Abstract

A new slim-type electro-floating display system based on the polarization-controlled optical path is proposed. In the proposed system, the optical path between the input plane and Fresnel lens can be made recursive by repetitive transmission and reflection of the input beam by employing a new polarization-based optical path controller (P-OPC), which is composed of two quaterwave plates, a half mirror and a reflective polarizer. Based on this P-OPC, the absolute optical path between the input plane and Fresnel lens, virtually representing the physical depth of the display system, can be reduced down to one third of its original path, which results in the same rate of decrease in the volume size of the display system. The operational principle of the proposed system is analyzed with the Jones matrix. In addition, to confirm the feasibility of the proposed system, experiments with test prototypes are carried out, and the results are comparatively discussed with those of the conventional system.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional electro-floating display system using an integral imaging method

Sung-Wook Min, Minsoo Hahn, Joohwan Kim, and Byoungho Lee
Opt. Express 13(12) 4358-4369 (2005)

Integral floating display systems for augmented reality

Jisoo Hong, Sung-Wook Min, and Byoungho Lee
Appl. Opt. 51(18) 4201-4209 (2012)

Depth-enhanced integral imaging by use of optical path control

Jisoo Hong, Jae-Hyeung Park, Sungyong Jung, and Byoungho Lee
Opt. Lett. 29(15) 1790-1792 (2004)

References

  • View by:
  • |
  • |
  • |

  1. K. Iizuka, “Welcome to the Wonderful World of 3D: Introduction, Principles and History,” Opt. Photonics News 17(7), 42–51 (2006).
    [Crossref]
  2. E. Lueder, 3D Displays (John Wiley & Sons, Ltd, 2012).
  3. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
    [Crossref] [PubMed]
  4. M. Lambooij, W. IJsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
    [Crossref]
  5. S.-N. Yang and J. E. Sheedy, “Effects of Vergence and Accommodative Responses on Viewer’s Comfort in Viewing 3D Stimuli,” in Stereoscopic Displays and Applications XXII, A. J. Woods, N. S. Holliman, and N. A. Dodgson, eds., Proc. SPIE 7863, 78630Q (2011).
  6. T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
    [Crossref] [PubMed]
  7. F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display system using LED illumination,” Appl. Opt. 48(34), H48–H53 (2009).
    [Crossref] [PubMed]
  8. R. Häussler, A. Schwerdtner, and N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc. SPIE 6803, 68030M (2008).
    [Crossref]
  9. C. W. Saalburg, “Exhibition device,” US Patent 1,053,650 (1913).
  10. L. A. Noble, “Optical apparatus for producing a natural, viewable and optically interactive image in free space,” US Patent 4,671,625 (1987).
  11. E.-S. Kim and S.-J. Jang, “Three-dimensional display device,” US Patent 7,562,983 (2009).
  12. H. Yamamoto, Y. Tomiyama, and S. Suyama, “Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR),” Opt. Express 22(22), 26919–26924 (2014).
    [Crossref] [PubMed]
  13. S.-W. Min, M. Hahn, J. Kim, and B. Lee, “Three-dimensional electro-floating display system using an integral imaging method,” Opt. Express 13(12), 4358–4369 (2005).
    [Crossref] [PubMed]
  14. Y. Takaki and S. Uchida, “Table screen 360-degree three-dimensional display using a small array of high-speed projectors,” Opt. Express 20(8), 8848–8861 (2012).
    [Crossref] [PubMed]
  15. X. Xia, X. Liu, H. Li, Z. Zheng, H. Wang, Y. Peng, and W. Shen, “A 360-degree floating 3D display based on light field regeneration,” Opt. Express 21(9), 11237–11247 (2013).
    [Crossref] [PubMed]
  16. S. Yoshida, “fVisiOn: interactive glasses-free tabletop 3D images floated by conical screen and modular projector arrays,” In SIGGRAPH Asia 2015 Emerging Technologies (SA '15), p. 12.
  17. S. Shin, E.-S. Kim, and S.-C. Kim, “Spatial image projection apparatus,” US Patent pending, 14/769,010 (2015).
  18. Y. Li, T. X. Wu, and S. T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Technol. 5(8), 335–340 (2009).
    [Crossref]
  19. G. R. Bird and M. Parrish., “Wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50(9), 886–891 (1960).
    [Crossref]
  20. Data sheet of Fresnel lens, http://www.diypro.co.kr/
  21. Data sheet of Wire-Grid Polarizing Film, http://www.asahi-kasei.co.jp/ake-mate/wgf/en/
  22. Data sheet of Quarter Wave Retarder, http://www.apioptics.com/quarter-wave-retarders.html
  23. http://www.westardisplaytechnologies.com/products/luminance-colorimeter-topcon-bm7a/

2014 (1)

2013 (2)

2012 (1)

2011 (1)

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

2009 (3)

M. Lambooij, W. IJsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
[Crossref]

Y. Li, T. X. Wu, and S. T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Technol. 5(8), 335–340 (2009).
[Crossref]

F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display system using LED illumination,” Appl. Opt. 48(34), H48–H53 (2009).
[Crossref] [PubMed]

2008 (1)

R. Häussler, A. Schwerdtner, and N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc. SPIE 6803, 68030M (2008).
[Crossref]

2006 (1)

K. Iizuka, “Welcome to the Wonderful World of 3D: Introduction, Principles and History,” Opt. Photonics News 17(7), 42–51 (2006).
[Crossref]

2005 (1)

1960 (1)

Banks, M. S.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Bird, G. R.

Fortuin, M.

M. Lambooij, W. IJsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
[Crossref]

Geng, J.

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Hahn, M.

Häussler, R.

R. Häussler, A. Schwerdtner, and N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc. SPIE 6803, 68030M (2008).
[Crossref]

Heynderickx, I.

M. Lambooij, W. IJsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
[Crossref]

Hoffman, D. M.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Iizuka, K.

K. Iizuka, “Welcome to the Wonderful World of 3D: Introduction, Principles and History,” Opt. Photonics News 17(7), 42–51 (2006).
[Crossref]

IJsselsteijn, W.

M. Lambooij, W. IJsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
[Crossref]

Kang, H.

Kim, J.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

S.-W. Min, M. Hahn, J. Kim, and B. Lee, “Three-dimensional electro-floating display system using an integral imaging method,” Opt. Express 13(12), 4358–4369 (2005).
[Crossref] [PubMed]

Lambooij, M.

M. Lambooij, W. IJsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
[Crossref]

Lee, B.

Leister, N.

R. Häussler, A. Schwerdtner, and N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc. SPIE 6803, 68030M (2008).
[Crossref]

Li, H.

Li, Y.

Y. Li, T. X. Wu, and S. T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Technol. 5(8), 335–340 (2009).
[Crossref]

Liu, X.

Min, S.-W.

Onural, L.

Parrish, M.

Peng, Y.

Schwerdtner, A.

R. Häussler, A. Schwerdtner, and N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc. SPIE 6803, 68030M (2008).
[Crossref]

Shen, W.

Shibata, T.

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Suyama, S.

Takaki, Y.

Tomiyama, Y.

Uchida, S.

Wang, H.

Wu, S. T.

Y. Li, T. X. Wu, and S. T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Technol. 5(8), 335–340 (2009).
[Crossref]

Wu, T. X.

Y. Li, T. X. Wu, and S. T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Technol. 5(8), 335–340 (2009).
[Crossref]

Xia, X.

Yamamoto, H.

Yaras, F.

Zheng, Z.

Adv. Opt. Photonics (1)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

J. Disp. Technol. (1)

Y. Li, T. X. Wu, and S. T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Technol. 5(8), 335–340 (2009).
[Crossref]

J. Imaging Sci. Technol. (1)

M. Lambooij, W. IJsselsteijn, M. Fortuin, and I. Heynderickx, “Visual discomfort and visual fatigue of stereoscopic displays: a review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
[Crossref]

J. Opt. Soc. Am. (1)

J. Vis. (1)

T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of comfort: Predicting visual discomfort with stereo displays,” J. Vis. 11(8), 11 (2011).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Photonics News (1)

K. Iizuka, “Welcome to the Wonderful World of 3D: Introduction, Principles and History,” Opt. Photonics News 17(7), 42–51 (2006).
[Crossref]

Proc. SPIE (1)

R. Häussler, A. Schwerdtner, and N. Leister, “Large holographic displays as an alternative to stereoscopic displays,” Proc. SPIE 6803, 68030M (2008).
[Crossref]

Other (11)

C. W. Saalburg, “Exhibition device,” US Patent 1,053,650 (1913).

L. A. Noble, “Optical apparatus for producing a natural, viewable and optically interactive image in free space,” US Patent 4,671,625 (1987).

E.-S. Kim and S.-J. Jang, “Three-dimensional display device,” US Patent 7,562,983 (2009).

E. Lueder, 3D Displays (John Wiley & Sons, Ltd, 2012).

S.-N. Yang and J. E. Sheedy, “Effects of Vergence and Accommodative Responses on Viewer’s Comfort in Viewing 3D Stimuli,” in Stereoscopic Displays and Applications XXII, A. J. Woods, N. S. Holliman, and N. A. Dodgson, eds., Proc. SPIE 7863, 78630Q (2011).

S. Yoshida, “fVisiOn: interactive glasses-free tabletop 3D images floated by conical screen and modular projector arrays,” In SIGGRAPH Asia 2015 Emerging Technologies (SA '15), p. 12.

S. Shin, E.-S. Kim, and S.-C. Kim, “Spatial image projection apparatus,” US Patent pending, 14/769,010 (2015).

Data sheet of Fresnel lens, http://www.diypro.co.kr/

Data sheet of Wire-Grid Polarizing Film, http://www.asahi-kasei.co.jp/ake-mate/wgf/en/

Data sheet of Quarter Wave Retarder, http://www.apioptics.com/quarter-wave-retarders.html

http://www.westardisplaytechnologies.com/products/luminance-colorimeter-topcon-bm7a/

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (3716 KB)      Captured video for conventional method
» Visualization 2: MP4 (3951 KB)      Captured video for proposed method

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Optical configuration of the Fresnel lens-based electro-floating display.
Fig. 2
Fig. 2 Conceptual diagram of the viewing-area of the Fresnel lens-based electro-floating display system.
Fig. 3
Fig. 3 Relationships between the (a) Object distance (do) and floating distance (df), (b) Object distance (do) and floating-image size (sout), and (c) Object distance (do) and viewing-angles (θ and θwv).
Fig. 4
Fig. 4 Optical configuration of the proposed system: (a) Schematic diagram of the P-OPC, (b) Enlarged-view of the P-OPC with recursive optical paths.
Fig. 5
Fig. 5 Operational principle of the P-OPC: (a) Schematic diagram of the P-OPC and the resultant polarization-controlled optical path, (b) Polarization state variations of the optical beam propagating the P-OPC.
Fig. 6
Fig. 6 Polarization state variations of the optical beam after passing through each optical element in the (a) ‘Path-1’, (b) ‘Path-2’, and (c) ‘Path-3′
Fig. 7
Fig. 7 Experimental setups of the conventional and proposed systems: (a) Top-view, (b) Side-view.
Fig. 8
Fig. 8 A test input image: (a) A test image of ‘Flower’, (b) Input image displayed on the OLED Samsung panel.
Fig. 9
Fig. 9 Captured floating images from the conventional and proposed systems when (a) & (c) Focused on the Fresnel lens plane (0mm), and (b) & (d) Focused on the projected image plane (97mm), respectively.
Fig. 10
Fig. 10 (a) Resolution testing patterns with four different spatial frequencies, (b) Captured floating image patterns from the (b) Conventional system, and (c) Proposed system.
Fig. 11
Fig. 11 Floating ‘Flower’ images viewed at the different viewing angles in each of the (a) Conventional (Visualization 1) and (b) Proposed systems (Visualization 2).
Fig. 12
Fig. 12 Fabricated prototypes of the conventional and proposed systems: (a) Side view, (b) Front view, and (c) & (d) Floated images in each prototype.

Tables (4)

Tables Icon

Table 1 Operational Parameters of a Floating Display System

Tables Icon

Table 2 Operational Parameters of the Conventional and Proposed Experimental Systems

Tables Icon

Table 3 Calculated Display Characteristics of the Conventional and Proposed Systems

Tables Icon

Table 4 Summarized Experimental Results

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

1 d f = 1 f 1 d o
θ=2arctan( w 2 d f )=2arctan[ w 2 ( 1 f 1 d o ) ]
θ wv =2arctan( w s out 2 d f )=2arctan[ w s out 2 ( 1 f 1 d o ) ]
M f = s out s in = d f d o =| f d o f |=| d f f f |
E = POL [ 0 V ]
E QWP1 = 1 2 [ 1 1 1 1 ][ e j π 4 0 0 e j π 4 ] 1 2 [ 1 1 1 1 ][ 0 V ]= j 2 [ V jV ]= E HM
E QWP2 = 1 2 [ 1 1 1 1 ][ e j π 4 0 0 e j π 4 ] 1 2 [ 1 1 1 1 ] j 2 [ V jV ]= j 2 [ 1 j j 1 ][ 0 jV ]=[ 0 V ]
E = RP [ 0 V ]
E QWP2 = 1 2 [ 1 1 1 1 ][ e j π 4 0 0 e j π 4 ] 1 2 [ 1 1 1 1 ][ 0 V ]= 1 2 [ 1 j j 1 ][ 0 V ]= j 2 [ V jV ]
E = HM j 2 [ V jV ]
E QWP2 = 1 2 [ 1 1 1 1 ][ e j π 4 0 0 e j π 4 ] 1 2 [ 1 1 1 1 ] j 2 [ V jV ]=[ jV 0 ]
E = FRESNEL E = RP E = QWP2 [ jV 0 ]
1 d f = 1 f 1 3 d o
θ =2arctan( w 2 d f )=2arctan[ w 2 ( 1 f 1 3 d o ) ]
θ wv =2arctan( w s out 2 d f )=2arctan[ w s out 2 ( 1 f 1 3 d o ) ]
s out = s in d f 3 d o = s in | f 3 d o f |= s in | d f f f |

Metrics