Abstract

This paper deals with the integration of metallic and dielectric nanostructured planar lenses into a pixel from a silicon based CMOS image sensor, for a monochromatic application at 1.064 μm. The first is a Plasmonic Lens, based on the phase delay through nanoslits, which has been found to be hardly compatible with current CMOS technology and exhibits a notable metallic absorption. The second is a dielectric Phase-Fresnel Lens integrated at the top of a pixel, it exhibits an Optical Efficiency (OE) improved by a few percent and an angle of view of 50°. The third one is a metallic diffractive lens integrated inside a pixel, which shows a better OE and an angle of view of 24°. The last two lenses exhibit a compatibility with a spectral band close to 1.064 μm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microlens performance limits in sub-2μm pixel CMOS image sensors

Yijie Huo, Christian C. Fesenmaier, and Peter B. Catrysse
Opt. Express 18(6) 5861-5872 (2010)

Color filters including infrared cut-off integrated on CMOS image sensor

Laurent Frey, Pascale Parrein, Jacques Raby, Catherine Pellé, Didier Hérault, Michel Marty, and Jean Michailos
Opt. Express 19(14) 13073-13080 (2011)

Optical confinement methods for continued scaling of CMOS image sensor pixels

Christian C. Fesenmaier, Yijie Huo, and Peter B. Catrysse
Opt. Express 16(25) 20457-20470 (2008)

References

  • View by:
  • |
  • |
  • |

  1. L. Goldberg, J. Nettleton, B. Schilling, W. Trussel, and A. Hays, “Compact laser sources for laser designation, ranging and active imaging,” Proc. SPIE 6552, 65520G (2007).
    [Crossref]
  2. J. Bentell, P. Nies, J. Cloots, J. Vermeiren, B. Grietens, O. David, A. Shurkun, and R. Schneider, “Flip chipped ingaas photodiode arrays for gated imaging with eye-safe lasers,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International,” (2007), pp. 1103–1106.
  3. E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic University, 1998).
  4. C. Hicks, M. Kalatsky, R. A. Metzler, and A. O. Goushcha, “Quantum efficiency of silicon photodiodes in the near-infrared spectral range,” Appl. Opt. 42, 4415–4422 (2003).
    [Crossref] [PubMed]
  5. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73 (1998).
    [Crossref]
  6. M. U. Pralle, J. E. Carey, H. Haddad, C. Vineis, J. Sickler, X. Li, J. Jiang, F. Sahebi, C. Palsule, and J. McKee, “Ir cmos: infrared enhanced silicon imaging,” Proc. SPIE 8704, 870407 (2013).
    [Crossref]
  7. H.-S. Wong, “Technology and device scaling considerations for cmos imagers,” IEEE Trans. Electron. Dev. 43, 2131–2142 (1996).
    [Crossref]
  8. Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A global-shutter cmos image sensor with readout speed of 1-tpixel/s burst and 780-mpixel/s continuous,” IEEE J. Solid-State Circuits 48, 329–338 (2013).
    [Crossref]
  9. T. Tut, P. Duane, W. N. Ye, M. Wober, and K. B. Crozier, “Silicon nitride light pipes for image sensors,” Proc. SPIE 7780, 77800W (2010).
    [Crossref]
  10. S. Lauxtermann and V. Vangapally, “A fully depleted backside illuminated cmos imager with vga resolution and 15 micron pixel pitch,” in “2013 International Image Sensor Workshop, Snowbird Resort, Utah, USA,” (2013).
  11. P. Nussbaum, R. Vlkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure and Applied Optics: Journal of the European Optical Society Part A 6, 617 (1997).
    [Crossref]
  12. P. B. Catrysse and B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. A 19, 1610–1620 (2002).
    [Crossref]
  13. G. Agranov, V. Berezin, and R. Tsai, “Crosstalk and microlens study in a color cmos image sensor,” IEEE Trans. Electron. Dev. 50, 4–11 (2003).
    [Crossref]
  14. J. Vaillant, A. Crocherie, F. Hirigoyen, A. Cadien, and J. Pond, “Uniform illumination and rigorous electromagnetic simulations applied to cmos image sensors,” Opt. Express 15, 5494–5503 (2007).
    [Crossref] [PubMed]
  15. F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production part i: Background and experiments,” Optik 113, 391–404 (2002).
    [Crossref]
  16. S. Audran, B. Faure, B. Mortini, C. Aumont, R. Tiron, C. Zinck, Y. Sanchez, C. Fellous, J. Regolini, J. P. Reynard, G. Schlatter, and G. Hadziioannou, “Study of dynamical formation and shape of microlenses formed by the reflow method,” Proc. SPIE 6153, 61534D (2006).
    [Crossref]
  17. Y. Huo, C. C. Fesenmaier, and P. B. Catrysse, “Microlens performance limits in sub-2μm pixel cmos image sensors,” Opt. Express 18, 5861–5872 (2010).
    [Crossref] [PubMed]
  18. P. B. Catrysse and B. A. Wandell, “Integrated color pixels in 0.18-μm complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A 20, 2293–2306 (2003).
    [Crossref]
  19. P. B. Catrysse, “Monolithic integration of electronics and sub-wavelength metal optics in deep submicron cmos technology,” in “Symposium D Materials, Integration and Technology for Monolithic Instruments,”, vol. 869 of MRS Proceedings (2005), vol. 869 of MRS Proceedings.
  20. G. Demésy, F. Zolla, A. Nicolet, M. Commandr, C. Fossati, O. Gagliano, S. Ricq, and B. Dunne, “Finite element method as applied to the study of gratings embedded in complementary metal-oxide semiconductor image sensors,” Opt. Eng. 48, 058002 (2009).
    [Crossref]
  21. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642 (2004).
    [Crossref]
  22. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13, 6815–6820 (2005).
    [Crossref] [PubMed]
  23. Y. Yu and H. Zappe, “Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design,” Opt. Express 19, 9434–9444 (2011).
    [Crossref] [PubMed]
  24. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Letters 9, 235–238 (2009).
    [Crossref]
  25. L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95, 071112 (2009).
    [Crossref]
  26. P. B. Catrysse, L. Verslegers, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Nanoscale slit arrays as planar far-field lenses,” Proc. SPIE 7394, 73940B (2009).
    [Crossref]
  27. L. A. Dunbar, M. Guillaume, F. de Len-Prez, C. Santschi, E. Grenet, R. Eckert, F. Lpez-Tejeira, F. J. Garca-Vidal, L. Martn-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
    [Crossref]
  28. W. D. Furlan, G. Saavedra, and J. A. Monsoriu, “White-light imaging with fractal zone plates,” Opt. Lett. 32, 2109–2111 (2007).
    [Crossref] [PubMed]
  29. Q. Lévesque, P. Bouchon, F. Pardo, J.-L. Pelouard, and R. Hadar, “Compact planar lenses based on a pinhole and an array of single mode metallic slits,” Journal of the European Optical Society 8, 13071 (2013).
    [Crossref]
  30. M. Bass, E. Van Stryland, D. Williams, and W. Wolfe, Handbook of Optics (McGraw-Hill, 1996).
  31. S.-Y. Lee, C.-H. Wang, C.-H. Yang, C.-M. Sun, and W. Fang, “Cmos based optical focusing stage with phase grating fresnel lens,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International,” (2009), pp. 2070–2073.
  32. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Computer Physics Communications 181, 687–702 (2010).
    [Crossref]
  33. H. Tian, “Noise analysis in cmos image sensors,” Ph.D. thesis, Citeseer (2000).
  34. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933–1938 (2005).
    [Crossref] [PubMed]
  35. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [Crossref]

2013 (3)

M. U. Pralle, J. E. Carey, H. Haddad, C. Vineis, J. Sickler, X. Li, J. Jiang, F. Sahebi, C. Palsule, and J. McKee, “Ir cmos: infrared enhanced silicon imaging,” Proc. SPIE 8704, 870407 (2013).
[Crossref]

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A global-shutter cmos image sensor with readout speed of 1-tpixel/s burst and 780-mpixel/s continuous,” IEEE J. Solid-State Circuits 48, 329–338 (2013).
[Crossref]

Q. Lévesque, P. Bouchon, F. Pardo, J.-L. Pelouard, and R. Hadar, “Compact planar lenses based on a pinhole and an array of single mode metallic slits,” Journal of the European Optical Society 8, 13071 (2013).
[Crossref]

2011 (1)

2010 (3)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

T. Tut, P. Duane, W. N. Ye, M. Wober, and K. B. Crozier, “Silicon nitride light pipes for image sensors,” Proc. SPIE 7780, 77800W (2010).
[Crossref]

Y. Huo, C. C. Fesenmaier, and P. B. Catrysse, “Microlens performance limits in sub-2μm pixel cmos image sensors,” Opt. Express 18, 5861–5872 (2010).
[Crossref] [PubMed]

2009 (5)

G. Demésy, F. Zolla, A. Nicolet, M. Commandr, C. Fossati, O. Gagliano, S. Ricq, and B. Dunne, “Finite element method as applied to the study of gratings embedded in complementary metal-oxide semiconductor image sensors,” Opt. Eng. 48, 058002 (2009).
[Crossref]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Letters 9, 235–238 (2009).
[Crossref]

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95, 071112 (2009).
[Crossref]

P. B. Catrysse, L. Verslegers, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Nanoscale slit arrays as planar far-field lenses,” Proc. SPIE 7394, 73940B (2009).
[Crossref]

L. A. Dunbar, M. Guillaume, F. de Len-Prez, C. Santschi, E. Grenet, R. Eckert, F. Lpez-Tejeira, F. J. Garca-Vidal, L. Martn-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[Crossref]

2007 (3)

2006 (1)

S. Audran, B. Faure, B. Mortini, C. Aumont, R. Tiron, C. Zinck, Y. Sanchez, C. Fellous, J. Regolini, J. P. Reynard, G. Schlatter, and G. Hadziioannou, “Study of dynamical formation and shape of microlenses formed by the reflow method,” Proc. SPIE 6153, 61534D (2006).
[Crossref]

2005 (2)

2004 (1)

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642 (2004).
[Crossref]

2003 (3)

2002 (2)

P. B. Catrysse and B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. A 19, 1610–1620 (2002).
[Crossref]

F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production part i: Background and experiments,” Optik 113, 391–404 (2002).
[Crossref]

1998 (1)

1997 (1)

P. Nussbaum, R. Vlkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure and Applied Optics: Journal of the European Optical Society Part A 6, 617 (1997).
[Crossref]

1996 (1)

H.-S. Wong, “Technology and device scaling considerations for cmos imagers,” IEEE Trans. Electron. Dev. 43, 2131–2142 (1996).
[Crossref]

Agranov, G.

G. Agranov, V. Berezin, and R. Tsai, “Crosstalk and microlens study in a color cmos image sensor,” IEEE Trans. Electron. Dev. 50, 4–11 (2003).
[Crossref]

Audran, S.

S. Audran, B. Faure, B. Mortini, C. Aumont, R. Tiron, C. Zinck, Y. Sanchez, C. Fellous, J. Regolini, J. P. Reynard, G. Schlatter, and G. Hadziioannou, “Study of dynamical formation and shape of microlenses formed by the reflow method,” Proc. SPIE 6153, 61534D (2006).
[Crossref]

Aumont, C.

S. Audran, B. Faure, B. Mortini, C. Aumont, R. Tiron, C. Zinck, Y. Sanchez, C. Fellous, J. Regolini, J. P. Reynard, G. Schlatter, and G. Hadziioannou, “Study of dynamical formation and shape of microlenses formed by the reflow method,” Proc. SPIE 6153, 61534D (2006).
[Crossref]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Letters 9, 235–238 (2009).
[Crossref]

P. B. Catrysse, L. Verslegers, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Nanoscale slit arrays as planar far-field lenses,” Proc. SPIE 7394, 73940B (2009).
[Crossref]

Bass, M.

M. Bass, E. Van Stryland, D. Williams, and W. Wolfe, Handbook of Optics (McGraw-Hill, 1996).

Bentell, J.

J. Bentell, P. Nies, J. Cloots, J. Vermeiren, B. Grietens, O. David, A. Shurkun, and R. Schneider, “Flip chipped ingaas photodiode arrays for gated imaging with eye-safe lasers,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International,” (2007), pp. 1103–1106.

Berezin, V.

G. Agranov, V. Berezin, and R. Tsai, “Crosstalk and microlens study in a color cmos image sensor,” IEEE Trans. Electron. Dev. 50, 4–11 (2003).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Bouchon, P.

Q. Lévesque, P. Bouchon, F. Pardo, J.-L. Pelouard, and R. Hadar, “Compact planar lenses based on a pinhole and an array of single mode metallic slits,” Journal of the European Optical Society 8, 13071 (2013).
[Crossref]

Brolo, A. G.

Brongersma, M. L.

P. B. Catrysse, L. Verslegers, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Nanoscale slit arrays as planar far-field lenses,” Proc. SPIE 7394, 73940B (2009).
[Crossref]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Letters 9, 235–238 (2009).
[Crossref]

Cadien, A.

Carey, J. E.

M. U. Pralle, J. E. Carey, H. Haddad, C. Vineis, J. Sickler, X. Li, J. Jiang, F. Sahebi, C. Palsule, and J. McKee, “Ir cmos: infrared enhanced silicon imaging,” Proc. SPIE 8704, 870407 (2013).
[Crossref]

Catrysse, P. B.

Y. Huo, C. C. Fesenmaier, and P. B. Catrysse, “Microlens performance limits in sub-2μm pixel cmos image sensors,” Opt. Express 18, 5861–5872 (2010).
[Crossref] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95, 071112 (2009).
[Crossref]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Letters 9, 235–238 (2009).
[Crossref]

P. B. Catrysse, L. Verslegers, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Nanoscale slit arrays as planar far-field lenses,” Proc. SPIE 7394, 73940B (2009).
[Crossref]

P. B. Catrysse and B. A. Wandell, “Integrated color pixels in 0.18-μm complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A 20, 2293–2306 (2003).
[Crossref]

P. B. Catrysse and B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. A 19, 1610–1620 (2002).
[Crossref]

P. B. Catrysse, “Monolithic integration of electronics and sub-wavelength metal optics in deep submicron cmos technology,” in “Symposium D Materials, Integration and Technology for Monolithic Instruments,”, vol. 869 of MRS Proceedings (2005), vol. 869 of MRS Proceedings.

Cloots, J.

J. Bentell, P. Nies, J. Cloots, J. Vermeiren, B. Grietens, O. David, A. Shurkun, and R. Schneider, “Flip chipped ingaas photodiode arrays for gated imaging with eye-safe lasers,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International,” (2007), pp. 1103–1106.

Commandr, M.

G. Demésy, F. Zolla, A. Nicolet, M. Commandr, C. Fossati, O. Gagliano, S. Ricq, and B. Dunne, “Finite element method as applied to the study of gratings embedded in complementary metal-oxide semiconductor image sensors,” Opt. Eng. 48, 058002 (2009).
[Crossref]

Crocherie, A.

Crozier, K. B.

T. Tut, P. Duane, W. N. Ye, M. Wober, and K. B. Crozier, “Silicon nitride light pipes for image sensors,” Proc. SPIE 7780, 77800W (2010).
[Crossref]

David, O.

J. Bentell, P. Nies, J. Cloots, J. Vermeiren, B. Grietens, O. David, A. Shurkun, and R. Schneider, “Flip chipped ingaas photodiode arrays for gated imaging with eye-safe lasers,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International,” (2007), pp. 1103–1106.

de Len-Prez, F.

L. A. Dunbar, M. Guillaume, F. de Len-Prez, C. Santschi, E. Grenet, R. Eckert, F. Lpez-Tejeira, F. J. Garca-Vidal, L. Martn-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[Crossref]

Deliwala, S.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73 (1998).
[Crossref]

Demésy, G.

G. Demésy, F. Zolla, A. Nicolet, M. Commandr, C. Fossati, O. Gagliano, S. Ricq, and B. Dunne, “Finite element method as applied to the study of gratings embedded in complementary metal-oxide semiconductor image sensors,” Opt. Eng. 48, 058002 (2009).
[Crossref]

Djurišic, A. B.

Dong, X.

Du, C.

Duane, P.

T. Tut, P. Duane, W. N. Ye, M. Wober, and K. B. Crozier, “Silicon nitride light pipes for image sensors,” Proc. SPIE 7780, 77800W (2010).
[Crossref]

Dunbar, L. A.

L. A. Dunbar, M. Guillaume, F. de Len-Prez, C. Santschi, E. Grenet, R. Eckert, F. Lpez-Tejeira, F. J. Garca-Vidal, L. Martn-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[Crossref]

Dunne, B.

G. Demésy, F. Zolla, A. Nicolet, M. Commandr, C. Fossati, O. Gagliano, S. Ricq, and B. Dunne, “Finite element method as applied to the study of gratings embedded in complementary metal-oxide semiconductor image sensors,” Opt. Eng. 48, 058002 (2009).
[Crossref]

Eckert, R.

L. A. Dunbar, M. Guillaume, F. de Len-Prez, C. Santschi, E. Grenet, R. Eckert, F. Lpez-Tejeira, F. J. Garca-Vidal, L. Martn-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[Crossref]

Eisner, M.

P. Nussbaum, R. Vlkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure and Applied Optics: Journal of the European Optical Society Part A 6, 617 (1997).
[Crossref]

Elazar, J. M.

Fan, S.

P. B. Catrysse, L. Verslegers, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Nanoscale slit arrays as planar far-field lenses,” Proc. SPIE 7394, 73940B (2009).
[Crossref]

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95, 071112 (2009).
[Crossref]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Letters 9, 235–238 (2009).
[Crossref]

Fang, W.

S.-Y. Lee, C.-H. Wang, C.-H. Yang, C.-M. Sun, and W. Fang, “Cmos based optical focusing stage with phase grating fresnel lens,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International,” (2009), pp. 2070–2073.

Faure, B.

S. Audran, B. Faure, B. Mortini, C. Aumont, R. Tiron, C. Zinck, Y. Sanchez, C. Fellous, J. Regolini, J. P. Reynard, G. Schlatter, and G. Hadziioannou, “Study of dynamical formation and shape of microlenses formed by the reflow method,” Proc. SPIE 6153, 61534D (2006).
[Crossref]

Fellous, C.

S. Audran, B. Faure, B. Mortini, C. Aumont, R. Tiron, C. Zinck, Y. Sanchez, C. Fellous, J. Regolini, J. P. Reynard, G. Schlatter, and G. Hadziioannou, “Study of dynamical formation and shape of microlenses formed by the reflow method,” Proc. SPIE 6153, 61534D (2006).
[Crossref]

Fesenmaier, C. C.

Finlay, R. J.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73 (1998).
[Crossref]

Fossati, C.

G. Demésy, F. Zolla, A. Nicolet, M. Commandr, C. Fossati, O. Gagliano, S. Ricq, and B. Dunne, “Finite element method as applied to the study of gratings embedded in complementary metal-oxide semiconductor image sensors,” Opt. Eng. 48, 058002 (2009).
[Crossref]

Furlan, W. D.

Gagliano, O.

G. Demésy, F. Zolla, A. Nicolet, M. Commandr, C. Fossati, O. Gagliano, S. Ricq, and B. Dunne, “Finite element method as applied to the study of gratings embedded in complementary metal-oxide semiconductor image sensors,” Opt. Eng. 48, 058002 (2009).
[Crossref]

Gao, H.

Garca-Vidal, F. J.

L. A. Dunbar, M. Guillaume, F. de Len-Prez, C. Santschi, E. Grenet, R. Eckert, F. Lpez-Tejeira, F. J. Garca-Vidal, L. Martn-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[Crossref]

Goldberg, L.

L. Goldberg, J. Nettleton, B. Schilling, W. Trussel, and A. Hays, “Compact laser sources for laser designation, ranging and active imaging,” Proc. SPIE 6552, 65520G (2007).
[Crossref]

Gordon, R.

Goushcha, A. O.

Grenet, E.

L. A. Dunbar, M. Guillaume, F. de Len-Prez, C. Santschi, E. Grenet, R. Eckert, F. Lpez-Tejeira, F. J. Garca-Vidal, L. Martn-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[Crossref]

Grietens, B.

J. Bentell, P. Nies, J. Cloots, J. Vermeiren, B. Grietens, O. David, A. Shurkun, and R. Schneider, “Flip chipped ingaas photodiode arrays for gated imaging with eye-safe lasers,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International,” (2007), pp. 1103–1106.

Guillaume, M.

L. A. Dunbar, M. Guillaume, F. de Len-Prez, C. Santschi, E. Grenet, R. Eckert, F. Lpez-Tejeira, F. J. Garca-Vidal, L. Martn-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[Crossref]

Hadar, R.

Q. Lévesque, P. Bouchon, F. Pardo, J.-L. Pelouard, and R. Hadar, “Compact planar lenses based on a pinhole and an array of single mode metallic slits,” Journal of the European Optical Society 8, 13071 (2013).
[Crossref]

Haddad, H.

M. U. Pralle, J. E. Carey, H. Haddad, C. Vineis, J. Sickler, X. Li, J. Jiang, F. Sahebi, C. Palsule, and J. McKee, “Ir cmos: infrared enhanced silicon imaging,” Proc. SPIE 8704, 870407 (2013).
[Crossref]

Hadziioannou, G.

S. Audran, B. Faure, B. Mortini, C. Aumont, R. Tiron, C. Zinck, Y. Sanchez, C. Fellous, J. Regolini, J. P. Reynard, G. Schlatter, and G. Hadziioannou, “Study of dynamical formation and shape of microlenses formed by the reflow method,” Proc. SPIE 6153, 61534D (2006).
[Crossref]

Hanzawa, K.

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A global-shutter cmos image sensor with readout speed of 1-tpixel/s burst and 780-mpixel/s continuous,” IEEE J. Solid-State Circuits 48, 329–338 (2013).
[Crossref]

Haselbeck, S.

P. Nussbaum, R. Vlkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure and Applied Optics: Journal of the European Optical Society Part A 6, 617 (1997).
[Crossref]

Hays, A.

L. Goldberg, J. Nettleton, B. Schilling, W. Trussel, and A. Hays, “Compact laser sources for laser designation, ranging and active imaging,” Proc. SPIE 6552, 65520G (2007).
[Crossref]

Her, T.-H.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73 (1998).
[Crossref]

Herzig, H. P.

P. Nussbaum, R. Vlkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure and Applied Optics: Journal of the European Optical Society Part A 6, 617 (1997).
[Crossref]

Hicks, C.

Hirigoyen, F.

Hirose, R.

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A global-shutter cmos image sensor with readout speed of 1-tpixel/s burst and 780-mpixel/s continuous,” IEEE J. Solid-State Circuits 48, 329–338 (2013).
[Crossref]

Huo, Y.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Jiang, J.

M. U. Pralle, J. E. Carey, H. Haddad, C. Vineis, J. Sickler, X. Li, J. Jiang, F. Sahebi, C. Palsule, and J. McKee, “Ir cmos: infrared enhanced silicon imaging,” Proc. SPIE 8704, 870407 (2013).
[Crossref]

Joannopoulos, J.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Kalatsky, M.

Kato, Y.

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A global-shutter cmos image sensor with readout speed of 1-tpixel/s burst and 780-mpixel/s continuous,” IEEE J. Solid-State Circuits 48, 329–338 (2013).
[Crossref]

Kim, H. K.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642 (2004).
[Crossref]

Kondo, Y.

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A global-shutter cmos image sensor with readout speed of 1-tpixel/s burst and 780-mpixel/s continuous,” IEEE J. Solid-State Circuits 48, 329–338 (2013).
[Crossref]

Kuroda, R.

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A global-shutter cmos image sensor with readout speed of 1-tpixel/s burst and 780-mpixel/s continuous,” IEEE J. Solid-State Circuits 48, 329–338 (2013).
[Crossref]

Lauxtermann, S.

S. Lauxtermann and V. Vangapally, “A fully depleted backside illuminated cmos imager with vga resolution and 15 micron pixel pitch,” in “2013 International Image Sensor Workshop, Snowbird Resort, Utah, USA,” (2013).

Lee, S.-Y.

S.-Y. Lee, C.-H. Wang, C.-H. Yang, C.-M. Sun, and W. Fang, “Cmos based optical focusing stage with phase grating fresnel lens,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International,” (2009), pp. 2070–2073.

Lévesque, Q.

Q. Lévesque, P. Bouchon, F. Pardo, J.-L. Pelouard, and R. Hadar, “Compact planar lenses based on a pinhole and an array of single mode metallic slits,” Journal of the European Optical Society 8, 13071 (2013).
[Crossref]

Li, X.

M. U. Pralle, J. E. Carey, H. Haddad, C. Vineis, J. Sickler, X. Li, J. Jiang, F. Sahebi, C. Palsule, and J. McKee, “Ir cmos: infrared enhanced silicon imaging,” Proc. SPIE 8704, 870407 (2013).
[Crossref]

Lpez-Tejeira, F.

L. A. Dunbar, M. Guillaume, F. de Len-Prez, C. Santschi, E. Grenet, R. Eckert, F. Lpez-Tejeira, F. J. Garca-Vidal, L. Martn-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[Crossref]

Luo, X.

Majewski, M. L.

Martn-Moreno, L.

L. A. Dunbar, M. Guillaume, F. de Len-Prez, C. Santschi, E. Grenet, R. Eckert, F. Lpez-Tejeira, F. J. Garca-Vidal, L. Martn-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[Crossref]

Mazur, E.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73 (1998).
[Crossref]

McKee, J.

M. U. Pralle, J. E. Carey, H. Haddad, C. Vineis, J. Sickler, X. Li, J. Jiang, F. Sahebi, C. Palsule, and J. McKee, “Ir cmos: infrared enhanced silicon imaging,” Proc. SPIE 8704, 870407 (2013).
[Crossref]

Metzler, R. A.

Monsoriu, J. A.

Mortini, B.

S. Audran, B. Faure, B. Mortini, C. Aumont, R. Tiron, C. Zinck, Y. Sanchez, C. Fellous, J. Regolini, J. P. Reynard, G. Schlatter, and G. Hadziioannou, “Study of dynamical formation and shape of microlenses formed by the reflow method,” Proc. SPIE 6153, 61534D (2006).
[Crossref]

Mutoh, H.

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A global-shutter cmos image sensor with readout speed of 1-tpixel/s burst and 780-mpixel/s continuous,” IEEE J. Solid-State Circuits 48, 329–338 (2013).
[Crossref]

Nettleton, J.

L. Goldberg, J. Nettleton, B. Schilling, W. Trussel, and A. Hays, “Compact laser sources for laser designation, ranging and active imaging,” Proc. SPIE 6552, 65520G (2007).
[Crossref]

Nicolet, A.

G. Demésy, F. Zolla, A. Nicolet, M. Commandr, C. Fossati, O. Gagliano, S. Ricq, and B. Dunne, “Finite element method as applied to the study of gratings embedded in complementary metal-oxide semiconductor image sensors,” Opt. Eng. 48, 058002 (2009).
[Crossref]

Nies, P.

J. Bentell, P. Nies, J. Cloots, J. Vermeiren, B. Grietens, O. David, A. Shurkun, and R. Schneider, “Flip chipped ingaas photodiode arrays for gated imaging with eye-safe lasers,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International,” (2007), pp. 1103–1106.

Nussbaum, P.

P. Nussbaum, R. Vlkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure and Applied Optics: Journal of the European Optical Society Part A 6, 617 (1997).
[Crossref]

O’Neill, F. T.

F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production part i: Background and experiments,” Optik 113, 391–404 (2002).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic University, 1998).

Palsule, C.

M. U. Pralle, J. E. Carey, H. Haddad, C. Vineis, J. Sickler, X. Li, J. Jiang, F. Sahebi, C. Palsule, and J. McKee, “Ir cmos: infrared enhanced silicon imaging,” Proc. SPIE 8704, 870407 (2013).
[Crossref]

Pardo, F.

Q. Lévesque, P. Bouchon, F. Pardo, J.-L. Pelouard, and R. Hadar, “Compact planar lenses based on a pinhole and an array of single mode metallic slits,” Journal of the European Optical Society 8, 13071 (2013).
[Crossref]

Pelouard, J.-L.

Q. Lévesque, P. Bouchon, F. Pardo, J.-L. Pelouard, and R. Hadar, “Compact planar lenses based on a pinhole and an array of single mode metallic slits,” Journal of the European Optical Society 8, 13071 (2013).
[Crossref]

Pond, J.

Pralle, M. U.

M. U. Pralle, J. E. Carey, H. Haddad, C. Vineis, J. Sickler, X. Li, J. Jiang, F. Sahebi, C. Palsule, and J. McKee, “Ir cmos: infrared enhanced silicon imaging,” Proc. SPIE 8704, 870407 (2013).
[Crossref]

Rakic, A. D.

Regolini, J.

S. Audran, B. Faure, B. Mortini, C. Aumont, R. Tiron, C. Zinck, Y. Sanchez, C. Fellous, J. Regolini, J. P. Reynard, G. Schlatter, and G. Hadziioannou, “Study of dynamical formation and shape of microlenses formed by the reflow method,” Proc. SPIE 6153, 61534D (2006).
[Crossref]

Reynard, J. P.

S. Audran, B. Faure, B. Mortini, C. Aumont, R. Tiron, C. Zinck, Y. Sanchez, C. Fellous, J. Regolini, J. P. Reynard, G. Schlatter, and G. Hadziioannou, “Study of dynamical formation and shape of microlenses formed by the reflow method,” Proc. SPIE 6153, 61534D (2006).
[Crossref]

Ricq, S.

G. Demésy, F. Zolla, A. Nicolet, M. Commandr, C. Fossati, O. Gagliano, S. Ricq, and B. Dunne, “Finite element method as applied to the study of gratings embedded in complementary metal-oxide semiconductor image sensors,” Opt. Eng. 48, 058002 (2009).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Saavedra, G.

Sahebi, F.

M. U. Pralle, J. E. Carey, H. Haddad, C. Vineis, J. Sickler, X. Li, J. Jiang, F. Sahebi, C. Palsule, and J. McKee, “Ir cmos: infrared enhanced silicon imaging,” Proc. SPIE 8704, 870407 (2013).
[Crossref]

Sanchez, Y.

S. Audran, B. Faure, B. Mortini, C. Aumont, R. Tiron, C. Zinck, Y. Sanchez, C. Fellous, J. Regolini, J. P. Reynard, G. Schlatter, and G. Hadziioannou, “Study of dynamical formation and shape of microlenses formed by the reflow method,” Proc. SPIE 6153, 61534D (2006).
[Crossref]

Santschi, C.

L. A. Dunbar, M. Guillaume, F. de Len-Prez, C. Santschi, E. Grenet, R. Eckert, F. Lpez-Tejeira, F. J. Garca-Vidal, L. Martn-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[Crossref]

Schilling, B.

L. Goldberg, J. Nettleton, B. Schilling, W. Trussel, and A. Hays, “Compact laser sources for laser designation, ranging and active imaging,” Proc. SPIE 6552, 65520G (2007).
[Crossref]

Schlatter, G.

S. Audran, B. Faure, B. Mortini, C. Aumont, R. Tiron, C. Zinck, Y. Sanchez, C. Fellous, J. Regolini, J. P. Reynard, G. Schlatter, and G. Hadziioannou, “Study of dynamical formation and shape of microlenses formed by the reflow method,” Proc. SPIE 6153, 61534D (2006).
[Crossref]

Schneider, R.

J. Bentell, P. Nies, J. Cloots, J. Vermeiren, B. Grietens, O. David, A. Shurkun, and R. Schneider, “Flip chipped ingaas photodiode arrays for gated imaging with eye-safe lasers,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International,” (2007), pp. 1103–1106.

Sheridan, J. T.

F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production part i: Background and experiments,” Optik 113, 391–404 (2002).
[Crossref]

Shi, H.

Shurkun, A.

J. Bentell, P. Nies, J. Cloots, J. Vermeiren, B. Grietens, O. David, A. Shurkun, and R. Schneider, “Flip chipped ingaas photodiode arrays for gated imaging with eye-safe lasers,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International,” (2007), pp. 1103–1106.

Sickler, J.

M. U. Pralle, J. E. Carey, H. Haddad, C. Vineis, J. Sickler, X. Li, J. Jiang, F. Sahebi, C. Palsule, and J. McKee, “Ir cmos: infrared enhanced silicon imaging,” Proc. SPIE 8704, 870407 (2013).
[Crossref]

Stanley, R. P.

L. A. Dunbar, M. Guillaume, F. de Len-Prez, C. Santschi, E. Grenet, R. Eckert, F. Lpez-Tejeira, F. J. Garca-Vidal, L. Martn-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[Crossref]

Sugawa, S.

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A global-shutter cmos image sensor with readout speed of 1-tpixel/s burst and 780-mpixel/s continuous,” IEEE J. Solid-State Circuits 48, 329–338 (2013).
[Crossref]

Sun, C.-M.

S.-Y. Lee, C.-H. Wang, C.-H. Yang, C.-M. Sun, and W. Fang, “Cmos based optical focusing stage with phase grating fresnel lens,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International,” (2009), pp. 2070–2073.

Sun, Z.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642 (2004).
[Crossref]

Takubo, K.

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A global-shutter cmos image sensor with readout speed of 1-tpixel/s burst and 780-mpixel/s continuous,” IEEE J. Solid-State Circuits 48, 329–338 (2013).
[Crossref]

Tian, H.

H. Tian, “Noise analysis in cmos image sensors,” Ph.D. thesis, Citeseer (2000).

Tiron, R.

S. Audran, B. Faure, B. Mortini, C. Aumont, R. Tiron, C. Zinck, Y. Sanchez, C. Fellous, J. Regolini, J. P. Reynard, G. Schlatter, and G. Hadziioannou, “Study of dynamical formation and shape of microlenses formed by the reflow method,” Proc. SPIE 6153, 61534D (2006).
[Crossref]

Tochigi, Y.

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A global-shutter cmos image sensor with readout speed of 1-tpixel/s burst and 780-mpixel/s continuous,” IEEE J. Solid-State Circuits 48, 329–338 (2013).
[Crossref]

Tominaga, H.

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A global-shutter cmos image sensor with readout speed of 1-tpixel/s burst and 780-mpixel/s continuous,” IEEE J. Solid-State Circuits 48, 329–338 (2013).
[Crossref]

Trussel, W.

L. Goldberg, J. Nettleton, B. Schilling, W. Trussel, and A. Hays, “Compact laser sources for laser designation, ranging and active imaging,” Proc. SPIE 6552, 65520G (2007).
[Crossref]

Tsai, R.

G. Agranov, V. Berezin, and R. Tsai, “Crosstalk and microlens study in a color cmos image sensor,” IEEE Trans. Electron. Dev. 50, 4–11 (2003).
[Crossref]

Tut, T.

T. Tut, P. Duane, W. N. Ye, M. Wober, and K. B. Crozier, “Silicon nitride light pipes for image sensors,” Proc. SPIE 7780, 77800W (2010).
[Crossref]

Vaillant, J.

Van Stryland, E.

M. Bass, E. Van Stryland, D. Williams, and W. Wolfe, Handbook of Optics (McGraw-Hill, 1996).

Vangapally, V.

S. Lauxtermann and V. Vangapally, “A fully depleted backside illuminated cmos imager with vga resolution and 15 micron pixel pitch,” in “2013 International Image Sensor Workshop, Snowbird Resort, Utah, USA,” (2013).

Vermeiren, J.

J. Bentell, P. Nies, J. Cloots, J. Vermeiren, B. Grietens, O. David, A. Shurkun, and R. Schneider, “Flip chipped ingaas photodiode arrays for gated imaging with eye-safe lasers,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International,” (2007), pp. 1103–1106.

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Letters 9, 235–238 (2009).
[Crossref]

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95, 071112 (2009).
[Crossref]

P. B. Catrysse, L. Verslegers, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Nanoscale slit arrays as planar far-field lenses,” Proc. SPIE 7394, 73940B (2009).
[Crossref]

Vineis, C.

M. U. Pralle, J. E. Carey, H. Haddad, C. Vineis, J. Sickler, X. Li, J. Jiang, F. Sahebi, C. Palsule, and J. McKee, “Ir cmos: infrared enhanced silicon imaging,” Proc. SPIE 8704, 870407 (2013).
[Crossref]

Vlkel, R.

P. Nussbaum, R. Vlkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure and Applied Optics: Journal of the European Optical Society Part A 6, 617 (1997).
[Crossref]

Wandell, B. A.

Wang, C.

Wang, C.-H.

S.-Y. Lee, C.-H. Wang, C.-H. Yang, C.-M. Sun, and W. Fang, “Cmos based optical focusing stage with phase grating fresnel lens,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International,” (2009), pp. 2070–2073.

White, J. S.

P. B. Catrysse, L. Verslegers, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Nanoscale slit arrays as planar far-field lenses,” Proc. SPIE 7394, 73940B (2009).
[Crossref]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Letters 9, 235–238 (2009).
[Crossref]

Williams, D.

M. Bass, E. Van Stryland, D. Williams, and W. Wolfe, Handbook of Optics (McGraw-Hill, 1996).

Wober, M.

T. Tut, P. Duane, W. N. Ye, M. Wober, and K. B. Crozier, “Silicon nitride light pipes for image sensors,” Proc. SPIE 7780, 77800W (2010).
[Crossref]

Wolfe, W.

M. Bass, E. Van Stryland, D. Williams, and W. Wolfe, Handbook of Optics (McGraw-Hill, 1996).

Wong, H.-S.

H.-S. Wong, “Technology and device scaling considerations for cmos imagers,” IEEE Trans. Electron. Dev. 43, 2131–2142 (1996).
[Crossref]

Wu, C.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73 (1998).
[Crossref]

Yang, C.-H.

S.-Y. Lee, C.-H. Wang, C.-H. Yang, C.-M. Sun, and W. Fang, “Cmos based optical focusing stage with phase grating fresnel lens,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International,” (2009), pp. 2070–2073.

Ye, W. N.

T. Tut, P. Duane, W. N. Ye, M. Wober, and K. B. Crozier, “Silicon nitride light pipes for image sensors,” Proc. SPIE 7780, 77800W (2010).
[Crossref]

Yu, Y.

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95, 071112 (2009).
[Crossref]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Letters 9, 235–238 (2009).
[Crossref]

P. B. Catrysse, L. Verslegers, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Nanoscale slit arrays as planar far-field lenses,” Proc. SPIE 7394, 73940B (2009).
[Crossref]

Zappe, H.

Zinck, C.

S. Audran, B. Faure, B. Mortini, C. Aumont, R. Tiron, C. Zinck, Y. Sanchez, C. Fellous, J. Regolini, J. P. Reynard, G. Schlatter, and G. Hadziioannou, “Study of dynamical formation and shape of microlenses formed by the reflow method,” Proc. SPIE 6153, 61534D (2006).
[Crossref]

Zolla, F.

G. Demésy, F. Zolla, A. Nicolet, M. Commandr, C. Fossati, O. Gagliano, S. Ricq, and B. Dunne, “Finite element method as applied to the study of gratings embedded in complementary metal-oxide semiconductor image sensors,” Opt. Eng. 48, 058002 (2009).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642 (2004).
[Crossref]

L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95, 071112 (2009).
[Crossref]

L. A. Dunbar, M. Guillaume, F. de Len-Prez, C. Santschi, E. Grenet, R. Eckert, F. Lpez-Tejeira, F. J. Garca-Vidal, L. Martn-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009).
[Crossref]

Computer Physics Communications (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the {FDTD} method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

IEEE J. Solid-State Circuits (1)

Y. Tochigi, K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Tominaga, K. Takubo, Y. Kondo, and S. Sugawa, “A global-shutter cmos image sensor with readout speed of 1-tpixel/s burst and 780-mpixel/s continuous,” IEEE J. Solid-State Circuits 48, 329–338 (2013).
[Crossref]

IEEE Trans. Electron. Dev. (2)

H.-S. Wong, “Technology and device scaling considerations for cmos imagers,” IEEE Trans. Electron. Dev. 43, 2131–2142 (1996).
[Crossref]

G. Agranov, V. Berezin, and R. Tsai, “Crosstalk and microlens study in a color cmos image sensor,” IEEE Trans. Electron. Dev. 50, 4–11 (2003).
[Crossref]

J. Opt. Soc. Am. A (2)

Journal of the European Optical Society (1)

Q. Lévesque, P. Bouchon, F. Pardo, J.-L. Pelouard, and R. Hadar, “Compact planar lenses based on a pinhole and an array of single mode metallic slits,” Journal of the European Optical Society 8, 13071 (2013).
[Crossref]

Nano Letters (1)

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Letters 9, 235–238 (2009).
[Crossref]

Opt. Eng. (1)

G. Demésy, F. Zolla, A. Nicolet, M. Commandr, C. Fossati, O. Gagliano, S. Ricq, and B. Dunne, “Finite element method as applied to the study of gratings embedded in complementary metal-oxide semiconductor image sensors,” Opt. Eng. 48, 058002 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optik (1)

F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production part i: Background and experiments,” Optik 113, 391–404 (2002).
[Crossref]

Proc. SPIE (5)

S. Audran, B. Faure, B. Mortini, C. Aumont, R. Tiron, C. Zinck, Y. Sanchez, C. Fellous, J. Regolini, J. P. Reynard, G. Schlatter, and G. Hadziioannou, “Study of dynamical formation and shape of microlenses formed by the reflow method,” Proc. SPIE 6153, 61534D (2006).
[Crossref]

M. U. Pralle, J. E. Carey, H. Haddad, C. Vineis, J. Sickler, X. Li, J. Jiang, F. Sahebi, C. Palsule, and J. McKee, “Ir cmos: infrared enhanced silicon imaging,” Proc. SPIE 8704, 870407 (2013).
[Crossref]

T. Tut, P. Duane, W. N. Ye, M. Wober, and K. B. Crozier, “Silicon nitride light pipes for image sensors,” Proc. SPIE 7780, 77800W (2010).
[Crossref]

L. Goldberg, J. Nettleton, B. Schilling, W. Trussel, and A. Hays, “Compact laser sources for laser designation, ranging and active imaging,” Proc. SPIE 6552, 65520G (2007).
[Crossref]

P. B. Catrysse, L. Verslegers, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Nanoscale slit arrays as planar far-field lenses,” Proc. SPIE 7394, 73940B (2009).
[Crossref]

Pure and Applied Optics: Journal of the European Optical Society Part A (1)

P. Nussbaum, R. Vlkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure and Applied Optics: Journal of the European Optical Society Part A 6, 617 (1997).
[Crossref]

Other (8)

P. B. Catrysse, “Monolithic integration of electronics and sub-wavelength metal optics in deep submicron cmos technology,” in “Symposium D Materials, Integration and Technology for Monolithic Instruments,”, vol. 869 of MRS Proceedings (2005), vol. 869 of MRS Proceedings.

J. Bentell, P. Nies, J. Cloots, J. Vermeiren, B. Grietens, O. David, A. Shurkun, and R. Schneider, “Flip chipped ingaas photodiode arrays for gated imaging with eye-safe lasers,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International,” (2007), pp. 1103–1106.

E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic University, 1998).

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73 (1998).
[Crossref]

S. Lauxtermann and V. Vangapally, “A fully depleted backside illuminated cmos imager with vga resolution and 15 micron pixel pitch,” in “2013 International Image Sensor Workshop, Snowbird Resort, Utah, USA,” (2013).

M. Bass, E. Van Stryland, D. Williams, and W. Wolfe, Handbook of Optics (McGraw-Hill, 1996).

S.-Y. Lee, C.-H. Wang, C.-H. Yang, C.-M. Sun, and W. Fang, “Cmos based optical focusing stage with phase grating fresnel lens,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International,” (2009), pp. 2070–2073.

H. Tian, “Noise analysis in cmos image sensors,” Ph.D. thesis, Citeseer (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 CMOS image sensor without spectral filter and microlens: (a) 3D schematic [14] and (b) SEM picture cross-section
Fig. 2
Fig. 2 FDTD simulations results of a pixel without lens. (a)(b) 2D results of the electric-field intensity at 1.064 μm, when a TM plane wave (Hz = 0) is incident, with corresponding profile at the photodiode surface. (c)(d) 3D view and top view at photodiode interface. The red dashed rectangle represents the photodiode area.
Fig. 3
Fig. 3 2D FDTD calculated results of the electric-field intensity at 1.064 μm, when a transverse magnetic plane wave (Hz = 0) is incident (a) for a pixel without lens, and when (c) a Plasmonic, (e) Huygens, and (g) Phase-Fresnel lens is integrated. These planar lenses are represented with black dashed lines. (b,d,f,h) are the related transverse profile at the photodiode surface respectively for structure shown in (a,c,e,g).
Fig. 4
Fig. 4 2D FDTD calculated results of the electric-field intensity at 1.064 μm, when a TM plane wave is incident for a PFL (a) with maximum thickness corresponding to π phase, and (c) maximum 2π phase. The black dashed lines represent PFL. (b,d) are the related transverse profile at the photodiode surface respectively for structure shown in (a,c).
Fig. 5
Fig. 5 2D calculated OE as a function of a virtual photodiode width whose center is at the middle of the pixel, at 1.064 μm, when a TM plane wave is incident.
Fig. 6
Fig. 6 3D view and top view of FDTD calculated results of the electric-field intensity at 1.064 μm, (a)(b) for a pixel without lens, (c)(d) for a circular Phase-Fresnel lens “post-process” integrated where (e) is the thickness profile of this lens. The red dashed rectangle is the photodiode area. Plots (f) and (g) are respectively 3D calculated OE and SNR as a function of a virtual photodiode area whose center is at the middle of the pixel.
Fig. 7
Fig. 7 Top view of FDTD calculated results of the electric-field intensity at 1.064 μm with a particular angle of incidence for a circular PFL. The table compares OE of a pixel and with a lens. The red dashed rectangle represents the photodiode area.
Fig. 8
Fig. 8 Calculated OE as a function of wavelength for the oxide stack (pixel without metallic rails), for a pixel and with a circular PFL integrated. Simulations have been performed for an photodiode area of (a) 15 μm2 and (b) 4 μm2.
Fig. 9
Fig. 9 3D view and top view of FDTD calculated results of the electric-field intensity at 1.064 μm, (a)(b) for a pixel without lens, (c)(d) for a circular metallic lens integrated “in-process”. The red dashed rectangle is the photodiode area.
Fig. 10
Fig. 10 Top view of FDTD calculated results of the electric-field intensity at 1.064 μm with a particular angle of incidence for a circular HL. The table compares OE of a pixel and with a lens. The red dashed rectangle is the photodiode area.
Fig. 11
Fig. 11 Calculated OE as a function of wavelength for the oxide stack (pixel without metallic rails), for a pixel and with a circular HL integrated.

Tables (2)

Tables Icon

Table 1 Schematics of planar lenses integrated in a CMOS pixel

Tables Icon

Table 2 Performances and integration of planar lenses dedicated to a CMOS pixel

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

OE = surface photo diode P tot n surface photo diode d S surface top pixel P inc n surface top pixel d S
Q = 1 2 volume mental ω ε 0 ( ε r ) E E ¯ d V
SNR = Photocurrent Noise current QE * Photons flux Dark current Flux at photodiode interface Photodiode area
tanh ( w β 2 k 0 2 2 ) = β 2 k 0 2 ε m ε m β 2 k 0 2 ,
ϕ ( y ) = 2 m π + 2 π n I f λ 2 π n I f 2 + y 2 λ ,
D 0 = 3 λ n I f ,
D i = 2 ( f + i λ n I ) cos ( arcsin ( f f + i λ n I ) ) ,
t ( y ) = λ 2 π ( n lens 1 ) ϕ ( y )
η sinc 2 [ t ( n lens 1 ) λ 1 ]

Metrics