T. Wung, Y. Ning, K. Chang, S. Tang, and Y. Tsai, “Vertical-plate-type microaccelerometer with high linearity and low cross-axis sensitivity,” Sens. Actuators A Phys. 222(1), 284–292 (2015).
[Crossref]
Q. Lu, C. Wang, J. Bai, K. Wang, W. Lian, S. Lou, X. Jiao, and G. Yang, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 4188–4196 (2015).
[Crossref]
Q. Lu, W. Lian, S. Lou, C. Wang, J. Bai, and G. Yang, “A MOEMS accelerometer based on diffraction grating with improved mechanical structure,” Int. J. Automot. Technol. 9(5), 473–480 (2015).
B. Yao, L. Feng, X. Wang, M. Liu, Z. Zhou, and W. Liu, “Design of Out-of-Plane MOEMS Accelerometer With Subwavelength Gratings,” IEEE Photonics Technol. Lett. 26(10), 1027–1030 (2014).
[Crossref]
N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Development of a multi-point polarization-based vibration sensor,” Opt. Express 21(5), 5606–5624 (2013).
[Crossref]
[PubMed]
T. Guan, G. Keulemans, F. Ceyssens, and R. Puers, “MOEMS uniaxial accelerometer based on EpoClad/EpoCore photoresists with built-in fiber clamp,” Sens. Actuators A Phys. 193(1), 95–102 (2013).
[Crossref]
A. Ravi Sankara and S. Dasb, “A very-low cross-axis sensitivity piezoresistive accelerometer with an electroplated gold layer atop a thickness reduced proof mass,” Sens. Actuators A Phys. 189(1), 125–133 (2013).
[Crossref]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]
S. Zhao, J. Zhang, C. Hou, J. Bai, and G. Yang, “Optical accelerometer based on grating interferometer with phase modulation technique,” Appl. Opt. 51(29), 7005–7010 (2012).
[Crossref]
[PubMed]
G. Y. Chen, X. L. Zhang, G. Brambilla, and T. P. Newson, “Theoretical and experimental demonstrations of a microfiber-based flexural disc accelerometer,” Opt. Lett. 36(18), 3669–3671 (2011).
[Crossref]
[PubMed]
Q. Hu, C. Gao, Y. Hao, Y. Zhang, and G. Yang, “Low cross-axis sensitivity micro-gravity microelectromechanical system sandwich capacitance accelerometer,” Micro & Nano Lett. 6(7), 510–514 (2011).
[Crossref]
Y. W. Hsu, J. Y. Chen, H. T. Chien, S. Chen, S. T. Lin, and L. P. Liao, “New capacitive low-g triaxial accelerometer with low cross-axis sensitivity,” J. Micromech. Microeng. 20(5), 055019 (2010).
[Crossref]
A. Ravi Sankara and S. Dasb, “Cross-axis sensitivity reduction of a silicon MEMS piezoresistive accelerometer,” Microsyst. Technol. 15(4), 511–518 (2009).
[Crossref]
T. Guo, L. Shao, H. Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express 17(23), 20651–20660 (2009).
[Crossref]
[PubMed]
Y. Wu, X. Zeng, Y. Rao, Y. Gong, C. Hou, and G. Yang, “MOEMS Accelerometer based on microfiber knot resonator,” IEEE Photonics Technol. Lett. 21(20), 1547–1549 (2009).
[Crossref]
N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10 cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11(3), 182–187 (2002).
[Crossref]
G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7414 (1998).
[Crossref]
R. Puers and S. Reyntjens, “The characterization of a miniature silicon micromachined capacitive accelerometer,” J. Micromech. Microeng. 8(2), 127–133 (1998).
[Crossref]
S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
[Crossref]
G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7414 (1998).
[Crossref]
S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
[Crossref]
Q. Lu, W. Lian, S. Lou, C. Wang, J. Bai, and G. Yang, “A MOEMS accelerometer based on diffraction grating with improved mechanical structure,” Int. J. Automot. Technol. 9(5), 473–480 (2015).
Q. Lu, C. Wang, J. Bai, K. Wang, W. Lian, S. Lou, X. Jiao, and G. Yang, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 4188–4196 (2015).
[Crossref]
S. Zhao, J. Zhang, C. Hou, J. Bai, and G. Yang, “Optical accelerometer based on grating interferometer with phase modulation technique,” Appl. Opt. 51(29), 7005–7010 (2012).
[Crossref]
[PubMed]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]
T. Guan, G. Keulemans, F. Ceyssens, and R. Puers, “MOEMS uniaxial accelerometer based on EpoClad/EpoCore photoresists with built-in fiber clamp,” Sens. Actuators A Phys. 193(1), 95–102 (2013).
[Crossref]
T. Wung, Y. Ning, K. Chang, S. Tang, and Y. Tsai, “Vertical-plate-type microaccelerometer with high linearity and low cross-axis sensitivity,” Sens. Actuators A Phys. 222(1), 284–292 (2015).
[Crossref]
Y. W. Hsu, J. Y. Chen, H. T. Chien, S. Chen, S. T. Lin, and L. P. Liao, “New capacitive low-g triaxial accelerometer with low cross-axis sensitivity,” J. Micromech. Microeng. 20(5), 055019 (2010).
[Crossref]
Y. W. Hsu, J. Y. Chen, H. T. Chien, S. Chen, S. T. Lin, and L. P. Liao, “New capacitive low-g triaxial accelerometer with low cross-axis sensitivity,” J. Micromech. Microeng. 20(5), 055019 (2010).
[Crossref]
Y. W. Hsu, J. Y. Chen, H. T. Chien, S. Chen, S. T. Lin, and L. P. Liao, “New capacitive low-g triaxial accelerometer with low cross-axis sensitivity,” J. Micromech. Microeng. 20(5), 055019 (2010).
[Crossref]
A. Ravi Sankara and S. Dasb, “A very-low cross-axis sensitivity piezoresistive accelerometer with an electroplated gold layer atop a thickness reduced proof mass,” Sens. Actuators A Phys. 189(1), 125–133 (2013).
[Crossref]
A. Ravi Sankara and S. Dasb, “Cross-axis sensitivity reduction of a silicon MEMS piezoresistive accelerometer,” Microsyst. Technol. 15(4), 511–518 (2009).
[Crossref]
B. Yao, L. Feng, X. Wang, M. Liu, Z. Zhou, and W. Liu, “Design of Out-of-Plane MOEMS Accelerometer With Subwavelength Gratings,” IEEE Photonics Technol. Lett. 26(10), 1027–1030 (2014).
[Crossref]
Q. Hu, C. Gao, Y. Hao, Y. Zhang, and G. Yang, “Low cross-axis sensitivity micro-gravity microelectromechanical system sandwich capacitance accelerometer,” Micro & Nano Lett. 6(7), 510–514 (2011).
[Crossref]
Y. Wu, X. Zeng, Y. Rao, Y. Gong, C. Hou, and G. Yang, “MOEMS Accelerometer based on microfiber knot resonator,” IEEE Photonics Technol. Lett. 21(20), 1547–1549 (2009).
[Crossref]
T. Guan, G. Keulemans, F. Ceyssens, and R. Puers, “MOEMS uniaxial accelerometer based on EpoClad/EpoCore photoresists with built-in fiber clamp,” Sens. Actuators A Phys. 193(1), 95–102 (2013).
[Crossref]
Q. Hu, C. Gao, Y. Hao, Y. Zhang, and G. Yang, “Low cross-axis sensitivity micro-gravity microelectromechanical system sandwich capacitance accelerometer,” Micro & Nano Lett. 6(7), 510–514 (2011).
[Crossref]
S. Zhao, J. Zhang, C. Hou, J. Bai, and G. Yang, “Optical accelerometer based on grating interferometer with phase modulation technique,” Appl. Opt. 51(29), 7005–7010 (2012).
[Crossref]
[PubMed]
Y. Wu, X. Zeng, Y. Rao, Y. Gong, C. Hou, and G. Yang, “MOEMS Accelerometer based on microfiber knot resonator,” IEEE Photonics Technol. Lett. 21(20), 1547–1549 (2009).
[Crossref]
Y. W. Hsu, J. Y. Chen, H. T. Chien, S. Chen, S. T. Lin, and L. P. Liao, “New capacitive low-g triaxial accelerometer with low cross-axis sensitivity,” J. Micromech. Microeng. 20(5), 055019 (2010).
[Crossref]
Q. Hu, C. Gao, Y. Hao, Y. Zhang, and G. Yang, “Low cross-axis sensitivity micro-gravity microelectromechanical system sandwich capacitance accelerometer,” Micro & Nano Lett. 6(7), 510–514 (2011).
[Crossref]
Q. Lu, C. Wang, J. Bai, K. Wang, W. Lian, S. Lou, X. Jiao, and G. Yang, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 4188–4196 (2015).
[Crossref]
T. Guan, G. Keulemans, F. Ceyssens, and R. Puers, “MOEMS uniaxial accelerometer based on EpoClad/EpoCore photoresists with built-in fiber clamp,” Sens. Actuators A Phys. 193(1), 95–102 (2013).
[Crossref]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]
Q. Lu, W. Lian, S. Lou, C. Wang, J. Bai, and G. Yang, “A MOEMS accelerometer based on diffraction grating with improved mechanical structure,” Int. J. Automot. Technol. 9(5), 473–480 (2015).
Q. Lu, C. Wang, J. Bai, K. Wang, W. Lian, S. Lou, X. Jiao, and G. Yang, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 4188–4196 (2015).
[Crossref]
Y. W. Hsu, J. Y. Chen, H. T. Chien, S. Chen, S. T. Lin, and L. P. Liao, “New capacitive low-g triaxial accelerometer with low cross-axis sensitivity,” J. Micromech. Microeng. 20(5), 055019 (2010).
[Crossref]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]
Y. W. Hsu, J. Y. Chen, H. T. Chien, S. Chen, S. T. Lin, and L. P. Liao, “New capacitive low-g triaxial accelerometer with low cross-axis sensitivity,” J. Micromech. Microeng. 20(5), 055019 (2010).
[Crossref]
B. Yao, L. Feng, X. Wang, M. Liu, Z. Zhou, and W. Liu, “Design of Out-of-Plane MOEMS Accelerometer With Subwavelength Gratings,” IEEE Photonics Technol. Lett. 26(10), 1027–1030 (2014).
[Crossref]
B. Yao, L. Feng, X. Wang, M. Liu, Z. Zhou, and W. Liu, “Design of Out-of-Plane MOEMS Accelerometer With Subwavelength Gratings,” IEEE Photonics Technol. Lett. 26(10), 1027–1030 (2014).
[Crossref]
N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10 cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11(3), 182–187 (2002).
[Crossref]
Q. Lu, W. Lian, S. Lou, C. Wang, J. Bai, and G. Yang, “A MOEMS accelerometer based on diffraction grating with improved mechanical structure,” Int. J. Automot. Technol. 9(5), 473–480 (2015).
Q. Lu, C. Wang, J. Bai, K. Wang, W. Lian, S. Lou, X. Jiao, and G. Yang, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 4188–4196 (2015).
[Crossref]
Q. Lu, C. Wang, J. Bai, K. Wang, W. Lian, S. Lou, X. Jiao, and G. Yang, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 4188–4196 (2015).
[Crossref]
Q. Lu, W. Lian, S. Lou, C. Wang, J. Bai, and G. Yang, “A MOEMS accelerometer based on diffraction grating with improved mechanical structure,” Int. J. Automot. Technol. 9(5), 473–480 (2015).
N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10 cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11(3), 182–187 (2002).
[Crossref]
G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7414 (1998).
[Crossref]
S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
[Crossref]
S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
[Crossref]
T. Wung, Y. Ning, K. Chang, S. Tang, and Y. Tsai, “Vertical-plate-type microaccelerometer with high linearity and low cross-axis sensitivity,” Sens. Actuators A Phys. 222(1), 284–292 (2015).
[Crossref]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]
T. Guan, G. Keulemans, F. Ceyssens, and R. Puers, “MOEMS uniaxial accelerometer based on EpoClad/EpoCore photoresists with built-in fiber clamp,” Sens. Actuators A Phys. 193(1), 95–102 (2013).
[Crossref]
R. Puers and S. Reyntjens, “The characterization of a miniature silicon micromachined capacitive accelerometer,” J. Micromech. Microeng. 8(2), 127–133 (1998).
[Crossref]
G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7414 (1998).
[Crossref]
S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
[Crossref]
Y. Wu, X. Zeng, Y. Rao, Y. Gong, C. Hou, and G. Yang, “MOEMS Accelerometer based on microfiber knot resonator,” IEEE Photonics Technol. Lett. 21(20), 1547–1549 (2009).
[Crossref]
A. Ravi Sankara and S. Dasb, “A very-low cross-axis sensitivity piezoresistive accelerometer with an electroplated gold layer atop a thickness reduced proof mass,” Sens. Actuators A Phys. 189(1), 125–133 (2013).
[Crossref]
A. Ravi Sankara and S. Dasb, “Cross-axis sensitivity reduction of a silicon MEMS piezoresistive accelerometer,” Microsyst. Technol. 15(4), 511–518 (2009).
[Crossref]
R. Puers and S. Reyntjens, “The characterization of a miniature silicon micromachined capacitive accelerometer,” J. Micromech. Microeng. 8(2), 127–133 (1998).
[Crossref]
N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10 cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11(3), 182–187 (2002).
[Crossref]
T. Wung, Y. Ning, K. Chang, S. Tang, and Y. Tsai, “Vertical-plate-type microaccelerometer with high linearity and low cross-axis sensitivity,” Sens. Actuators A Phys. 222(1), 284–292 (2015).
[Crossref]
T. Wung, Y. Ning, K. Chang, S. Tang, and Y. Tsai, “Vertical-plate-type microaccelerometer with high linearity and low cross-axis sensitivity,” Sens. Actuators A Phys. 222(1), 284–292 (2015).
[Crossref]
Q. Lu, C. Wang, J. Bai, K. Wang, W. Lian, S. Lou, X. Jiao, and G. Yang, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 4188–4196 (2015).
[Crossref]
Q. Lu, W. Lian, S. Lou, C. Wang, J. Bai, and G. Yang, “A MOEMS accelerometer based on diffraction grating with improved mechanical structure,” Int. J. Automot. Technol. 9(5), 473–480 (2015).
Q. Lu, C. Wang, J. Bai, K. Wang, W. Lian, S. Lou, X. Jiao, and G. Yang, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 4188–4196 (2015).
[Crossref]
B. Yao, L. Feng, X. Wang, M. Liu, Z. Zhou, and W. Liu, “Design of Out-of-Plane MOEMS Accelerometer With Subwavelength Gratings,” IEEE Photonics Technol. Lett. 26(10), 1027–1030 (2014).
[Crossref]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]
Y. Wu, X. Zeng, Y. Rao, Y. Gong, C. Hou, and G. Yang, “MOEMS Accelerometer based on microfiber knot resonator,” IEEE Photonics Technol. Lett. 21(20), 1547–1549 (2009).
[Crossref]
T. Wung, Y. Ning, K. Chang, S. Tang, and Y. Tsai, “Vertical-plate-type microaccelerometer with high linearity and low cross-axis sensitivity,” Sens. Actuators A Phys. 222(1), 284–292 (2015).
[Crossref]
Q. Lu, W. Lian, S. Lou, C. Wang, J. Bai, and G. Yang, “A MOEMS accelerometer based on diffraction grating with improved mechanical structure,” Int. J. Automot. Technol. 9(5), 473–480 (2015).
Q. Lu, C. Wang, J. Bai, K. Wang, W. Lian, S. Lou, X. Jiao, and G. Yang, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 4188–4196 (2015).
[Crossref]
S. Zhao, J. Zhang, C. Hou, J. Bai, and G. Yang, “Optical accelerometer based on grating interferometer with phase modulation technique,” Appl. Opt. 51(29), 7005–7010 (2012).
[Crossref]
[PubMed]
Q. Hu, C. Gao, Y. Hao, Y. Zhang, and G. Yang, “Low cross-axis sensitivity micro-gravity microelectromechanical system sandwich capacitance accelerometer,” Micro & Nano Lett. 6(7), 510–514 (2011).
[Crossref]
Y. Wu, X. Zeng, Y. Rao, Y. Gong, C. Hou, and G. Yang, “MOEMS Accelerometer based on microfiber knot resonator,” IEEE Photonics Technol. Lett. 21(20), 1547–1549 (2009).
[Crossref]
B. Yao, L. Feng, X. Wang, M. Liu, Z. Zhou, and W. Liu, “Design of Out-of-Plane MOEMS Accelerometer With Subwavelength Gratings,” IEEE Photonics Technol. Lett. 26(10), 1027–1030 (2014).
[Crossref]
G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7414 (1998).
[Crossref]
Y. Wu, X. Zeng, Y. Rao, Y. Gong, C. Hou, and G. Yang, “MOEMS Accelerometer based on microfiber knot resonator,” IEEE Photonics Technol. Lett. 21(20), 1547–1549 (2009).
[Crossref]
Q. Hu, C. Gao, Y. Hao, Y. Zhang, and G. Yang, “Low cross-axis sensitivity micro-gravity microelectromechanical system sandwich capacitance accelerometer,” Micro & Nano Lett. 6(7), 510–514 (2011).
[Crossref]
B. Yao, L. Feng, X. Wang, M. Liu, Z. Zhou, and W. Liu, “Design of Out-of-Plane MOEMS Accelerometer With Subwavelength Gratings,” IEEE Photonics Technol. Lett. 26(10), 1027–1030 (2014).
[Crossref]
S. Zhao, J. Zhang, C. Hou, J. Bai, and G. Yang, “Optical accelerometer based on grating interferometer with phase modulation technique,” Appl. Opt. 51(29), 7005–7010 (2012).
[Crossref]
[PubMed]
Q. Lu, C. Wang, J. Bai, K. Wang, W. Lian, S. Lou, X. Jiao, and G. Yang, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 4188–4196 (2015).
[Crossref]
S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
[Crossref]
B. Yao, L. Feng, X. Wang, M. Liu, Z. Zhou, and W. Liu, “Design of Out-of-Plane MOEMS Accelerometer With Subwavelength Gratings,” IEEE Photonics Technol. Lett. 26(10), 1027–1030 (2014).
[Crossref]
Y. Wu, X. Zeng, Y. Rao, Y. Gong, C. Hou, and G. Yang, “MOEMS Accelerometer based on microfiber knot resonator,” IEEE Photonics Technol. Lett. 21(20), 1547–1549 (2009).
[Crossref]
Q. Lu, W. Lian, S. Lou, C. Wang, J. Bai, and G. Yang, “A MOEMS accelerometer based on diffraction grating with improved mechanical structure,” Int. J. Automot. Technol. 9(5), 473–480 (2015).
G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7414 (1998).
[Crossref]
N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10 cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11(3), 182–187 (2002).
[Crossref]
R. Puers and S. Reyntjens, “The characterization of a miniature silicon micromachined capacitive accelerometer,” J. Micromech. Microeng. 8(2), 127–133 (1998).
[Crossref]
Y. W. Hsu, J. Y. Chen, H. T. Chien, S. Chen, S. T. Lin, and L. P. Liao, “New capacitive low-g triaxial accelerometer with low cross-axis sensitivity,” J. Micromech. Microeng. 20(5), 055019 (2010).
[Crossref]
Q. Hu, C. Gao, Y. Hao, Y. Zhang, and G. Yang, “Low cross-axis sensitivity micro-gravity microelectromechanical system sandwich capacitance accelerometer,” Micro & Nano Lett. 6(7), 510–514 (2011).
[Crossref]
A. Ravi Sankara and S. Dasb, “Cross-axis sensitivity reduction of a silicon MEMS piezoresistive accelerometer,” Microsyst. Technol. 15(4), 511–518 (2009).
[Crossref]
A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]
M. Schmidt, B. Werther, N. Fuerstenau, M. Matthias, and T. Melz, “Fiber-optic extrinsic Fabry-Perot interferometer strain sensor with <50 pm displacement resolution using three-wavelength digital phase demodulation,” Opt. Express 8(8), 475–480 (2001).
[Crossref]
[PubMed]
T. Guo, L. Shao, H. Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express 17(23), 20651–20660 (2009).
[Crossref]
[PubMed]
N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Development of a multi-point polarization-based vibration sensor,” Opt. Express 21(5), 5606–5624 (2013).
[Crossref]
[PubMed]
A. Ravi Sankara and S. Dasb, “A very-low cross-axis sensitivity piezoresistive accelerometer with an electroplated gold layer atop a thickness reduced proof mass,” Sens. Actuators A Phys. 189(1), 125–133 (2013).
[Crossref]
T. Guan, G. Keulemans, F. Ceyssens, and R. Puers, “MOEMS uniaxial accelerometer based on EpoClad/EpoCore photoresists with built-in fiber clamp,” Sens. Actuators A Phys. 193(1), 95–102 (2013).
[Crossref]
T. Wung, Y. Ning, K. Chang, S. Tang, and Y. Tsai, “Vertical-plate-type microaccelerometer with high linearity and low cross-axis sensitivity,” Sens. Actuators A Phys. 222(1), 284–292 (2015).
[Crossref]
M. Born and E. Wolf, Principles of Optics, 6th ed, (Pergamon, 1980).
Y. H. Cho and A. P. Pisano, “Optimum structural design of micromechanical crab-leg flexures with microfabrication constraints,” In Proceedings, ASME Winter Annual Meeting, Dalls- Texas, November 1990.