Abstract

Formation of transverse modes in a dual-polarization self-mode-locked monolithic Yb: KGW laser under high-power pumping is thoroughly explored. It is experimentally observed that the polarization-resolved transverse patterns are considerably affected by the pump location in the transverse plane of the gain medium. In contrast, the longitudinal self-mode-locking is nearly undisturbed by the pump position, even under the high-power pumping. Under central pumping, a vortex beam of the Laguerre-Gaussian LGp,l mode with p = 1 and l = 1 can be efficiently generated through the process of the gain competition with a sub-picosecond pulse train at 25.3 GHz and the output power can be up to 1.45 W at a pump power of 10.0 W. Under off-center pumping, the symmetry breaking causes the transverse patterns to be dominated by the high-order Hermite-Gaussian modes. Numerical analyses are further performed to manifest the symmetry breaking induced by the off-center pumping.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-starting 12.7  fs pulse generation from a mode-locked Ti:sapphire laser pumped by a femtosecond Yb:KGW laser

Xianghao Meng, Zhaohua Wang, Jianwang Jiang, Wenlong Tian, Shaobo Fang, and Zhiyi Wei
J. Opt. Soc. Am. B 35(5) 967-971 (2018)

High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking

W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen
Opt. Lett. 38(14) 2596-2599 (2013)

High-power, femtosecond, thermal-lens-shaped Yb:KGW oscillator

Joel A. Berger, Michael J. Greco, and W. Andreas Schroeder
Opt. Express 16(12) 8629-8640 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. Z. Sotor, G. Dudzik, and K. M. Abramski, “Single frequency, monolithic Nd:YVO4/YVO4/KTP diode pumped solid state laser optimization by parasitic oscillations elimination,” Opt. Commun. 291, 279–284 (2013).
    [Crossref]
  2. D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-mum laser,” Opt. Lett. 24(6), 385–387 (1999).
    [Crossref] [PubMed]
  3. Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Diode-pumped monolithic Er3+:Yb3+:YAl3(BO3) 4 micro-laser at 1.6 µm,” Opt. Commun. 285(5), 751–754 (2012).
    [Crossref]
  4. T. R. Schibli, T. Kremp, U. Morgner, F. X. Kärtner, R. Butendeich, J. Schwarz, H. Schweizer, F. Scholz, J. Hetzler, and M. Wegener, “Continuous-wave operation and Q-switched mode locking of Cr4+:YAG microchip lasers,” Opt. Lett. 26(12), 941–943 (2001).
    [Crossref] [PubMed]
  5. C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
    [Crossref]
  6. areS. Zhou, S. Li, K. K. Lee, and Y. C. Chen, “Monolithic self-Q-switched Cr,Nd:YAG laser,” Opt. Lett. 18(7), 511–512 (1993).
    [Crossref] [PubMed]
  7. Y. C. Chen, S. Li, K. K. Lee, and S. Zhou, “Self-stabilized single-longitudinal-mode operation in a self-Q-switched Cr,Nd:YAG laser,” Opt. Lett. 18(17), 1418–1419 (1993).
    [Crossref] [PubMed]
  8. R. S. Conroy, T. Lake, G. J. Friel, A. J. Kemp, and B. D. Sinclair, “Self-Q-switched Nd:YVO4 microchip lasers,” Opt. Lett. 23(6), 457–459 (1998).
    [Crossref] [PubMed]
  9. J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
    [Crossref] [PubMed]
  10. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref] [PubMed]
  11. W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen, “High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking,” Opt. Lett. 38(14), 2596–2599 (2013).
    [Crossref] [PubMed]
  12. C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
    [Crossref]
  13. Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
    [Crossref]
  14. M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
    [Crossref] [PubMed]
  15. J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14(1), 24–26 (1989).
    [Crossref] [PubMed]
  16. J. J. Zayhowski and A. Mooradian, “Frequency-modulated Nd:YAG microchip lasers,” Opt. Lett. 14(12), 618–620 (1989).
    [Crossref] [PubMed]
  17. G. J. Dixon, L. S. Lingvay, and R. H. Jarman, “Properties of close-coupled, monolithic lithium neodymium tetraphosphate laser,” Proc. SPIE 1104, 107–112 (1989).
  18. P. A. Loiko, V. E. Kisel, N. V. Kondratuk, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater. 35(3), 582–585 (2013).
    [Crossref]
  19. M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
    [Crossref]
  20. M. C. Cross and P. C. Hohenberg, “Pattern formation outside of equilibrium,” Rev. Mod. Phys. 65(3), 851–1112 (1993).
    [Crossref]
  21. A. Y. Okulov, “3D-vortex labyrinths in the near field of solid-state microchip laser,” J. Mod. Opt. 55(2), 241–259 (2008).
    [Crossref]
  22. V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw Dislocations in Light Wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992).
    [Crossref]
  23. E. Abramochkin and V. Volostnikov, “Beam transformations and nontransformed beams,” Opt. Commun. 83(1-2), 123–135 (1991).
    [Crossref]
  24. D. Naidoo, K. Aït-Ameur, M. Brunel, and A. Forbes, “Intra-cavity generation of superpositions of Laguerre–Gaussian beams,” Appl. Phys. B 106(3), 683–690 (2012).
    [Crossref]
  25. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
    [Crossref]
  26. Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78(15), 2948–2951 (1997).
    [Crossref]
  27. C. L. Tang and H. Statz, “Maximum-emission principle and phase-locking in multimode lasers,” J. Appl. Phys. 38(7), 2963–2968 (1967).
    [Crossref]
  28. H. Statz, “On the conditions for self-locking of modes in lasers,” J. Appl. Phys. 38(12), 4648–4655 (1967).
    [Crossref]
  29. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Comparative thermal analysis of Nd- and Yb-doped YAG and KGdW laser crystals under diode- and flashlamp-pumping,” Opt. Laser Technol. 44(7), 2232–2237 (2012).
    [Crossref]
  30. A. K. Cousins, “Temperature and thermal stress scaling in finite-lengthend-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
    [Crossref]
  31. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
    [Crossref]

2015 (2)

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

2014 (1)

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
[Crossref]

2013 (5)

W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen, “High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking,” Opt. Lett. 38(14), 2596–2599 (2013).
[Crossref] [PubMed]

P. A. Loiko, V. E. Kisel, N. V. Kondratuk, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater. 35(3), 582–585 (2013).
[Crossref]

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

J. Z. Sotor, G. Dudzik, and K. M. Abramski, “Single frequency, monolithic Nd:YVO4/YVO4/KTP diode pumped solid state laser optimization by parasitic oscillations elimination,” Opt. Commun. 291, 279–284 (2013).
[Crossref]

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

2012 (3)

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Diode-pumped monolithic Er3+:Yb3+:YAl3(BO3) 4 micro-laser at 1.6 µm,” Opt. Commun. 285(5), 751–754 (2012).
[Crossref]

D. Naidoo, K. Aït-Ameur, M. Brunel, and A. Forbes, “Intra-cavity generation of superpositions of Laguerre–Gaussian beams,” Appl. Phys. B 106(3), 683–690 (2012).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Comparative thermal analysis of Nd- and Yb-doped YAG and KGdW laser crystals under diode- and flashlamp-pumping,” Opt. Laser Technol. 44(7), 2232–2237 (2012).
[Crossref]

2011 (1)

2008 (1)

A. Y. Okulov, “3D-vortex labyrinths in the near field of solid-state microchip laser,” J. Mod. Opt. 55(2), 241–259 (2008).
[Crossref]

2007 (1)

2001 (1)

1999 (1)

1998 (1)

1997 (2)

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78(15), 2948–2951 (1997).
[Crossref]

1993 (3)

1992 (2)

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw Dislocations in Light Wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992).
[Crossref]

A. K. Cousins, “Temperature and thermal stress scaling in finite-lengthend-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[Crossref]

1991 (1)

E. Abramochkin and V. Volostnikov, “Beam transformations and nontransformed beams,” Opt. Commun. 83(1-2), 123–135 (1991).
[Crossref]

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

1989 (3)

1967 (2)

C. L. Tang and H. Statz, “Maximum-emission principle and phase-locking in multimode lasers,” J. Appl. Phys. 38(7), 2963–2968 (1967).
[Crossref]

H. Statz, “On the conditions for self-locking of modes in lasers,” J. Appl. Phys. 38(12), 4648–4655 (1967).
[Crossref]

Abramochkin, E.

E. Abramochkin and V. Volostnikov, “Beam transformations and nontransformed beams,” Opt. Commun. 83(1-2), 123–135 (1991).
[Crossref]

Abramski, K. M.

J. Z. Sotor, G. Dudzik, and K. M. Abramski, “Single frequency, monolithic Nd:YVO4/YVO4/KTP diode pumped solid state laser optimization by parasitic oscillations elimination,” Opt. Commun. 291, 279–284 (2013).
[Crossref]

Aït-Ameur, K.

D. Naidoo, K. Aït-Ameur, M. Brunel, and A. Forbes, “Intra-cavity generation of superpositions of Laguerre–Gaussian beams,” Appl. Phys. B 106(3), 683–690 (2012).
[Crossref]

Alpmann, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

Bazhenov, V. Y.

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw Dislocations in Light Wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992).
[Crossref]

Brunel, M.

D. Naidoo, K. Aït-Ameur, M. Brunel, and A. Forbes, “Intra-cavity generation of superpositions of Laguerre–Gaussian beams,” Appl. Phys. B 106(3), 683–690 (2012).
[Crossref]

Butendeich, R.

Chang, C. C.

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
[Crossref]

Chang, M. T.

Chen, D. W.

Chen, Y. C.

Chen, Y. F.

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
[Crossref]

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen, “High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking,” Opt. Lett. 38(14), 2596–2599 (2013).
[Crossref] [PubMed]

Chen, Y. J.

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Diode-pumped monolithic Er3+:Yb3+:YAl3(BO3) 4 micro-laser at 1.6 µm,” Opt. Commun. 285(5), 751–754 (2012).
[Crossref]

Chen, Z.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78(15), 2948–2951 (1997).
[Crossref]

Cho, C. Y.

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Conroy, R. S.

Cousins, A. K.

A. K. Cousins, “Temperature and thermal stress scaling in finite-lengthend-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[Crossref]

Cross, M. C.

M. C. Cross and P. C. Hohenberg, “Pattern formation outside of equilibrium,” Rev. Mod. Phys. 65(3), 851–1112 (1993).
[Crossref]

Denz, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

Dixon, G. J.

G. J. Dixon, L. S. Lingvay, and R. H. Jarman, “Properties of close-coupled, monolithic lithium neodymium tetraphosphate laser,” Proc. SPIE 1104, 107–112 (1989).

Dong, J.

Dudzik, G.

J. Z. Sotor, G. Dudzik, and K. M. Abramski, “Single frequency, monolithic Nd:YVO4/YVO4/KTP diode pumped solid state laser optimization by parasitic oscillations elimination,” Opt. Commun. 291, 279–284 (2013).
[Crossref]

Esseling, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

Fields, R. A.

D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-mum laser,” Opt. Lett. 24(6), 385–387 (1999).
[Crossref] [PubMed]

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Fincher, C. L.

D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-mum laser,” Opt. Lett. 24(6), 385–387 (1999).
[Crossref] [PubMed]

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Forbes, A.

D. Naidoo, K. Aït-Ameur, M. Brunel, and A. Forbes, “Intra-cavity generation of superpositions of Laguerre–Gaussian beams,” Appl. Phys. B 106(3), 683–690 (2012).
[Crossref]

Friel, G. J.

Gong, X. H.

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Diode-pumped monolithic Er3+:Yb3+:YAl3(BO3) 4 micro-laser at 1.6 µm,” Opt. Commun. 285(5), 751–754 (2012).
[Crossref]

Hetzler, J.

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Hohenberg, P. C.

M. C. Cross and P. C. Hohenberg, “Pattern formation outside of equilibrium,” Rev. Mod. Phys. 65(3), 851–1112 (1993).
[Crossref]

Huang, J. H.

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Diode-pumped monolithic Er3+:Yb3+:YAl3(BO3) 4 micro-laser at 1.6 µm,” Opt. Commun. 285(5), 751–754 (2012).
[Crossref]

Huang, K. F.

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Huang, Y. D.

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Diode-pumped monolithic Er3+:Yb3+:YAl3(BO3) 4 micro-laser at 1.6 µm,” Opt. Commun. 285(5), 751–754 (2012).
[Crossref]

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Jarman, R. H.

G. J. Dixon, L. S. Lingvay, and R. H. Jarman, “Properties of close-coupled, monolithic lithium neodymium tetraphosphate laser,” Proc. SPIE 1104, 107–112 (1989).

Kaminskii, A. A.

Kärtner, F. X.

Kemp, A. J.

Kisel, V. E.

P. A. Loiko, V. E. Kisel, N. V. Kondratuk, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater. 35(3), 582–585 (2013).
[Crossref]

Kondratuk, N. V.

P. A. Loiko, V. E. Kisel, N. V. Kondratuk, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater. 35(3), 582–585 (2013).
[Crossref]

Kremp, T.

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Kuleshov, N. V.

P. A. Loiko, V. E. Kisel, N. V. Kondratuk, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater. 35(3), 582–585 (2013).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Comparative thermal analysis of Nd- and Yb-doped YAG and KGdW laser crystals under diode- and flashlamp-pumping,” Opt. Laser Technol. 44(7), 2232–2237 (2012).
[Crossref]

Lake, T.

Lee, C. Y.

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
[Crossref]

Lee, K. K.

Li, S.

Liang, H. C.

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
[Crossref]

W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen, “High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking,” Opt. Lett. 38(14), 2596–2599 (2013).
[Crossref] [PubMed]

Lin, Y. F.

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Diode-pumped monolithic Er3+:Yb3+:YAl3(BO3) 4 micro-laser at 1.6 µm,” Opt. Commun. 285(5), 751–754 (2012).
[Crossref]

Lingvay, L. S.

G. J. Dixon, L. S. Lingvay, and R. H. Jarman, “Properties of close-coupled, monolithic lithium neodymium tetraphosphate laser,” Proc. SPIE 1104, 107–112 (1989).

Loiko, P. A.

P. A. Loiko, V. E. Kisel, N. V. Kondratuk, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater. 35(3), 582–585 (2013).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Comparative thermal analysis of Nd- and Yb-doped YAG and KGdW laser crystals under diode- and flashlamp-pumping,” Opt. Laser Technol. 44(7), 2232–2237 (2012).
[Crossref]

Luo, Z. D.

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Diode-pumped monolithic Er3+:Yb3+:YAl3(BO3) 4 micro-laser at 1.6 µm,” Opt. Commun. 285(5), 751–754 (2012).
[Crossref]

Maker, P. D.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78(15), 2948–2951 (1997).
[Crossref]

Mooradian, A.

Morgner, U.

Muller, R. E.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78(15), 2948–2951 (1997).
[Crossref]

Naidoo, D.

D. Naidoo, K. Aït-Ameur, M. Brunel, and A. Forbes, “Intra-cavity generation of superpositions of Laguerre–Gaussian beams,” Appl. Phys. B 106(3), 683–690 (2012).
[Crossref]

Okulov, A. Y.

A. Y. Okulov, “3D-vortex labyrinths in the near field of solid-state microchip laser,” J. Mod. Opt. 55(2), 241–259 (2008).
[Crossref]

Pavel, N.

Pavlyuk, A. A.

P. A. Loiko, V. E. Kisel, N. V. Kondratuk, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater. 35(3), 582–585 (2013).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Comparative thermal analysis of Nd- and Yb-doped YAG and KGdW laser crystals under diode- and flashlamp-pumping,” Opt. Laser Technol. 44(7), 2232–2237 (2012).
[Crossref]

Rose, T. S.

Sasada, H.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Schibli, T. R.

Scholz, F.

Schwarz, J.

Schweizer, H.

Segev, M.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78(15), 2948–2951 (1997).
[Crossref]

Shimizu, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Shirakawa, A.

Sinclair, B. D.

Soskin, M. S.

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw Dislocations in Light Wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992).
[Crossref]

Sotor, J. Z.

J. Z. Sotor, G. Dudzik, and K. M. Abramski, “Single frequency, monolithic Nd:YVO4/YVO4/KTP diode pumped solid state laser optimization by parasitic oscillations elimination,” Opt. Commun. 291, 279–284 (2013).
[Crossref]

Statz, H.

C. L. Tang and H. Statz, “Maximum-emission principle and phase-locking in multimode lasers,” J. Appl. Phys. 38(7), 2963–2968 (1967).
[Crossref]

H. Statz, “On the conditions for self-locking of modes in lasers,” J. Appl. Phys. 38(12), 4648–4655 (1967).
[Crossref]

Su, K. W.

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[Crossref] [PubMed]

Taira, T.

Tang, C. L.

C. L. Tang and H. Statz, “Maximum-emission principle and phase-locking in multimode lasers,” J. Appl. Phys. 38(7), 2963–2968 (1967).
[Crossref]

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Tsunekane, M.

Tuan, P. H.

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Ueda, K.

Vasnetsov, M. V.

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw Dislocations in Light Wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992).
[Crossref]

Vernon, F. L.

Volostnikov, V.

E. Abramochkin and V. Volostnikov, “Beam transformations and nontransformed beams,” Opt. Commun. 83(1-2), 123–135 (1991).
[Crossref]

Wegener, M.

Wilson, D. W.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78(15), 2948–2951 (1997).
[Crossref]

Woerdemann, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

Yagi, H.

Yanagitani, T.

Yu, Y. T.

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Yumashev, K. V.

P. A. Loiko, V. E. Kisel, N. V. Kondratuk, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater. 35(3), 582–585 (2013).
[Crossref]

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Comparative thermal analysis of Nd- and Yb-doped YAG and KGdW laser crystals under diode- and flashlamp-pumping,” Opt. Laser Technol. 44(7), 2232–2237 (2012).
[Crossref]

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Zayhowski, J. J.

Zhou, S.

Zhuang, W. Z.

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

W. Z. Zhuang, M. T. Chang, H. C. Liang, and Y. F. Chen, “High-power high-repetition-rate subpicosecond monolithic Yb:KGW laser with self-mode locking,” Opt. Lett. 38(14), 2596–2599 (2013).
[Crossref] [PubMed]

Appl. Phys. B (1)

D. Naidoo, K. Aït-Ameur, M. Brunel, and A. Forbes, “Intra-cavity generation of superpositions of Laguerre–Gaussian beams,” Appl. Phys. B 106(3), 683–690 (2012).
[Crossref]

Appl. Phys. Lett. (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

IEEE J. Quantum Electron. (1)

A. K. Cousins, “Temperature and thermal stress scaling in finite-lengthend-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[Crossref]

J. Appl. Phys. (2)

C. L. Tang and H. Statz, “Maximum-emission principle and phase-locking in multimode lasers,” J. Appl. Phys. 38(7), 2963–2968 (1967).
[Crossref]

H. Statz, “On the conditions for self-locking of modes in lasers,” J. Appl. Phys. 38(12), 4648–4655 (1967).
[Crossref]

J. Mod. Opt. (2)

A. Y. Okulov, “3D-vortex labyrinths in the near field of solid-state microchip laser,” J. Mod. Opt. 55(2), 241–259 (2008).
[Crossref]

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw Dislocations in Light Wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992).
[Crossref]

Laser Photonics Rev. (3)

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
[Crossref]

Y. F. Chen, M. T. Chang, W. Z. Zhuang, K. W. Su, K. F. Huang, and H. C. Liang, “Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity,” Laser Photonics Rev. 9(1), 91–97 (2015).
[Crossref]

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photonics Rev. 7(6), 839–854 (2013).
[Crossref]

Laser Phys. Lett. (1)

C. Y. Cho, P. H. Tuan, Y. T. Yu, K. F. Huang, and Y. F. Chen, “A cryogenically cooled Nd:YAG monolithic laser for efficient dual-wavelength operation at 1061 and 1064 nm,” Laser Phys. Lett. 10(4), 045806 (2013).
[Crossref]

Opt. Commun. (3)

J. Z. Sotor, G. Dudzik, and K. M. Abramski, “Single frequency, monolithic Nd:YVO4/YVO4/KTP diode pumped solid state laser optimization by parasitic oscillations elimination,” Opt. Commun. 291, 279–284 (2013).
[Crossref]

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Diode-pumped monolithic Er3+:Yb3+:YAl3(BO3) 4 micro-laser at 1.6 µm,” Opt. Commun. 285(5), 751–754 (2012).
[Crossref]

E. Abramochkin and V. Volostnikov, “Beam transformations and nontransformed beams,” Opt. Commun. 83(1-2), 123–135 (1991).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Comparative thermal analysis of Nd- and Yb-doped YAG and KGdW laser crystals under diode- and flashlamp-pumping,” Opt. Laser Technol. 44(7), 2232–2237 (2012).
[Crossref]

Opt. Lett. (8)

Opt. Mater. (1)

P. A. Loiko, V. E. Kisel, N. V. Kondratuk, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations,” Opt. Mater. 35(3), 582–585 (2013).
[Crossref]

Phys. Rev. Lett. (2)

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[Crossref]

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78(15), 2948–2951 (1997).
[Crossref]

Proc. SPIE (1)

G. J. Dixon, L. S. Lingvay, and R. H. Jarman, “Properties of close-coupled, monolithic lithium neodymium tetraphosphate laser,” Proc. SPIE 1104, 107–112 (1989).

Rev. Mod. Phys. (1)

M. C. Cross and P. C. Hohenberg, “Pattern formation outside of equilibrium,” Rev. Mod. Phys. 65(3), 851–1112 (1993).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup for the polarization-resolved measurement of the high-power dual-polarization self-mode-locked Yb:KGW laser.
Fig. 2
Fig. 2 Polarization-resolved and total output powers versus incident pump power for the pump beam in the central region.
Fig. 3
Fig. 3 Polarization-resolved transverse patterns and lasing spectral combs at three pump powers for manifesting the variation of transverse modes on the pump power.
Fig. 4
Fig. 4 Polarization-resolved first-order autocorrelation traces at the maximum pump power of 10.0 W for the Np polarized state (a) and Nm polarized state (b); FWHM widths of the polarization-resolved single pulses in the second-order autocorrelation traces at the maximum pump power of 10.0 W for the Np polarized state (c) and Nm polarized state (d).
Fig. 5
Fig. 5 Helical phase front of the LG11 mode.
Fig. 6
Fig. 6 Polarization-resolved and total output powers versus incident pump power for the pump beam outside the central region with dx = 1.0 mm and dy = 0.5 mm.
Fig. 7
Fig. 7 Polarization-resolved transverse patterns and lasing spectral combs at three pump powers for manifesting the variation of transverse modes on the pump power for the case of off-center pumping.
Fig. 8
Fig. 8 calculated results for temperature profiles at the input face of the laser crystal at an absorption power of 6 W for three different pump positions with dx = 0.0, 0.5, and 1.0 mm and dy = 0.0 mm for all cases.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( K c T)=Q(x,y,z) ,
Q(x,y,z)= 2ξ P abs π ω p 2 α 1 e αl e αz e 2 (x d x ) 2 / ω p 2 e 2 (y d y ) 2 / ω p 2 .

Metrics