Abstract

Cross-axis sensitivity of single-axis optomechanical accelerometers, mainly caused by the asymmetric structural design, is an essential issue primarily for high performance applications, which has not been systematically researched. This paper investigates the generating mechanism and detrimental effects of the cross-axis sensitivity of a high resoluion single-axis optomechanical accelerometer, which is composed of a grating-based cavity and an acceleration sensing chip consisting of four crab-shaped cantilevers and a proof mass. The modified design has been proposed and a prototype setup has been built based on the model of cross-axis sensitivity in optomechanical accelerometers. The characterization of the cross-axis sensitivity of a specific optomechanical accelerometer is quantitatively discussed for both mechanical and optical components by numerical simulation and theoretical analysis in this work. The analysis indicates that the cross-axis sensitivity decreases the contrast ratio of the interference signal and the acceleration sensitivity, as well as giving rise to an additional optical path difference, which would impact the accuracy of the accelerometer. The improved mechanical design is achieved by double side etching on a specific double-substrate-layer silicon-on-insulator (SOI) wafer to move the center of the proof mass to the support plane. The experimental results demonstrate that the modified design with highly symmetrical structure can suppress the cross-axis sensitivity significantly without compromising the sensitivity and resolution. The cross-axis sensitivity defined by the contrast ratio of the output signal drops to 2.19% /0.1g from 28.28%/0.1g under the premise that the acceleration sensitivity of this single-axis optomechanical accelerometer remains 1162.45V/g and the resolution remains 1.325μg.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical accelerometer based on grating interferometer with phase modulation technique

Shuangshuang Zhao, Juan Zhang, Changlun Hou, Jian Bai, and Guoguang Yang
Appl. Opt. 51(29) 7005-7010 (2012)

Optical sensitivity enhancement in grating based micromechanical accelerometer by reducing non-parallelism error

Yu Zhang, Shan Gao, Heng Xiong, and Lishuang Feng
Opt. Express 27(5) 6565-6579 (2019)

Sensitivity improvement of micro-grating accelerometer based on differential detection method

Xiao Wang, Lishuang Feng, Baoyin Yao, and Xiaoyuan Ren
Appl. Opt. 52(18) 4091-4096 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
    [Crossref]
  2. T. Guo, L. Shao, H. Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express 17(23), 20651–20660 (2009).
    [Crossref] [PubMed]
  3. G. Y. Chen, X. L. Zhang, G. Brambilla, and T. P. Newson, “Theoretical and experimental demonstrations of a microfiber-based flexural disc accelerometer,” Opt. Lett. 36(18), 3669–3671 (2011).
    [Crossref] [PubMed]
  4. T. Guan, G. Keulemans, F. Ceyssens, and R. Puers, “MOEMS uniaxial accelerometer based on EpoClad/EpoCore photoresists with built-in fiber clamp,” Sens. Actuators A Phys. 193(1), 95–102 (2013).
    [Crossref]
  5. B. Yao, L. Feng, X. Wang, M. Liu, Z. Zhou, and W. Liu, “Design of Out-of-Plane MOEMS Accelerometer With Subwavelength Gratings,” IEEE Photonics Technol. Lett. 26(10), 1027–1030 (2014).
    [Crossref]
  6. Y. Wu, X. Zeng, Y. Rao, Y. Gong, C. Hou, and G. Yang, “MOEMS Accelerometer based on microfiber knot resonator,” IEEE Photonics Technol. Lett. 21(20), 1547–1549 (2009).
    [Crossref]
  7. N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Development of a multi-point polarization-based vibration sensor,” Opt. Express 21(5), 5606–5624 (2013).
    [Crossref] [PubMed]
  8. R. Puers and S. Reyntjens, “The characterization of a miniature silicon micromachined capacitive accelerometer,” J. Micromech. Microeng. 8(2), 127–133 (1998).
    [Crossref]
  9. Y. W. Hsu, J. Y. Chen, H. T. Chien, S. Chen, S. T. Lin, and L. P. Liao, “New capacitive low-g triaxial accelerometer with low cross-axis sensitivity,” J. Micromech. Microeng. 20(5), 055019 (2010).
    [Crossref]
  10. Q. Hu, C. Gao, Y. Hao, Y. Zhang, and G. Yang, “Low cross-axis sensitivity micro-gravity microelectromechanical system sandwich capacitance accelerometer,” Micro & Nano Lett. 6(7), 510–514 (2011).
    [Crossref]
  11. A. Ravi Sankara and S. Dasb, “A very-low cross-axis sensitivity piezoresistive accelerometer with an electroplated gold layer atop a thickness reduced proof mass,” Sens. Actuators A Phys. 189(1), 125–133 (2013).
    [Crossref]
  12. A. Ravi Sankara and S. Dasb, “Cross-axis sensitivity reduction of a silicon MEMS piezoresistive accelerometer,” Microsyst. Technol. 15(4), 511–518 (2009).
    [Crossref]
  13. T. Wung, Y. Ning, K. Chang, S. Tang, and Y. Tsai, “Vertical-plate-type microaccelerometer with high linearity and low cross-axis sensitivity,” Sens. Actuators A Phys. 222(1), 284–292 (2015).
    [Crossref]
  14. S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
    [Crossref]
  15. G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7414 (1998).
    [Crossref]
  16. N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10 cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11(3), 182–187 (2002).
    [Crossref]
  17. S. Zhao, J. Zhang, C. Hou, J. Bai, and G. Yang, “Optical accelerometer based on grating interferometer with phase modulation technique,” Appl. Opt. 51(29), 7005–7010 (2012).
    [Crossref] [PubMed]
  18. Q. Lu, C. Wang, J. Bai, K. Wang, W. Lian, S. Lou, X. Jiao, and G. Yang, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 4188–4196 (2015).
    [Crossref]
  19. M. Born and E. Wolf, Principles of Optics, 6th ed, (Pergamon, 1980).
  20. Y. H. Cho and A. P. Pisano, “Optimum structural design of micromechanical crab-leg flexures with microfabrication constraints,” In Proceedings, ASME Winter Annual Meeting, Dalls- Texas, November 1990.
  21. Q. Lu, W. Lian, S. Lou, C. Wang, J. Bai, and G. Yang, “A MOEMS accelerometer based on diffraction grating with improved mechanical structure,” Int. J. Automot. Technol. 9(5), 473–480 (2015).
  22. M. Schmidt, B. Werther, N. Fuerstenau, M. Matthias, and T. Melz, “Fiber-optic extrinsic Fabry-Perot interferometer strain sensor with <50 pm displacement resolution using three-wavelength digital phase demodulation,” Opt. Express 8(8), 475–480 (2001).
    [Crossref] [PubMed]

2015 (3)

T. Wung, Y. Ning, K. Chang, S. Tang, and Y. Tsai, “Vertical-plate-type microaccelerometer with high linearity and low cross-axis sensitivity,” Sens. Actuators A Phys. 222(1), 284–292 (2015).
[Crossref]

Q. Lu, C. Wang, J. Bai, K. Wang, W. Lian, S. Lou, X. Jiao, and G. Yang, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 4188–4196 (2015).
[Crossref]

Q. Lu, W. Lian, S. Lou, C. Wang, J. Bai, and G. Yang, “A MOEMS accelerometer based on diffraction grating with improved mechanical structure,” Int. J. Automot. Technol. 9(5), 473–480 (2015).

2014 (1)

B. Yao, L. Feng, X. Wang, M. Liu, Z. Zhou, and W. Liu, “Design of Out-of-Plane MOEMS Accelerometer With Subwavelength Gratings,” IEEE Photonics Technol. Lett. 26(10), 1027–1030 (2014).
[Crossref]

2013 (3)

N. Linze, P. Tihon, O. Verlinden, P. Mégret, and M. Wuilpart, “Development of a multi-point polarization-based vibration sensor,” Opt. Express 21(5), 5606–5624 (2013).
[Crossref] [PubMed]

T. Guan, G. Keulemans, F. Ceyssens, and R. Puers, “MOEMS uniaxial accelerometer based on EpoClad/EpoCore photoresists with built-in fiber clamp,” Sens. Actuators A Phys. 193(1), 95–102 (2013).
[Crossref]

A. Ravi Sankara and S. Dasb, “A very-low cross-axis sensitivity piezoresistive accelerometer with an electroplated gold layer atop a thickness reduced proof mass,” Sens. Actuators A Phys. 189(1), 125–133 (2013).
[Crossref]

2012 (2)

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

S. Zhao, J. Zhang, C. Hou, J. Bai, and G. Yang, “Optical accelerometer based on grating interferometer with phase modulation technique,” Appl. Opt. 51(29), 7005–7010 (2012).
[Crossref] [PubMed]

2011 (2)

G. Y. Chen, X. L. Zhang, G. Brambilla, and T. P. Newson, “Theoretical and experimental demonstrations of a microfiber-based flexural disc accelerometer,” Opt. Lett. 36(18), 3669–3671 (2011).
[Crossref] [PubMed]

Q. Hu, C. Gao, Y. Hao, Y. Zhang, and G. Yang, “Low cross-axis sensitivity micro-gravity microelectromechanical system sandwich capacitance accelerometer,” Micro & Nano Lett. 6(7), 510–514 (2011).
[Crossref]

2010 (1)

Y. W. Hsu, J. Y. Chen, H. T. Chien, S. Chen, S. T. Lin, and L. P. Liao, “New capacitive low-g triaxial accelerometer with low cross-axis sensitivity,” J. Micromech. Microeng. 20(5), 055019 (2010).
[Crossref]

2009 (3)

A. Ravi Sankara and S. Dasb, “Cross-axis sensitivity reduction of a silicon MEMS piezoresistive accelerometer,” Microsyst. Technol. 15(4), 511–518 (2009).
[Crossref]

T. Guo, L. Shao, H. Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express 17(23), 20651–20660 (2009).
[Crossref] [PubMed]

Y. Wu, X. Zeng, Y. Rao, Y. Gong, C. Hou, and G. Yang, “MOEMS Accelerometer based on microfiber knot resonator,” IEEE Photonics Technol. Lett. 21(20), 1547–1549 (2009).
[Crossref]

2002 (1)

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10 cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11(3), 182–187 (2002).
[Crossref]

2001 (1)

1998 (2)

G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7414 (1998).
[Crossref]

R. Puers and S. Reyntjens, “The characterization of a miniature silicon micromachined capacitive accelerometer,” J. Micromech. Microeng. 8(2), 127–133 (1998).
[Crossref]

1996 (1)

S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
[Crossref]

Albert, J.

Atalar, A.

G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7414 (1998).
[Crossref]

S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
[Crossref]

Bai, J.

Blasius, T. D.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Brambilla, G.

Ceyssens, F.

T. Guan, G. Keulemans, F. Ceyssens, and R. Puers, “MOEMS uniaxial accelerometer based on EpoClad/EpoCore photoresists with built-in fiber clamp,” Sens. Actuators A Phys. 193(1), 95–102 (2013).
[Crossref]

Chang, K.

T. Wung, Y. Ning, K. Chang, S. Tang, and Y. Tsai, “Vertical-plate-type microaccelerometer with high linearity and low cross-axis sensitivity,” Sens. Actuators A Phys. 222(1), 284–292 (2015).
[Crossref]

Chen, G. Y.

Chen, J. Y.

Y. W. Hsu, J. Y. Chen, H. T. Chien, S. Chen, S. T. Lin, and L. P. Liao, “New capacitive low-g triaxial accelerometer with low cross-axis sensitivity,” J. Micromech. Microeng. 20(5), 055019 (2010).
[Crossref]

Chen, S.

Y. W. Hsu, J. Y. Chen, H. T. Chien, S. Chen, S. T. Lin, and L. P. Liao, “New capacitive low-g triaxial accelerometer with low cross-axis sensitivity,” J. Micromech. Microeng. 20(5), 055019 (2010).
[Crossref]

Chien, H. T.

Y. W. Hsu, J. Y. Chen, H. T. Chien, S. Chen, S. T. Lin, and L. P. Liao, “New capacitive low-g triaxial accelerometer with low cross-axis sensitivity,” J. Micromech. Microeng. 20(5), 055019 (2010).
[Crossref]

Dasb, S.

A. Ravi Sankara and S. Dasb, “A very-low cross-axis sensitivity piezoresistive accelerometer with an electroplated gold layer atop a thickness reduced proof mass,” Sens. Actuators A Phys. 189(1), 125–133 (2013).
[Crossref]

A. Ravi Sankara and S. Dasb, “Cross-axis sensitivity reduction of a silicon MEMS piezoresistive accelerometer,” Microsyst. Technol. 15(4), 511–518 (2009).
[Crossref]

Feng, L.

B. Yao, L. Feng, X. Wang, M. Liu, Z. Zhou, and W. Liu, “Design of Out-of-Plane MOEMS Accelerometer With Subwavelength Gratings,” IEEE Photonics Technol. Lett. 26(10), 1027–1030 (2014).
[Crossref]

Fuerstenau, N.

Gao, C.

Q. Hu, C. Gao, Y. Hao, Y. Zhang, and G. Yang, “Low cross-axis sensitivity micro-gravity microelectromechanical system sandwich capacitance accelerometer,” Micro & Nano Lett. 6(7), 510–514 (2011).
[Crossref]

Gong, Y.

Y. Wu, X. Zeng, Y. Rao, Y. Gong, C. Hou, and G. Yang, “MOEMS Accelerometer based on microfiber knot resonator,” IEEE Photonics Technol. Lett. 21(20), 1547–1549 (2009).
[Crossref]

Guan, T.

T. Guan, G. Keulemans, F. Ceyssens, and R. Puers, “MOEMS uniaxial accelerometer based on EpoClad/EpoCore photoresists with built-in fiber clamp,” Sens. Actuators A Phys. 193(1), 95–102 (2013).
[Crossref]

Guo, T.

Hao, Y.

Q. Hu, C. Gao, Y. Hao, Y. Zhang, and G. Yang, “Low cross-axis sensitivity micro-gravity microelectromechanical system sandwich capacitance accelerometer,” Micro & Nano Lett. 6(7), 510–514 (2011).
[Crossref]

Hou, C.

S. Zhao, J. Zhang, C. Hou, J. Bai, and G. Yang, “Optical accelerometer based on grating interferometer with phase modulation technique,” Appl. Opt. 51(29), 7005–7010 (2012).
[Crossref] [PubMed]

Y. Wu, X. Zeng, Y. Rao, Y. Gong, C. Hou, and G. Yang, “MOEMS Accelerometer based on microfiber knot resonator,” IEEE Photonics Technol. Lett. 21(20), 1547–1549 (2009).
[Crossref]

Hsu, Y. W.

Y. W. Hsu, J. Y. Chen, H. T. Chien, S. Chen, S. T. Lin, and L. P. Liao, “New capacitive low-g triaxial accelerometer with low cross-axis sensitivity,” J. Micromech. Microeng. 20(5), 055019 (2010).
[Crossref]

Hu, Q.

Q. Hu, C. Gao, Y. Hao, Y. Zhang, and G. Yang, “Low cross-axis sensitivity micro-gravity microelectromechanical system sandwich capacitance accelerometer,” Micro & Nano Lett. 6(7), 510–514 (2011).
[Crossref]

Jiao, X.

Keulemans, G.

T. Guan, G. Keulemans, F. Ceyssens, and R. Puers, “MOEMS uniaxial accelerometer based on EpoClad/EpoCore photoresists with built-in fiber clamp,” Sens. Actuators A Phys. 193(1), 95–102 (2013).
[Crossref]

Krause, A. G.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Krug, P. A.

Lian, W.

Q. Lu, W. Lian, S. Lou, C. Wang, J. Bai, and G. Yang, “A MOEMS accelerometer based on diffraction grating with improved mechanical structure,” Int. J. Automot. Technol. 9(5), 473–480 (2015).

Q. Lu, C. Wang, J. Bai, K. Wang, W. Lian, S. Lou, X. Jiao, and G. Yang, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 4188–4196 (2015).
[Crossref]

Liao, L. P.

Y. W. Hsu, J. Y. Chen, H. T. Chien, S. Chen, S. T. Lin, and L. P. Liao, “New capacitive low-g triaxial accelerometer with low cross-axis sensitivity,” J. Micromech. Microeng. 20(5), 055019 (2010).
[Crossref]

Lin, Q.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Lin, S. T.

Y. W. Hsu, J. Y. Chen, H. T. Chien, S. Chen, S. T. Lin, and L. P. Liao, “New capacitive low-g triaxial accelerometer with low cross-axis sensitivity,” J. Micromech. Microeng. 20(5), 055019 (2010).
[Crossref]

Linze, N.

Liu, M.

B. Yao, L. Feng, X. Wang, M. Liu, Z. Zhou, and W. Liu, “Design of Out-of-Plane MOEMS Accelerometer With Subwavelength Gratings,” IEEE Photonics Technol. Lett. 26(10), 1027–1030 (2014).
[Crossref]

Liu, W.

B. Yao, L. Feng, X. Wang, M. Liu, Z. Zhou, and W. Liu, “Design of Out-of-Plane MOEMS Accelerometer With Subwavelength Gratings,” IEEE Photonics Technol. Lett. 26(10), 1027–1030 (2014).
[Crossref]

Loh, N. C.

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10 cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11(3), 182–187 (2002).
[Crossref]

Lou, S.

Q. Lu, W. Lian, S. Lou, C. Wang, J. Bai, and G. Yang, “A MOEMS accelerometer based on diffraction grating with improved mechanical structure,” Int. J. Automot. Technol. 9(5), 473–480 (2015).

Q. Lu, C. Wang, J. Bai, K. Wang, W. Lian, S. Lou, X. Jiao, and G. Yang, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 4188–4196 (2015).
[Crossref]

Lu, Q.

Q. Lu, C. Wang, J. Bai, K. Wang, W. Lian, S. Lou, X. Jiao, and G. Yang, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 4188–4196 (2015).
[Crossref]

Q. Lu, W. Lian, S. Lou, C. Wang, J. Bai, and G. Yang, “A MOEMS accelerometer based on diffraction grating with improved mechanical structure,” Int. J. Automot. Technol. 9(5), 473–480 (2015).

Manalis, S. R.

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10 cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11(3), 182–187 (2002).
[Crossref]

G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7414 (1998).
[Crossref]

S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
[Crossref]

Matthias, M.

Mégret, P.

Melz, T.

Minne, S. C.

S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
[Crossref]

Newson, T. P.

Ning, Y.

T. Wung, Y. Ning, K. Chang, S. Tang, and Y. Tsai, “Vertical-plate-type microaccelerometer with high linearity and low cross-axis sensitivity,” Sens. Actuators A Phys. 222(1), 284–292 (2015).
[Crossref]

Painter, O.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Puers, R.

T. Guan, G. Keulemans, F. Ceyssens, and R. Puers, “MOEMS uniaxial accelerometer based on EpoClad/EpoCore photoresists with built-in fiber clamp,” Sens. Actuators A Phys. 193(1), 95–102 (2013).
[Crossref]

R. Puers and S. Reyntjens, “The characterization of a miniature silicon micromachined capacitive accelerometer,” J. Micromech. Microeng. 8(2), 127–133 (1998).
[Crossref]

Quate, C. F.

G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7414 (1998).
[Crossref]

S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
[Crossref]

Rao, Y.

Y. Wu, X. Zeng, Y. Rao, Y. Gong, C. Hou, and G. Yang, “MOEMS Accelerometer based on microfiber knot resonator,” IEEE Photonics Technol. Lett. 21(20), 1547–1549 (2009).
[Crossref]

Ravi Sankara, A.

A. Ravi Sankara and S. Dasb, “A very-low cross-axis sensitivity piezoresistive accelerometer with an electroplated gold layer atop a thickness reduced proof mass,” Sens. Actuators A Phys. 189(1), 125–133 (2013).
[Crossref]

A. Ravi Sankara and S. Dasb, “Cross-axis sensitivity reduction of a silicon MEMS piezoresistive accelerometer,” Microsyst. Technol. 15(4), 511–518 (2009).
[Crossref]

Reyntjens, S.

R. Puers and S. Reyntjens, “The characterization of a miniature silicon micromachined capacitive accelerometer,” J. Micromech. Microeng. 8(2), 127–133 (1998).
[Crossref]

Schmidt, M.

Schmidt, M. A.

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10 cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11(3), 182–187 (2002).
[Crossref]

Shao, L.

Tam, H. Y.

Tang, S.

T. Wung, Y. Ning, K. Chang, S. Tang, and Y. Tsai, “Vertical-plate-type microaccelerometer with high linearity and low cross-axis sensitivity,” Sens. Actuators A Phys. 222(1), 284–292 (2015).
[Crossref]

Tihon, P.

Tsai, Y.

T. Wung, Y. Ning, K. Chang, S. Tang, and Y. Tsai, “Vertical-plate-type microaccelerometer with high linearity and low cross-axis sensitivity,” Sens. Actuators A Phys. 222(1), 284–292 (2015).
[Crossref]

Verlinden, O.

Wang, C.

Q. Lu, C. Wang, J. Bai, K. Wang, W. Lian, S. Lou, X. Jiao, and G. Yang, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 4188–4196 (2015).
[Crossref]

Q. Lu, W. Lian, S. Lou, C. Wang, J. Bai, and G. Yang, “A MOEMS accelerometer based on diffraction grating with improved mechanical structure,” Int. J. Automot. Technol. 9(5), 473–480 (2015).

Wang, K.

Wang, X.

B. Yao, L. Feng, X. Wang, M. Liu, Z. Zhou, and W. Liu, “Design of Out-of-Plane MOEMS Accelerometer With Subwavelength Gratings,” IEEE Photonics Technol. Lett. 26(10), 1027–1030 (2014).
[Crossref]

Werther, B.

Winger, M.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Wu, Y.

Y. Wu, X. Zeng, Y. Rao, Y. Gong, C. Hou, and G. Yang, “MOEMS Accelerometer based on microfiber knot resonator,” IEEE Photonics Technol. Lett. 21(20), 1547–1549 (2009).
[Crossref]

Wuilpart, M.

Wung, T.

T. Wung, Y. Ning, K. Chang, S. Tang, and Y. Tsai, “Vertical-plate-type microaccelerometer with high linearity and low cross-axis sensitivity,” Sens. Actuators A Phys. 222(1), 284–292 (2015).
[Crossref]

Yang, G.

Q. Lu, W. Lian, S. Lou, C. Wang, J. Bai, and G. Yang, “A MOEMS accelerometer based on diffraction grating with improved mechanical structure,” Int. J. Automot. Technol. 9(5), 473–480 (2015).

Q. Lu, C. Wang, J. Bai, K. Wang, W. Lian, S. Lou, X. Jiao, and G. Yang, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 4188–4196 (2015).
[Crossref]

S. Zhao, J. Zhang, C. Hou, J. Bai, and G. Yang, “Optical accelerometer based on grating interferometer with phase modulation technique,” Appl. Opt. 51(29), 7005–7010 (2012).
[Crossref] [PubMed]

Q. Hu, C. Gao, Y. Hao, Y. Zhang, and G. Yang, “Low cross-axis sensitivity micro-gravity microelectromechanical system sandwich capacitance accelerometer,” Micro & Nano Lett. 6(7), 510–514 (2011).
[Crossref]

Y. Wu, X. Zeng, Y. Rao, Y. Gong, C. Hou, and G. Yang, “MOEMS Accelerometer based on microfiber knot resonator,” IEEE Photonics Technol. Lett. 21(20), 1547–1549 (2009).
[Crossref]

Yao, B.

B. Yao, L. Feng, X. Wang, M. Liu, Z. Zhou, and W. Liu, “Design of Out-of-Plane MOEMS Accelerometer With Subwavelength Gratings,” IEEE Photonics Technol. Lett. 26(10), 1027–1030 (2014).
[Crossref]

Yaralioglu, G. G.

G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7414 (1998).
[Crossref]

Zeng, X.

Y. Wu, X. Zeng, Y. Rao, Y. Gong, C. Hou, and G. Yang, “MOEMS Accelerometer based on microfiber knot resonator,” IEEE Photonics Technol. Lett. 21(20), 1547–1549 (2009).
[Crossref]

Zhang, J.

Zhang, X. L.

Zhang, Y.

Q. Hu, C. Gao, Y. Hao, Y. Zhang, and G. Yang, “Low cross-axis sensitivity micro-gravity microelectromechanical system sandwich capacitance accelerometer,” Micro & Nano Lett. 6(7), 510–514 (2011).
[Crossref]

Zhao, S.

Zhou, Z.

B. Yao, L. Feng, X. Wang, M. Liu, Z. Zhou, and W. Liu, “Design of Out-of-Plane MOEMS Accelerometer With Subwavelength Gratings,” IEEE Photonics Technol. Lett. 26(10), 1027–1030 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (2)

B. Yao, L. Feng, X. Wang, M. Liu, Z. Zhou, and W. Liu, “Design of Out-of-Plane MOEMS Accelerometer With Subwavelength Gratings,” IEEE Photonics Technol. Lett. 26(10), 1027–1030 (2014).
[Crossref]

Y. Wu, X. Zeng, Y. Rao, Y. Gong, C. Hou, and G. Yang, “MOEMS Accelerometer based on microfiber knot resonator,” IEEE Photonics Technol. Lett. 21(20), 1547–1549 (2009).
[Crossref]

Int. J. Automot. Technol. (1)

Q. Lu, W. Lian, S. Lou, C. Wang, J. Bai, and G. Yang, “A MOEMS accelerometer based on diffraction grating with improved mechanical structure,” Int. J. Automot. Technol. 9(5), 473–480 (2015).

J. Appl. Phys. (1)

G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7414 (1998).
[Crossref]

J. Microelectromech. Syst. (1)

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10 cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11(3), 182–187 (2002).
[Crossref]

J. Micromech. Microeng. (2)

R. Puers and S. Reyntjens, “The characterization of a miniature silicon micromachined capacitive accelerometer,” J. Micromech. Microeng. 8(2), 127–133 (1998).
[Crossref]

Y. W. Hsu, J. Y. Chen, H. T. Chien, S. Chen, S. T. Lin, and L. P. Liao, “New capacitive low-g triaxial accelerometer with low cross-axis sensitivity,” J. Micromech. Microeng. 20(5), 055019 (2010).
[Crossref]

Micro & Nano Lett. (1)

Q. Hu, C. Gao, Y. Hao, Y. Zhang, and G. Yang, “Low cross-axis sensitivity micro-gravity microelectromechanical system sandwich capacitance accelerometer,” Micro & Nano Lett. 6(7), 510–514 (2011).
[Crossref]

Microsyst. Technol. (1)

A. Ravi Sankara and S. Dasb, “Cross-axis sensitivity reduction of a silicon MEMS piezoresistive accelerometer,” Microsyst. Technol. 15(4), 511–518 (2009).
[Crossref]

Nat. Photonics (1)

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Sens. Actuators A Phys. (3)

A. Ravi Sankara and S. Dasb, “A very-low cross-axis sensitivity piezoresistive accelerometer with an electroplated gold layer atop a thickness reduced proof mass,” Sens. Actuators A Phys. 189(1), 125–133 (2013).
[Crossref]

T. Guan, G. Keulemans, F. Ceyssens, and R. Puers, “MOEMS uniaxial accelerometer based on EpoClad/EpoCore photoresists with built-in fiber clamp,” Sens. Actuators A Phys. 193(1), 95–102 (2013).
[Crossref]

T. Wung, Y. Ning, K. Chang, S. Tang, and Y. Tsai, “Vertical-plate-type microaccelerometer with high linearity and low cross-axis sensitivity,” Sens. Actuators A Phys. 222(1), 284–292 (2015).
[Crossref]

Other (2)

M. Born and E. Wolf, Principles of Optics, 6th ed, (Pergamon, 1980).

Y. H. Cho and A. P. Pisano, “Optimum structural design of micromechanical crab-leg flexures with microfabrication constraints,” In Proceedings, ASME Winter Annual Meeting, Dalls- Texas, November 1990.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Schematic diagram of the optomechanical accelerometer based on a grating-based cavity and a micromachined sensing chip.
Fig. 2
Fig. 2 Simplified analytical model of the original design (a) Front view of the mechanical sensing chip (b) Cross-sectional view (c) Deflection of the cantilever-mass structure when acceleration is applied along z axis.
Fig. 3
Fig. 3 (a) Deformational sensing chip when acceleration is applied along x axis (b) Simplified analytical model of the deflected cantilever-mass structure when acceleration is applied along x axis.
Fig. 4
Fig. 4 Torque caused by the inertial force brought by lateral acceleration.
Fig. 5
Fig. 5 Numerical evaluation and linear fit for the rotation angle of the proof mass as a fuction fo L2 compared with the analytical result.
Fig. 6
Fig. 6 Beam path diagram of the optical readout system when there is a shift of two diffraction laser beam on the detector plane resulting from a rotation of the proof mass.
Fig. 7
Fig. 7 Schematic of the variation of the interference spot on the detector plane with cross-axis sensitivity.
Fig. 8
Fig. 8 Simplified condition that the overlapping region contains exact 7 fringes with cross-axis sensitivity.
Fig. 9
Fig. 9 Schematic of output voltage variation without and with a rotation of the proof mass.
Fig. 10
Fig. 10 Cross-sectional view of the starting double-substrate-layer silicon-on-insulator wafer.
Fig. 11
Fig. 11 Cross-sectional view of the fabrication process flow of the modified sensing chip.
Fig. 12
Fig. 12 Photograph of the fabricated modified sensing chip and grating.
Fig. 13
Fig. 13 (a) Schematic diagram of the experimental configuration for the static gravity measurement (b) Photograph of the experimental configuration for the static gravity measurement.
Fig. 14
Fig. 14 Experimental results of the accelerometer with original design (a) Experimental curve for the output voltage versus the acceleration along the sensitive axis (b) Linear fit for the output curve in the linear region (c) Output voltage and RMS deviation of the accelerometer with original design when the applied acceleration is invariable.
Fig. 15
Fig. 15 Experimental curve for the output voltage as a function of the acceleration along the in-sensitive axis of the accelerometer.
Fig. 16
Fig. 16 Experimental results of the accelerometer with modified design (a) Experimental curve for the output voltage versus the acceleration along the sensitive axis (b) Linear fit for the output curve in the linear region (c) Output voltage and RMS deviation of the accelerometer with modified design when the applied acceleration is invariable.
Fig. 17
Fig. 17 Experimental curve for the output voltage as a function of the acceleration along the in-sensitive axis of the accelerometer.

Tables (1)

Tables Icon

Table 1 Geometric parameters of the previous sensing chip

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

I ±1 = 2 I in π 2 (1cos 4πd λ ),
k z n 48 S e 4 L 1 L 2 4 S e 3 L 1 4 L 2 +4 S e 3 L 1 L 2 4 = 4Ew t 3 L 1 3 + L 2 3 .
k x = Et w 3 [ (4 L 1 + L 2 ) L 2 3 +(4 L 2 + L 1 ) L 1 3 ] 2 L 1 3 L 2 3 ( L 1 + L 2 ) = k y .
θΘ TL' G S g2 = maH( L 2 + w 2 ) 2Gk'w t 3 ,
r 0 =rcos θ 0 , r 2 = r 1 cos θ 1 .
r 1 =r(1+tanθtan2θ),
d 1 = d 0 tan2θ, d 2 = d 1 +ttanθ'= d 1 +ttan(arcsin sin2θ n ), θ 0 =arcsin λ d , d 3 = d 2 cos θ 0 , θ 1 =arcsin( λ d +sin2θ ), θ 2 = θ 1 θ 0 , d 4 =(L d 2 sin θ 0 )tan θ 2 , Δd= d 3 + d 4 .
s= r 0 + r 3 Δd.
d'= d 0 ( 1 cos2θ 1)+t( 1 cosθ' 1)+ d 4 sin θ 2 L,
Contrastratio= I max I min 2 I total ¯ ,
Contrastratio= I max I min 2 I total ¯ S brightmax S brightmin 2 S brighttotal ¯ , = ( S bfmax S bfmin )×4 2(π r 0 2 +π r 3 2 2 S o + S bf ¯ ×4)
S n =π r 0 2 θ n 2π r 0 ( r 0 d λ 2 n)sin θ n 2 k=1 n1 S k ,
θ n =arccos( ( r 0 d λ 2 n)/ r 0 ),
S N '=π r 3 2 θ N 2π r 3 ( r 3 d λ 2 N)sin θ N 2 k=1 N1 S k ' ,
θ N =arccos( ( r 3 d λ 2 N)/ r 3 ),
V out =963.47a+957.96(V),
Resolution= Noisedensity Sensitivity = 1.75mV 963.467V/g =1.816μg.
C= V max V min 2 V ¯ ,
V out =1162.45a+1160.55(V),
Resolution= Noisedensity Sensitivity = 1.54mV 1162.45V/g =1.325μg

Metrics