fig. 3 Amplified optical spectrum at maximum pulse energy (black) and seed spectrum (blue dashed): (a) Tm:YAP in the purged case, (b) Ho:YAG unshaped, and (c) Ho:YAG shaped.
Fig. 4
Fig. 4 Autocorrelation traces at different pulse energies of (a) Tm:YAP, (b) Ho:YAG unshaped, and (c) Ho:YAG shaped. The values given in the graphs are the pulse durations calculated with an assumed squared hyperbolic secant pulse shape in case of Tm:YAP and a Gaussian pulse shape in case of Ho:YAG.
Fig. 5
Fig. 5 Parameter variation of (a) round trips at 1 kHz repetition rate and (b) repetition rate at 34 and 10 round trips, respectively. Both measurements were performed with a seed energy of 25 nJ.
Fig. 6
Fig. 6 Seed variation at 1 kHz: (a) Tm:YAP after 34 round trips, and (b) Ho:YAG after 10 round trips.

Tables (1)

Tables Icon

Table 1 Main optical properties of Tm:YAP and Ho:YAG [12,15]. Absorption and emission cross sections are stated at the material’s main emission wavelength.

Metrics