Abstract

We demonstrate 4-channel, 2GHz weighted addition in a silicon microring filter bank. Accurate analog weight control becomes more difficult with increasing number of channels, N, as feedback approaches become impractical and brute force feedforward approaches take O(2N) calibration measurements in the presence of inter-channel dependence. We introduce model-based calibration techniques for thermal cross-talk and cross-gain saturation, which result in a scalable O(N) calibration routine and 3.8 bit feedforward weight accuracy on every channel. Practical calibration routines are indispensible for controlling large-scale microring systems. The effect of thermal model complexity on accuracy is discussed. Weighted addition based on silicon microrings can apply the strengths of photonic manufacturing, wideband information processing, and multiwavelength networks towards new paradigms of ultrafast analog distributed processing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Feedback control for microring weight banks

Alexander N. Tait, Hasitha Jayatilleka, Thomas Ferreira De Lima, Philip Y. Ma, Mitchell A. Nahmias, Bhavin J. Shastri, Sudip Shekhar, Lukas Chrostowski, and Paul R. Prucnal
Opt. Express 26(20) 26422-26443 (2018)

Photonic principal component analysis using an on-chip microring weight bank

Philip Y. Ma, Alexander N. Tait, Thomas Ferreira de Lima, Siamak Abbaslou, Bhavin J. Shastri, and Paul R. Prucnal
Opt. Express 27(13) 18329-18342 (2019)

Two-pole microring weight banks

Alexander N. Tait, Allie X. Wu, Thomas Ferreira de Lima, Mitchell A. Nahmias, Bhavin J. Shastri, and Paul R. Prucnal
Opt. Lett. 43(10) 2276-2279 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
    [Crossref]
  2. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
    [Crossref]
  3. J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express 20(11), 12222–12232 (2012).
    [Crossref] [PubMed]
  4. Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).
    [Crossref]
  5. A.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
    [Crossref]
  6. P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
    [Crossref] [PubMed]
  7. G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
    [Crossref]
  8. J. Hasler and H. B. Marr, “Finding a roadmap to achieve large neuromorphic hardware systems,” Front. Neurosci. 7(118), 00118 (2013).
    [Crossref]
  9. P. Asthana, G. P. Nordin, J. Armand, R. Tanguay, and B. K. Jenkins, “Analysis of weighted fan-out/fan-in volume holographic optical interconnections,” Appl. Opt. 32(8), 1441–1469 (1993).
    [Crossref] [PubMed]
  10. M. Hill, E. E. E. Frietman, H. de Waardt, G.-D. Khoe, and H. Dorren, “All fiber-optic neural network using coupled SOA based ring lasers,” IEEE Trans. Neural Networks 13(6), 1504–1513 (2002).
    [Crossref]
  11. A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32(21), 3427–3439 (2014).
    [Crossref]
  12. R. Ramaswami, “Multiwavelength lightwave networks for computer communication,” IEEE Commun. Mag. 31(2), 78–88 (1993).
    [Crossref]
  13. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
    [Crossref]
  14. M. Chang, M. Fok, A. Hofmaier, and P. Prucnal, “Optical analog self-interference cancellation using electro-absorption modulators,” IEEE Microwave Wireless Compon. Lett. 23(2), 99–101 (2013).
    [Crossref]
  15. M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1800212 (2013).
    [Crossref]
  16. W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E 84(3), 036209 (2011).
    [Crossref]
  17. F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
    [Crossref] [PubMed]
  18. B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 5, 19126 (2015).
  19. A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic Neuromorphic Signal Processing and Computing,” in Nanophotonic Information Physics, M. Naruse, ed., pp. 183–222 (Springer, 2014).
    [Crossref]
  20. E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
    [Crossref]
  21. J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic Resonance Alignment of High-Order Microring Filters,” IEEE J. Quantum Electron. 51(11), 1–11 (2015).
    [Crossref]
  22. J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
    [Crossref] [PubMed]
  23. J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26,525–26,534 (2010).
    [Crossref]
  24. C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CThJ3.
    [Crossref]
  25. H. Jayatilleka, K. Murray, M. Ángel Guillén-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23(19), 25084–25097 (2015).
    [Crossref] [PubMed]
  26. A. Tait, T. Ferreira de Lima, M. Nahmias, B. Shastri, and P. Prucnal, “Continuous calibration of microring weights for analog optical networks,” IEEE Photonics Technol. Lett. 28(8), 887–890 (2016).
    [Crossref]
  27. A. Tait, M. Nahmias, B. Shastri, M. Chang, A. Wu, E. Zhou, E. Blow, T. Ferreira de Lima, B. Wu, and P. Prucnal, “Balanced WDM weight banks for analog optical processing and networking in silicon,” in Summer Topicals, (IEEE/OSA, 2015), paper MC2.3.
  28. M. A. Nahmias, A. N. Tait, B. J. Shastri, T. F. de Lima, and P. R. Prucnal, “Excitable laser processing network node in hybrid silicon: analysis and simulation,” Opt. Express 23(20), 26800–26813 (2015).
    [Crossref] [PubMed]
  29. A. Tait, A. Wu, E. Zhou, T. Ferreira de Lima, M. Nahmias, B. Shastri, and P. Prucnal, “Multi-channel microring weight bank control for reconfigurable analog photonic networks,” in Optical Interconnects, (IEEE, 2016), paper WC4.
  30. S. Friedmann, N. Frémaux, J. Schemmel, W. Gerstner, and K. Meier, “Reward-based learning under hardware constraints - using a RISC processor embedded in a neuromorphic substrate,” Front. Neurosci. 7(160) 6708 (2013).
    [Crossref]
  31. F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
    [Crossref]
  32. L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University Press, 2015).
    [Crossref]
  33. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29(6), 06F309 (2011).
    [Crossref]
  34. Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
    [Crossref] [PubMed]
  35. A. N. Tait, J. Chang, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Demonstration of WDM weighted addition for principal component analysis,” Opt. Express 23(10), 12758–12765 (2015).
    [Crossref] [PubMed]
  36. M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19(1), 306–316 (2011).
    [Crossref] [PubMed]
  37. H. Park, Y. hao Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express 15(21), 13539–13546 (2007).
    [Crossref] [PubMed]
  38. J. D. B. Bradley and E. S. Hosseini, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226–12237 (2014).
    [Crossref] [PubMed]
  39. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. Kung, W. Qian, G. Li, X. Zheng, A. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
    [Crossref]
  40. H. Jayatilleka, K. Murray, M. Caverley, N. Jaeger, L. Chrostowski, and S. Shekhar, “Crosstalk in SOI microring resonator-based filters,” J. Lightwave Technol. PP(99), 1 (2015).
    [Crossref]
  41. O. Schwelb, “Generalized analysis for a class of linear interferometric networks. I. Analysis,” IEEE Trans. Microwave Theory Tech. 46(10), 1399–1408 (1998).
    [Crossref]

2016 (1)

A. Tait, T. Ferreira de Lima, M. Nahmias, B. Shastri, and P. Prucnal, “Continuous calibration of microring weights for analog optical networks,” IEEE Photonics Technol. Lett. 28(8), 887–890 (2016).
[Crossref]

2015 (7)

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

H. Jayatilleka, K. Murray, M. Caverley, N. Jaeger, L. Chrostowski, and S. Shekhar, “Crosstalk in SOI microring resonator-based filters,” J. Lightwave Technol. PP(99), 1 (2015).
[Crossref]

A. N. Tait, J. Chang, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Demonstration of WDM weighted addition for principal component analysis,” Opt. Express 23(10), 12758–12765 (2015).
[Crossref] [PubMed]

H. Jayatilleka, K. Murray, M. Ángel Guillén-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23(19), 25084–25097 (2015).
[Crossref] [PubMed]

M. A. Nahmias, A. N. Tait, B. J. Shastri, T. F. de Lima, and P. R. Prucnal, “Excitable laser processing network node in hybrid silicon: analysis and simulation,” Opt. Express 23(20), 26800–26813 (2015).
[Crossref] [PubMed]

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 5, 19126 (2015).

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic Resonance Alignment of High-Order Microring Filters,” IEEE J. Quantum Electron. 51(11), 1–11 (2015).
[Crossref]

2014 (7)

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

A.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
[Crossref] [PubMed]

J. D. B. Bradley and E. S. Hosseini, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226–12237 (2014).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32(21), 3427–3439 (2014).
[Crossref]

2013 (5)

S. Friedmann, N. Frémaux, J. Schemmel, W. Gerstner, and K. Meier, “Reward-based learning under hardware constraints - using a RISC processor embedded in a neuromorphic substrate,” Front. Neurosci. 7(160) 6708 (2013).
[Crossref]

J. Hasler and H. B. Marr, “Finding a roadmap to achieve large neuromorphic hardware systems,” Front. Neurosci. 7(118), 00118 (2013).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

M. Chang, M. Fok, A. Hofmaier, and P. Prucnal, “Optical analog self-interference cancellation using electro-absorption modulators,” IEEE Microwave Wireless Compon. Lett. 23(2), 99–101 (2013).
[Crossref]

M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1800212 (2013).
[Crossref]

2012 (2)

2011 (5)

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19(1), 306–316 (2011).
[Crossref] [PubMed]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29(6), 06F309 (2011).
[Crossref]

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E 84(3), 036209 (2011).
[Crossref]

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

2010 (2)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26,525–26,534 (2010).
[Crossref]

2009 (1)

2007 (1)

2005 (1)

E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

2002 (1)

M. Hill, E. E. E. Frietman, H. de Waardt, G.-D. Khoe, and H. Dorren, “All fiber-optic neural network using coupled SOA based ring lasers,” IEEE Trans. Neural Networks 13(6), 1504–1513 (2002).
[Crossref]

1998 (1)

O. Schwelb, “Generalized analysis for a class of linear interferometric networks. I. Analysis,” IEEE Trans. Microwave Theory Tech. 46(10), 1399–1408 (1998).
[Crossref]

1993 (2)

Aida, Y.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29(6), 06F309 (2011).
[Crossref]

Akopyan, F.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Alvarez-Icaza, R.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Amir, A.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Ángel Guillén-Torres, M.

Appuswamy, R.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Armand, J.

Arthur, J.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

Arthur, J. V.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Asghari, M.

Asthana, P.

Baehr-Jones, T.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29(6), 06F309 (2011).
[Crossref]

Baker, N.

E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

Barbay, S.

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Beakes, M.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

Beaudoin, G.

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Beri, S.

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E 84(3), 036209 (2011).
[Crossref]

Blow, E.

A. Tait, M. Nahmias, B. Shastri, M. Chang, A. Wu, E. Zhou, E. Blow, T. Ferreira de Lima, B. Wu, and P. Prucnal, “Balanced WDM weight banks for analog optical processing and networking in silicon,” in Summer Topicals, (IEEE/OSA, 2015), paper MC2.3.

Boahen, K.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

Bojko, R.

Bojko, R. J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29(6), 06F309 (2011).
[Crossref]

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Bowers, J. E.

Bradley, J. D. B.

Braive, R.

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Brezzo, B.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Cardenas, J.

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26,525–26,534 (2010).
[Crossref]

Cassidy, A.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

Cassidy, A. S.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Cauwenberghs, G.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

Caverley, M.

Chang, J.

Chang, M.

M. Chang, M. Fok, A. Hofmaier, and P. Prucnal, “Optical analog self-interference cancellation using electro-absorption modulators,” IEEE Microwave Wireless Compon. Lett. 23(2), 99–101 (2013).
[Crossref]

A. Tait, M. Nahmias, B. Shastri, M. Chang, A. Wu, E. Zhou, E. Blow, T. Ferreira de Lima, B. Wu, and P. Prucnal, “Balanced WDM weight banks for analog optical processing and networking in silicon,” in Summer Topicals, (IEEE/OSA, 2015), paper MC2.3.

Chen, K. K.

A.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Chrostowski, L.

Cohen, O.

Coomans, W.

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E 84(3), 036209 (2011).
[Crossref]

Cox, J. A.

Dahlem, M. S.

Danckaert, J.

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E 84(3), 036209 (2011).
[Crossref]

Datta, P.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

De Dobbelaere, P.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

de Lima, T. F.

de Waardt, H.

M. Hill, E. E. E. Frietman, H. de Waardt, G.-D. Khoe, and H. Dorren, “All fiber-optic neural network using coupled SOA based ring lasers,” IEEE Trans. Neural Networks 13(6), 1504–1513 (2002).
[Crossref]

Delbruck, T.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

DeRose, C. T.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CThJ3.
[Crossref]

Dong, P.

Dorren, H.

M. Hill, E. E. E. Frietman, H. de Waardt, G.-D. Khoe, and H. Dorren, “All fiber-optic neural network using coupled SOA based ring lasers,” IEEE Trans. Neural Networks 13(6), 1504–1513 (2002).
[Crossref]

Driessen, A.

E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

Duan, N.

A.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Dudek, P.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

Esser, S. K.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Etienne-Cummings, R.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Fang, A. W.

Fang, Q.

A.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Feng, D.

Ferreira de Lima, T.

A. Tait, T. Ferreira de Lima, M. Nahmias, B. Shastri, and P. Prucnal, “Continuous calibration of microring weights for analog optical networks,” IEEE Photonics Technol. Lett. 28(8), 887–890 (2016).
[Crossref]

A. Tait, M. Nahmias, B. Shastri, M. Chang, A. Wu, E. Zhou, E. Blow, T. Ferreira de Lima, B. Wu, and P. Prucnal, “Balanced WDM weight banks for analog optical processing and networking in silicon,” in Summer Topicals, (IEEE/OSA, 2015), paper MC2.3.

A. Tait, A. Wu, E. Zhou, T. Ferreira de Lima, M. Nahmias, B. Shastri, and P. Prucnal, “Multi-channel microring weight bank control for reconfigurable analog photonic networks,” in Optical Interconnects, (IEEE, 2016), paper WC4.

Flickner, M. D.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Flueckiger, J.

Fok, M.

M. Chang, M. Fok, A. Hofmaier, and P. Prucnal, “Optical analog self-interference cancellation using electro-absorption modulators,” IEEE Microwave Wireless Compon. Lett. 23(2), 99–101 (2013).
[Crossref]

Folowosele, F.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

Foster, M. A.

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26,525–26,534 (2010).
[Crossref]

Frémaux, N.

S. Friedmann, N. Frémaux, J. Schemmel, W. Gerstner, and K. Meier, “Reward-based learning under hardware constraints - using a RISC processor embedded in a neuromorphic substrate,” Front. Neurosci. 7(160) 6708 (2013).
[Crossref]

Friedmann, S.

S. Friedmann, N. Frémaux, J. Schemmel, W. Gerstner, and K. Meier, “Reward-based learning under hardware constraints - using a RISC processor embedded in a neuromorphic substrate,” Front. Neurosci. 7(160) 6708 (2013).
[Crossref]

Frietman, E. E. E.

M. Hill, E. E. E. Frietman, H. de Waardt, G.-D. Khoe, and H. Dorren, “All fiber-optic neural network using coupled SOA based ring lasers,” IEEE Trans. Neural Networks 13(6), 1504–1513 (2002).
[Crossref]

Gaeta, A. L.

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26,525–26,534 (2010).
[Crossref]

Gelens, L.

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E 84(3), 036209 (2011).
[Crossref]

Georgas, M.

Gerstner, W.

S. Friedmann, N. Frémaux, J. Schemmel, W. Gerstner, and K. Meier, “Reward-based learning under hardware constraints - using a RISC processor embedded in a neuromorphic substrate,” Front. Neurosci. 7(160) 6708 (2013).
[Crossref]

Geuzebroek, D.

E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

Gloeckner, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Guo, C.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Hamilton, T. J.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

hao Kuo, Y.

Hasler, J.

J. Hasler and H. B. Marr, “Finding a roadmap to achieve large neuromorphic hardware systems,” Front. Neurosci. 7(118), 00118 (2013).
[Crossref]

He, L.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29(6), 06F309 (2011).
[Crossref]

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Hfliger, P.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

Hill, M.

M. Hill, E. E. E. Frietman, H. de Waardt, G.-D. Khoe, and H. Dorren, “All fiber-optic neural network using coupled SOA based ring lasers,” IEEE Trans. Neural Networks 13(6), 1504–1513 (2002).
[Crossref]

Hochberg, M.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29(6), 06F309 (2011).
[Crossref]

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University Press, 2015).
[Crossref]

Hofmaier, A.

M. Chang, M. Fok, A. Hofmaier, and P. Prucnal, “Optical analog self-interference cancellation using electro-absorption modulators,” IEEE Microwave Wireless Compon. Lett. 23(2), 99–101 (2013).
[Crossref]

Holzwarth, C. W.

Hosseini, E. S.

Hu, R.

Hynna, K.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

Imam, N.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Indiveri, G.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

Ippen, E. P.

Jackson, B.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

Jackson, B. L.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Jaeger, N.

H. Jayatilleka, K. Murray, M. Caverley, N. Jaeger, L. Chrostowski, and S. Shekhar, “Crosstalk in SOI microring resonator-based filters,” J. Lightwave Technol. PP(99), 1 (2015).
[Crossref]

Jaeger, N. A.

Jaeger, N. A. F.

Jayatilleka, H.

Jenkins, B. K.

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

H. Park, Y. hao Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express 15(21), 13539–13546 (2007).
[Crossref] [PubMed]

Kärtner, F. X.

Kelderman, H.

E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

Khilo, A.

Khoe, G.-D.

M. Hill, E. E. E. Frietman, H. de Waardt, G.-D. Khoe, and H. Dorren, “All fiber-optic neural network using coupled SOA based ring lasers,” IEEE Trans. Neural Networks 13(6), 1504–1513 (2002).
[Crossref]

Khurgin, J. B.

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26,525–26,534 (2010).
[Crossref]

Klein, E.

E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Krishnamoorthy, A.

Kuang, J.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

Kung, C.

Kuszelewicz, R.

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Lentine, A. L.

Leu, J.

Li, C.

A.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Li, G.

Li, H.

Li, J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29(6), 06F309 (2011).
[Crossref]

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Liang, H.

Liao, S.

Lim, A.-J.

A.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Linares-Barranco, B.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

Liow, T.-Y.

A.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Lipson, M.

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26,525–26,534 (2010).
[Crossref]

Lira, H. L. R.

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26,525–26,534 (2010).
[Crossref]

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Liu, S.-C.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

Luck, D. L.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CThJ3.
[Crossref]

Mak, J. C. C.

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic Resonance Alignment of High-Order Microring Filters,” IEEE J. Quantum Electron. 51(11), 1–11 (2015).
[Crossref]

Manohar, R.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Marpaung, D.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Marr, H. B.

J. Hasler and H. B. Marr, “Finding a roadmap to achieve large neuromorphic hardware systems,” Front. Neurosci. 7(118), 00118 (2013).
[Crossref]

Masini, G.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Meier, K.

S. Friedmann, N. Frémaux, J. Schemmel, W. Gerstner, and K. Meier, “Reward-based learning under hardware constraints - using a RISC processor embedded in a neuromorphic substrate,” Front. Neurosci. 7(160) 6708 (2013).
[Crossref]

Mekis, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Merolla, P.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

Merolla, P. A.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Mikkelsen, J. C.

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic Resonance Alignment of High-Order Microring Filters,” IEEE J. Quantum Electron. 51(11), 1–11 (2015).
[Crossref]

Modha, D.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

Modha, D. S.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Morton, P.

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26,525–26,534 (2010).
[Crossref]

Moss, B.

Murray, K.

Nahmias, M.

A. Tait, T. Ferreira de Lima, M. Nahmias, B. Shastri, and P. Prucnal, “Continuous calibration of microring weights for analog optical networks,” IEEE Photonics Technol. Lett. 28(8), 887–890 (2016).
[Crossref]

A. Tait, M. Nahmias, B. Shastri, M. Chang, A. Wu, E. Zhou, E. Blow, T. Ferreira de Lima, B. Wu, and P. Prucnal, “Balanced WDM weight banks for analog optical processing and networking in silicon,” in Summer Topicals, (IEEE/OSA, 2015), paper MC2.3.

A. Tait, A. Wu, E. Zhou, T. Ferreira de Lima, M. Nahmias, B. Shastri, and P. Prucnal, “Multi-channel microring weight bank control for reconfigurable analog photonic networks,” in Optical Interconnects, (IEEE, 2016), paper WC4.

Nahmias, M. A.

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 5, 19126 (2015).

A. N. Tait, J. Chang, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Demonstration of WDM weighted addition for principal component analysis,” Opt. Express 23(10), 12758–12765 (2015).
[Crossref] [PubMed]

M. A. Nahmias, A. N. Tait, B. J. Shastri, T. F. de Lima, and P. R. Prucnal, “Excitable laser processing network node in hybrid silicon: analysis and simulation,” Opt. Express 23(20), 26800–26813 (2015).
[Crossref] [PubMed]

A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32(21), 3427–3439 (2014).
[Crossref]

M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1800212 (2013).
[Crossref]

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic Neuromorphic Signal Processing and Computing,” in Nanophotonic Information Physics, M. Naruse, ed., pp. 183–222 (Springer, 2014).
[Crossref]

Nakamura, Y.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Nam, G.-J.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

Narasimha, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Nielson, G. N.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CThJ3.
[Crossref]

Nordin, G. P.

Orcutt, J. S.

Paniccia, M. J.

Park, H.

Pinguet, T.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Poitras, C. B.

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26,525–26,534 (2010).
[Crossref]

Poon, J. K. S.

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic Resonance Alignment of High-Order Microring Filters,” IEEE J. Quantum Electron. 51(11), 1–11 (2015).
[Crossref]

Popovic, M.

Prucnal, P.

A. Tait, T. Ferreira de Lima, M. Nahmias, B. Shastri, and P. Prucnal, “Continuous calibration of microring weights for analog optical networks,” IEEE Photonics Technol. Lett. 28(8), 887–890 (2016).
[Crossref]

M. Chang, M. Fok, A. Hofmaier, and P. Prucnal, “Optical analog self-interference cancellation using electro-absorption modulators,” IEEE Microwave Wireless Compon. Lett. 23(2), 99–101 (2013).
[Crossref]

A. Tait, A. Wu, E. Zhou, T. Ferreira de Lima, M. Nahmias, B. Shastri, and P. Prucnal, “Multi-channel microring weight bank control for reconfigurable analog photonic networks,” in Optical Interconnects, (IEEE, 2016), paper WC4.

A. Tait, M. Nahmias, B. Shastri, M. Chang, A. Wu, E. Zhou, E. Blow, T. Ferreira de Lima, B. Wu, and P. Prucnal, “Balanced WDM weight banks for analog optical processing and networking in silicon,” in Summer Topicals, (IEEE/OSA, 2015), paper MC2.3.

Prucnal, P. R.

A. N. Tait, J. Chang, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Demonstration of WDM weighted addition for principal component analysis,” Opt. Express 23(10), 12758–12765 (2015).
[Crossref] [PubMed]

M. A. Nahmias, A. N. Tait, B. J. Shastri, T. F. de Lima, and P. R. Prucnal, “Excitable laser processing network node in hybrid silicon: analysis and simulation,” Opt. Express 23(20), 26800–26813 (2015).
[Crossref] [PubMed]

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 5, 19126 (2015).

A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32(21), 3427–3439 (2014).
[Crossref]

M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1800212 (2013).
[Crossref]

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic Neuromorphic Signal Processing and Computing,” in Nanophotonic Information Physics, M. Naruse, ed., pp. 183–222 (Springer, 2014).
[Crossref]

Qian, W.

Ram, R. J.

Ramaswami, R.

R. Ramaswami, “Multiwavelength lightwave networks for computer communication,” IEEE Commun. Mag. 31(2), 78–88 (1993).
[Crossref]

Renaud, S.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

Risk, W.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

Risk, W. P.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Rodriguez, A. W.

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 5, 19126 (2015).

Roelkens, G.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Sacher, W. D.

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic Resonance Alignment of High-Order Microring Filters,” IEEE J. Quantum Electron. 51(11), 1–11 (2015).
[Crossref]

Sagnes, I.

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Sahni, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

Saighi, S.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Sawada, J.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Schemmel, J.

S. Friedmann, N. Frémaux, J. Schemmel, W. Gerstner, and K. Meier, “Reward-based learning under hardware constraints - using a RISC processor embedded in a neuromorphic substrate,” Front. Neurosci. 7(160) 6708 (2013).
[Crossref]

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

Schwelb, O.

O. Schwelb, “Generalized analysis for a class of linear interferometric networks. I. Analysis,” IEEE Trans. Microwave Theory Tech. 46(10), 1399–1408 (1998).
[Crossref]

Selmi, F.

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Sengo, G.

E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

Serrano-Gotarredona, T.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

Shafiiha, R.

Shainline, J.

Shastri, B.

A. Tait, T. Ferreira de Lima, M. Nahmias, B. Shastri, and P. Prucnal, “Continuous calibration of microring weights for analog optical networks,” IEEE Photonics Technol. Lett. 28(8), 887–890 (2016).
[Crossref]

A. Tait, M. Nahmias, B. Shastri, M. Chang, A. Wu, E. Zhou, E. Blow, T. Ferreira de Lima, B. Wu, and P. Prucnal, “Balanced WDM weight banks for analog optical processing and networking in silicon,” in Summer Topicals, (IEEE/OSA, 2015), paper MC2.3.

A. Tait, A. Wu, E. Zhou, T. Ferreira de Lima, M. Nahmias, B. Shastri, and P. Prucnal, “Multi-channel microring weight bank control for reconfigurable analog photonic networks,” in Optical Interconnects, (IEEE, 2016), paper WC4.

Shastri, B. J.

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 5, 19126 (2015).

A. N. Tait, J. Chang, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Demonstration of WDM weighted addition for principal component analysis,” Opt. Express 23(10), 12758–12765 (2015).
[Crossref] [PubMed]

M. A. Nahmias, A. N. Tait, B. J. Shastri, T. F. de Lima, and P. R. Prucnal, “Excitable laser processing network node in hybrid silicon: analysis and simulation,” Opt. Express 23(20), 26800–26813 (2015).
[Crossref] [PubMed]

A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32(21), 3427–3439 (2014).
[Crossref]

M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1800212 (2013).
[Crossref]

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic Neuromorphic Signal Processing and Computing,” in Nanophotonic Information Physics, M. Naruse, ed., pp. 183–222 (Springer, 2014).
[Crossref]

Shekhar, S.

Sherwood-Droz, N.

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26,525–26,534 (2010).
[Crossref]

Shi, W.

Smith, H. I.

Song, J.

A.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Starbuck, A. L.

Stojanovic, V.

Sun, C.

Sun, J.

Taba, B.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Tait, A.

A. Tait, T. Ferreira de Lima, M. Nahmias, B. Shastri, and P. Prucnal, “Continuous calibration of microring weights for analog optical networks,” IEEE Photonics Technol. Lett. 28(8), 887–890 (2016).
[Crossref]

A. Tait, M. Nahmias, B. Shastri, M. Chang, A. Wu, E. Zhou, E. Blow, T. Ferreira de Lima, B. Wu, and P. Prucnal, “Balanced WDM weight banks for analog optical processing and networking in silicon,” in Summer Topicals, (IEEE/OSA, 2015), paper MC2.3.

A. Tait, A. Wu, E. Zhou, T. Ferreira de Lima, M. Nahmias, B. Shastri, and P. Prucnal, “Multi-channel microring weight bank control for reconfigurable analog photonic networks,” in Optical Interconnects, (IEEE, 2016), paper WC4.

Tait, A. N.

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 5, 19126 (2015).

M. A. Nahmias, A. N. Tait, B. J. Shastri, T. F. de Lima, and P. R. Prucnal, “Excitable laser processing network node in hybrid silicon: analysis and simulation,” Opt. Express 23(20), 26800–26813 (2015).
[Crossref] [PubMed]

A. N. Tait, J. Chang, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Demonstration of WDM weighted addition for principal component analysis,” Opt. Express 23(10), 12758–12765 (2015).
[Crossref] [PubMed]

A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32(21), 3427–3439 (2014).
[Crossref]

M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1800212 (2013).
[Crossref]

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic Neuromorphic Signal Processing and Computing,” in Nanophotonic Information Physics, M. Naruse, ed., pp. 183–222 (Springer, 2014).
[Crossref]

Tanguay, R.

Tern, R.-C.

A.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Tian, Y.

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic Neuromorphic Signal Processing and Computing,” in Nanophotonic Information Physics, M. Naruse, ed., pp. 183–222 (Springer, 2014).
[Crossref]

Trotter, D. C.

J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
[Crossref] [PubMed]

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CThJ3.
[Crossref]

Tu, X.

A.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

Uroševic, S.

Van der Sande, G.

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E 84(3), 036209 (2011).
[Crossref]

van Schaik, A.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

Vlasov, Y.

Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).
[Crossref]

Vo, I.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

Watts, M. R.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CThJ3.
[Crossref]

Weaver, M.

Wijekoon, J.

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

Wu, A.

A. Tait, A. Wu, E. Zhou, T. Ferreira de Lima, M. Nahmias, B. Shastri, and P. Prucnal, “Multi-channel microring weight bank control for reconfigurable analog photonic networks,” in Optical Interconnects, (IEEE, 2016), paper WC4.

A. Tait, M. Nahmias, B. Shastri, M. Chang, A. Wu, E. Zhou, E. Blow, T. Ferreira de Lima, B. Wu, and P. Prucnal, “Balanced WDM weight banks for analog optical processing and networking in silicon,” in Summer Topicals, (IEEE/OSA, 2015), paper MC2.3.

Wu, B.

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 5, 19126 (2015).

A. Tait, M. Nahmias, B. Shastri, M. Chang, A. Wu, E. Zhou, E. Blow, T. Ferreira de Lima, B. Wu, and P. Prucnal, “Balanced WDM weight banks for analog optical processing and networking in silicon,” in Summer Topicals, (IEEE/OSA, 2015), paper MC2.3.

Xue, T.

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic Resonance Alignment of High-Order Microring Filters,” IEEE J. Quantum Electron. 51(11), 1–11 (2015).
[Crossref]

Yong, Z.

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic Resonance Alignment of High-Order Microring Filters,” IEEE J. Quantum Electron. 51(11), 1–11 (2015).
[Crossref]

Young, R. W.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CThJ3.
[Crossref]

Yun, H.

Zgraggen, E.

Zhang, B.

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26,525–26,534 (2010).
[Crossref]

Zheng, D.

Zheng, X.

Zhou, E.

A. Tait, M. Nahmias, B. Shastri, M. Chang, A. Wu, E. Zhou, E. Blow, T. Ferreira de Lima, B. Wu, and P. Prucnal, “Balanced WDM weight banks for analog optical processing and networking in silicon,” in Summer Topicals, (IEEE/OSA, 2015), paper MC2.3.

A. Tait, A. Wu, E. Zhou, T. Ferreira de Lima, M. Nahmias, B. Shastri, and P. Prucnal, “Multi-channel microring weight bank control for reconfigurable analog photonic networks,” in Optical Interconnects, (IEEE, 2016), paper WC4.

Appl. Opt. (1)

Front. Neurosci. (3)

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Hfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic silicon neuron circuits,” Front. Neurosci. 5(73), 1–23 (2011).
[Crossref]

J. Hasler and H. B. Marr, “Finding a roadmap to achieve large neuromorphic hardware systems,” Front. Neurosci. 7(118), 00118 (2013).
[Crossref]

S. Friedmann, N. Frémaux, J. Schemmel, W. Gerstner, and K. Meier, “Reward-based learning under hardware constraints - using a RISC processor embedded in a neuromorphic substrate,” Front. Neurosci. 7(160) 6708 (2013).
[Crossref]

IEEE Commun. Mag. (2)

Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).
[Crossref]

R. Ramaswami, “Multiwavelength lightwave networks for computer communication,” IEEE Commun. Mag. 31(2), 78–88 (1993).
[Crossref]

IEEE J. Quantum Electron. (1)

J. C. C. Mak, W. D. Sacher, T. Xue, J. C. Mikkelsen, Z. Yong, and J. K. S. Poon, “Automatic Resonance Alignment of High-Order Microring Filters,” IEEE J. Quantum Electron. 51(11), 1–11 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1800212 (2013).
[Crossref]

A.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 405–416 (2014).
[Crossref]

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011).
[Crossref]

IEEE Microwave Wireless Compon. Lett. (1)

M. Chang, M. Fok, A. Hofmaier, and P. Prucnal, “Optical analog self-interference cancellation using electro-absorption modulators,” IEEE Microwave Wireless Compon. Lett. 23(2), 99–101 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

A. Tait, T. Ferreira de Lima, M. Nahmias, B. Shastri, and P. Prucnal, “Continuous calibration of microring weights for analog optical networks,” IEEE Photonics Technol. Lett. 28(8), 887–890 (2016).
[Crossref]

IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (1)

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and D. Modha, “TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

O. Schwelb, “Generalized analysis for a class of linear interferometric networks. I. Analysis,” IEEE Trans. Microwave Theory Tech. 46(10), 1399–1408 (1998).
[Crossref]

IEEE Trans. Neural Networks (1)

M. Hill, E. E. E. Frietman, H. de Waardt, G.-D. Khoe, and H. Dorren, “All fiber-optic neural network using coupled SOA based ring lasers,” IEEE Trans. Neural Networks 13(6), 1504–1513 (2002).
[Crossref]

J. Lightwave Technol. (2)

A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” J. Lightwave Technol. 32(21), 3427–3439 (2014).
[Crossref]

H. Jayatilleka, K. Murray, M. Caverley, N. Jaeger, L. Chrostowski, and S. Shekhar, “Crosstalk in SOI microring resonator-based filters,” J. Lightwave Technol. PP(99), 1 (2015).
[Crossref]

J. Vac. Sci. Technol., B (1)

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol., B 29(6), 06F309 (2011).
[Crossref]

Laser Photonics Rev. (2)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III–V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Opt. Express (11)

J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen, H. Li, J. Sun, M. Weaver, S. Urošević, M. Popović, R. J. Ram, and V. Stojanović, “Open foundry platform for high-performance electronic-photonic integration,” Opt. Express 20(11), 12222–12232 (2012).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

A. N. Tait, J. Chang, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Demonstration of WDM weighted addition for principal component analysis,” Opt. Express 23(10), 12758–12765 (2015).
[Crossref] [PubMed]

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19(1), 306–316 (2011).
[Crossref] [PubMed]

H. Park, Y. hao Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express 15(21), 13539–13546 (2007).
[Crossref] [PubMed]

J. D. B. Bradley and E. S. Hosseini, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22(10), 12226–12237 (2014).
[Crossref] [PubMed]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. Kung, W. Qian, G. Li, X. Zheng, A. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
[Crossref]

M. A. Nahmias, A. N. Tait, B. J. Shastri, T. F. de Lima, and P. R. Prucnal, “Excitable laser processing network node in hybrid silicon: analysis and simulation,” Opt. Express 23(20), 26800–26813 (2015).
[Crossref] [PubMed]

H. Jayatilleka, K. Murray, M. Ángel Guillén-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23(19), 25084–25097 (2015).
[Crossref] [PubMed]

J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
[Crossref] [PubMed]

J. Cardenas, M. A. Foster, N. Sherwood-Droz, C. B. Poitras, H. L. R. Lira, B. Zhang, A. L. Gaeta, J. B. Khurgin, P. Morton, and M. Lipson, “Wide-bandwidth continuously tunable optical delay line using silicon microring resonators,” Opt. Express 18(25), 26,525–26,534 (2010).
[Crossref]

Phys. Rev. E (1)

W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E 84(3), 036209 (2011).
[Crossref]

Phys. Rev. Lett. (1)

F. Selmi, R. Braive, G. Beaudoin, I. Sagnes, R. Kuszelewicz, and S. Barbay, “Relative refractory period in an excitable semiconductor laser,” Phys. Rev. Lett. 112, 183902 (2014).
[Crossref] [PubMed]

Sci. Rep. (1)

B. J. Shastri, M. A. Nahmias, A. N. Tait, A. W. Rodriguez, B. Wu, and P. R. Prucnal, “Spike processing with a graphene excitable laser,” Sci. Rep. 5, 19126 (2015).

Science (1)

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated circuit with a scalable communication network and interface,” Science 345(6197), 668–673 (2014).
[Crossref] [PubMed]

Other (5)

A. N. Tait, M. A. Nahmias, Y. Tian, B. J. Shastri, and P. R. Prucnal, “Photonic Neuromorphic Signal Processing and Computing,” in Nanophotonic Information Physics, M. Naruse, ed., pp. 183–222 (Springer, 2014).
[Crossref]

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CThJ3.
[Crossref]

A. Tait, M. Nahmias, B. Shastri, M. Chang, A. Wu, E. Zhou, E. Blow, T. Ferreira de Lima, B. Wu, and P. Prucnal, “Balanced WDM weight banks for analog optical processing and networking in silicon,” in Summer Topicals, (IEEE/OSA, 2015), paper MC2.3.

A. Tait, A. Wu, E. Zhou, T. Ferreira de Lima, M. Nahmias, B. Shastri, and P. Prucnal, “Multi-channel microring weight bank control for reconfigurable analog photonic networks,” in Optical Interconnects, (IEEE, 2016), paper WC4.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University Press, 2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 a) Role of WDM weighted addition in a proposed on-chip analog photonic processing network [11]. Each E/O node – which could be any nonlinear modulator, direct-driven laser, or dynamical laser neuron – produces a signal modulated on a unique wavelength. Weighted addition banks produce electrical signals that drive the E/O converters [28]. b) Microring resonator (MRR) implementation of a WDM weight bank. Tuning MRRs between on- and off- resonance switches a continuous amount of optical power between drop and through ports. A balanced photodetector (PD) yields the sum and difference of weighted signals. c) Optical micrograph of the device under test, showing a bank of four thermally-tuned MRRs. d) Wide area micrograph, showing fiber-to-chip grating coupler ports.
Fig. 2
Fig. 2 a) Experimental setup. An input generator creates uncorrelated signals on different wavelengths by time delaying a single PRBS. DFB: distributed feedback laser; AWG: arrayed-waveguide grating; PPG: pulse pattern generator; MZM: Mach-Zehnder Modulator; FBG: fiber Bragg grating. The microring weight bank is thermally tuned by a current-mode DAC (digital-to-analog converter). Drop and thru outputs are amplified by erbium doped fiber amplifiers (EDFAs) and delay-matched before detection by a balanced photodetector (PD). A computer (CPU) executes the calibration routine. b) Time domain traces of reference input signals on different wavelength channels. c) Optical spectrum of WDM inputs (red) and transmission spectra of the drop port when tuning current is off (gray) and tuned onto resonance (blue), measured with a drop port spectrum analyzer (not shown).
Fig. 3
Fig. 3 Diagram of modelling stages showing calibrated parameter values fit during this experiment. Bias stage puts variables in differential form around the state of all filters being on-resonance with signals, λ⃗sig. Heater stage models thermo-electric, heat transfer, and thermo-optic effects with a predominantly diagonal, linear K1 matrix and nonlinear corrections (order D = 2 shown). Filter stage consists of four independent interpolation-based estimates of the transmission along each MRR filter edge. Amplifier stage models absolute optical powers and fiber amplifier saturation characteristics preceding photodetection.
Fig. 4
Fig. 4 a) Two-dimensional weight sweep showing controller accuracy and precision. After the calibration procedure, the target weight is swept 5 times over a grid of values from −1 to 1 (black grid). Black points are measured weight data. Red lines show the mean offset from each target grid point. Blue ellipses indicate one standard deviation around the mean. Mean error magnitude is less than 0.072 over the span. Standard deviation remains below 0.063, with a tendency to be larger for negative weights. From this plot, we estimate that the weight can be controlled with an accuracy of 3.8bits. b) Measured traces of 2Gbps signals. [①–⑨] Output signals corresponding to points labeled in (a). The expected signal is in red, while measured traces are in blue. All time and voltage axes have identical scales.
Fig. 5
Fig. 5 Weight sweeps for simplified thermal cross-talk models over 5 iterations. The target grid (black), mean error vectors (red), and standard deviation ellipses (blue) are used as in Fig. 4(a). a) No model of thermal cross-talk is applied, and weight accuracy is 2.8 bits (8.4dB dynamic range). b) A first-order D = 1 (i.e. constant resistance) model of thermal cross-talk is applied, and weight accuracy is 3.0 bits (9.0dB dynamic range). In both sweeps, the amplifier cross-gain calibration model is applied in order to isolate the effect of thermal cross-talk modeling.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

μ i = x i ( t ) m ( t ) t x i ( t ) x i ( t ) t
λ λ 0 = K i 2
λ sig λ 0 = K q bias
λ λ sig = K ( q q bias )
Δ λ = K Δ q
R ( q ) = R 0 [ 1 + α q R ( q ) ]
= R 0 1 α R 0 q
Δ λ d = 1 D K d Δ q d
Δ q [ 0 ] = 0
Δ q [ n + 1 ] = K 1 1 [ Δ λ d = 2 D K d ( Δ q [ n ] ) d ]
μ i = P in , i T c , i [ T i g i , s s + 1 + P a m p + P s + γ i ( 1 T i ) g i , s s 1 + P a m p P s ]
P a m p + = j P i n , j T c , j T j
P a m p = j P i n , j T c , j γ j ( 1 T j )
μ i = B i + 1 + j C j + T j T i B i 1 + j C j ( 1 T j ) ( 1 T i )
μ i ( 11 ) = B i + 1 + j C j + μ i ( 10 ) = B i + 1 + C i +
μ i ( 11 ) μ i ( 10 ) = 1 + C i + 1 + j C j +
C i + = μ i ( 11 ) μ i ( 10 ) ( 1 + j C j + ) 1
i C i + = N j μ j ( 11 ) μ j ( 10 ) j μ j ( 11 ) μ j ( 10 ) 1
μ i + B i 1 + j C j ( 1 T j ) = B i + 1 + j C j + T j T i + B i 1 + j C j ( 1 T j ) T i
T i = μ i + B i 1 + j C j ( 1 T j ) B i + 1 + j C j + T j + B i 1 + j C j ( 1 T j )
T i [ 0 ] = 1
T i [ n + 1 ] = μ i + B i 1 + j C j ( 1 T j [ n ] ) B i + 1 + j C j + T j [ n ] + B i 1 + j C j ( 1 T j [ n ] )

Metrics