Abstract

The study of light propagation though the atmosphere is crucial in different areas such as astronomy, free-space communications, remote sensing, etc. Since outdoors experiments are expensive and difficult to reproduce it is important to develop realistic numerical and experimental simulations. It has been demonstrated that spatial light modulators (SLMs) are well-suited for simulating different turbulent conditions in the laboratory. Here, we present a programmable experimental setup based on liquid crystal SLMs for simulation and analysis of the beam propagation through weak turbulent atmosphere. The simulator allows changing the propagation distances and atmospheric conditions without the need of moving optical elements. Its performance is tested for Gaussian and vortex beams.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Propagation of vector vortex beams through a turbulent atmosphere

Wen Cheng, Joseph W. Haus, and Qiwen Zhan
Opt. Express 17(20) 17829-17836 (2009)

Scintillation properties of a partially coherent vector beam with vortex phase in turbulent atmosphere

Jiayi Yu, Yan Huang, Fei Wang, Xianlong Liu, Greg Gbur, and Yangjian Cai
Opt. Express 27(19) 26676-26688 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. Gbur and E. Wolf, “Spreading of partially coherent beams in random media,” J. Opt. Soc. Am. A 19, 1592–1598 (2002).
    [Crossref]
  2. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
    [Crossref]
  3. M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
    [Crossref]
  4. B. Rodenburg, M. Mirhosseini, M. Malik, O. S. Magaña-Loaiza, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16, 033020 (2014).
    [Crossref]
  5. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Press, 2005).
    [Crossref]
  6. J. D. Schmidt, Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE Press, 2010) Chap. 9, pp. 149–184.
  7. S. V. Mantravadi, T. A. Rhoadarmer, and R. S. Glas, “Simple laboratory system for generating well-controlled atmospheric-like turbulence,” Proc. SPIE 5553, 290–300 (2004).
    [Crossref]
  8. P. Polynkin, A. Peleg, L. Klein, and T. Rhoadarmer, “Optimized multiemitter beams for free-space optical communications through turbulent atmosphere,” Opt. Lett. 32, 885–887 (2007).
    [Crossref] [PubMed]
  9. Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. I. Erkmen, N. Chandrasekaram, M. P. J. Lavery, N. K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. J. Padgett, R. W. Boyd, J. A. Shapiro, and A. E. Willner, “Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing,” Opt. Lett. 38, 4062–4065 (2013).
    [Crossref] [PubMed]
  10. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997).
    [Crossref] [PubMed]
  11. M. A. A. Neil, M. J. Booth, and T. Wilson, “Dynamic wave-front generation for the characterization and testing of optical systems,” Opt. Lett. 23, 1849–1851 (1998).
    [Crossref]
  12. M. A. A. Neil, F. Massoumian, R. Juškaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett. 27, 1929–1931 (2002).
    [Crossref]
  13. C. Paterson, I. Munro, and J. C. Dainty, “A low cost adaptive optics system using a membrane mirror,” Opt. Express 6, 175–185 (2000).
    [Crossref] [PubMed]
  14. L. Hu, L. Xuan, Z. Cao, Q. Mu, D. Li, and Y. Liu, “A liquid crystal atmospheric turbulence simulator,” Opt. Express 14, 11911–11918 (2006).
    [Crossref] [PubMed]
  15. L. Jolissaint, “Optical turbulence generators for testing astronomical adaptive optics systems: A review and designer guide,” PASP 118, 1205–1224 (2006).
    [Crossref]
  16. C. C. Wilcox, J. R. Andrews, S. R. Restaino, T. Martinez, and S. W. Teare, “Atmospheric turbulence generator using a liquid crystal spatial light modulator,” in “2007 IEEE Aerospace Conference,” (2007), pp. 1–8.
  17. L. Hu, L. Xuan, D. Li, Z. Cao, Q. Mu, Y. Liu, Z. Peng, and X. Lu, “Real-time liquid-crystal atmosphere turbulence simulator with graphic processing unit,” Opt. Express 17, 7259–7268 (2009).
    [Crossref] [PubMed]
  18. K. Murphy, D. Burke, N. Devaney, and C. Dainty, “Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor,” Opt. Express 18, 15448–15460 (2010).
    [Crossref] [PubMed]
  19. B. Rodenburg, M. P. J. Lavery, M. Malik, M. N. O’Sullivan, M. Mirhosseini, D. J. Robertson, M. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on states of light carrying orbital angular momentum,” Opt. Lett. 37, 3735–3737 (2012).
    [Crossref] [PubMed]
  20. T. L. Kelly, D. F. Buscher, P. Clark, C. Dunlop, G. Love, R. M. Myers, R. Sharples, and A. Zadrozny, “Dual-conjugate wavefront generation for adaptive optics,” Opt. Express 7, 368–374 (2000).
    [Crossref] [PubMed]
  21. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
    [Crossref] [PubMed]
  22. J. A. Rodrigo, T. Alieva, A. Cámara, Ó. Martínez-Matos, P. Cheben, and M. L. Calvo, “Characterization of holographically generated beams via phase retrieval based on Wigner distribution projections,” Opt. Express 19, 6064–6077 (2011).
    [Crossref] [PubMed]
  23. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A 24, 3500–3507 (2007).
    [Crossref]
  24. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Optics Communications 164, 233–245 (1999).
    [Crossref]
  25. A. Belmonte, “Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance,” Appl. Opt. 39, 5426–5445 (2000).
    [Crossref]
  26. W. M. Hughes and R. B. Holmes, “Pupil-plane imager for scintillometry over long horizontal paths,” Appl. Opt. 46, 7099–7109 (2007).
    [Crossref] [PubMed]
  27. E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372–383 (1994).
    [Crossref]
  28. J. Recolons and F. Dios, “Accurate calculation of phase screens for the modelling of laser beam propagation through atmospheric turbulence,” Proc. SPIE 5891, 1–12 (2005).

2014 (2)

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

B. Rodenburg, M. Mirhosseini, M. Malik, O. S. Magaña-Loaiza, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16, 033020 (2014).
[Crossref]

2013 (1)

2012 (2)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

B. Rodenburg, M. P. J. Lavery, M. Malik, M. N. O’Sullivan, M. Mirhosseini, D. J. Robertson, M. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on states of light carrying orbital angular momentum,” Opt. Lett. 37, 3735–3737 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2009 (1)

2007 (3)

2006 (2)

L. Hu, L. Xuan, Z. Cao, Q. Mu, D. Li, and Y. Liu, “A liquid crystal atmospheric turbulence simulator,” Opt. Express 14, 11911–11918 (2006).
[Crossref] [PubMed]

L. Jolissaint, “Optical turbulence generators for testing astronomical adaptive optics systems: A review and designer guide,” PASP 118, 1205–1224 (2006).
[Crossref]

2005 (1)

J. Recolons and F. Dios, “Accurate calculation of phase screens for the modelling of laser beam propagation through atmospheric turbulence,” Proc. SPIE 5891, 1–12 (2005).

2004 (2)

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[Crossref] [PubMed]

S. V. Mantravadi, T. A. Rhoadarmer, and R. S. Glas, “Simple laboratory system for generating well-controlled atmospheric-like turbulence,” Proc. SPIE 5553, 290–300 (2004).
[Crossref]

2002 (2)

2000 (3)

1999 (1)

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Optics Communications 164, 233–245 (1999).
[Crossref]

1998 (1)

1997 (1)

1994 (1)

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372–383 (1994).
[Crossref]

Ahmed, N.

Alieva, T.

Andrews, J. R.

C. C. Wilcox, J. R. Andrews, S. R. Restaino, T. Martinez, and S. W. Teare, “Atmospheric turbulence generator using a liquid crystal spatial light modulator,” in “2007 IEEE Aerospace Conference,” (2007), pp. 1–8.

Andrews, L. C.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Press, 2005).
[Crossref]

Arrizón, V.

Barnett, S.

Belmonte, A.

Bernardo, L. M.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Optics Communications 164, 233–245 (1999).
[Crossref]

Booth, M. J.

Boyd, R. W.

Burke, D.

Buscher, D. F.

Calvo, M. L.

Cámara, A.

Cao, Z.

Carrada, R.

Chandrasekaram, N.

Cheben, P.

Clark, P.

Courtial, J.

Dainty, C.

Dainty, J. C.

Devaney, N.

Dios, F.

J. Recolons and F. Dios, “Accurate calculation of phase screens for the modelling of laser beam propagation through atmospheric turbulence,” Proc. SPIE 5891, 1–12 (2005).

Dolinar, S.

Dunlop, C.

Erkmen, B. I.

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

Ferreira, C.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Optics Communications 164, 233–245 (1999).
[Crossref]

Fickler, R.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Fink, M.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Franke-Arnold, S.

Garcia, J.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Optics Communications 164, 233–245 (1999).
[Crossref]

Gavel, D. T.

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372–383 (1994).
[Crossref]

Gbur, G.

Gibson, G.

Glas, R. S.

S. V. Mantravadi, T. A. Rhoadarmer, and R. S. Glas, “Simple laboratory system for generating well-controlled atmospheric-like turbulence,” Proc. SPIE 5553, 290–300 (2004).
[Crossref]

González, L. A.

Handsteiner, J.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Holmes, R. B.

Hu, L.

Huang, H.

Hughes, W. M.

Johansson, E. M.

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372–383 (1994).
[Crossref]

Jolissaint, L.

L. Jolissaint, “Optical turbulence generators for testing astronomical adaptive optics systems: A review and designer guide,” PASP 118, 1205–1224 (2006).
[Crossref]

Juškaitis, R.

Kelly, T. L.

Klein, L.

Krenn, M.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Lavery, M. P. J.

Li, D.

Liu, Y.

Love, G.

Love, G. D.

Lu, X.

Magaña-Loaiza, O. S.

B. Rodenburg, M. Mirhosseini, M. Malik, O. S. Magaña-Loaiza, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16, 033020 (2014).
[Crossref]

Maher, L.

B. Rodenburg, M. Mirhosseini, M. Malik, O. S. Magaña-Loaiza, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16, 033020 (2014).
[Crossref]

Malik, M.

B. Rodenburg, M. Mirhosseini, M. Malik, O. S. Magaña-Loaiza, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16, 033020 (2014).
[Crossref]

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

B. Rodenburg, M. P. J. Lavery, M. Malik, M. N. O’Sullivan, M. Mirhosseini, D. J. Robertson, M. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on states of light carrying orbital angular momentum,” Opt. Lett. 37, 3735–3737 (2012).
[Crossref] [PubMed]

Mantravadi, S. V.

S. V. Mantravadi, T. A. Rhoadarmer, and R. S. Glas, “Simple laboratory system for generating well-controlled atmospheric-like turbulence,” Proc. SPIE 5553, 290–300 (2004).
[Crossref]

Marinho, F.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Optics Communications 164, 233–245 (1999).
[Crossref]

Martinez, T.

C. C. Wilcox, J. R. Andrews, S. R. Restaino, T. Martinez, and S. W. Teare, “Atmospheric turbulence generator using a liquid crystal spatial light modulator,” in “2007 IEEE Aerospace Conference,” (2007), pp. 1–8.

Martínez-Matos, Ó.

Mas, D.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Optics Communications 164, 233–245 (1999).
[Crossref]

Massoumian, F.

Mirhosseini, M.

B. Rodenburg, M. Mirhosseini, M. Malik, O. S. Magaña-Loaiza, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16, 033020 (2014).
[Crossref]

B. Rodenburg, M. P. J. Lavery, M. Malik, M. N. O’Sullivan, M. Mirhosseini, D. J. Robertson, M. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on states of light carrying orbital angular momentum,” Opt. Lett. 37, 3735–3737 (2012).
[Crossref] [PubMed]

Mu, Q.

Munro, I.

Murphy, K.

Myers, R. M.

Neifeld, M.

Neil, M. A. A.

O’Sullivan, M. N.

Padgett, M.

Padgett, M. J.

Pas’ko, V.

Paterson, C.

Peleg, A.

Peng, Z.

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Press, 2005).
[Crossref]

Polynkin, P.

Recolons, J.

J. Recolons and F. Dios, “Accurate calculation of phase screens for the modelling of laser beam propagation through atmospheric turbulence,” Proc. SPIE 5891, 1–12 (2005).

Ren, Y.

Restaino, S. R.

C. C. Wilcox, J. R. Andrews, S. R. Restaino, T. Martinez, and S. W. Teare, “Atmospheric turbulence generator using a liquid crystal spatial light modulator,” in “2007 IEEE Aerospace Conference,” (2007), pp. 1–8.

Rhoadarmer, T.

Rhoadarmer, T. A.

S. V. Mantravadi, T. A. Rhoadarmer, and R. S. Glas, “Simple laboratory system for generating well-controlled atmospheric-like turbulence,” Proc. SPIE 5553, 290–300 (2004).
[Crossref]

Robertson, D. J.

Rodenburg, B.

B. Rodenburg, M. Mirhosseini, M. Malik, O. S. Magaña-Loaiza, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16, 033020 (2014).
[Crossref]

B. Rodenburg, M. P. J. Lavery, M. Malik, M. N. O’Sullivan, M. Mirhosseini, D. J. Robertson, M. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on states of light carrying orbital angular momentum,” Opt. Lett. 37, 3735–3737 (2012).
[Crossref] [PubMed]

Rodrigo, J. A.

Ruiz, U.

Scheidl, T.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Schmidt, J. D.

J. D. Schmidt, Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE Press, 2010) Chap. 9, pp. 149–184.

Shapiro, J. A.

Sharples, R.

Steinhoff, N. K.

B. Rodenburg, M. Mirhosseini, M. Malik, O. S. Magaña-Loaiza, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16, 033020 (2014).
[Crossref]

Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. I. Erkmen, N. Chandrasekaram, M. P. J. Lavery, N. K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. J. Padgett, R. W. Boyd, J. A. Shapiro, and A. E. Willner, “Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing,” Opt. Lett. 38, 4062–4065 (2013).
[Crossref] [PubMed]

Teare, S. W.

C. C. Wilcox, J. R. Andrews, S. R. Restaino, T. Martinez, and S. W. Teare, “Atmospheric turbulence generator using a liquid crystal spatial light modulator,” in “2007 IEEE Aerospace Conference,” (2007), pp. 1–8.

Tur, M.

Tyler, G. A.

B. Rodenburg, M. Mirhosseini, M. Malik, O. S. Magaña-Loaiza, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16, 033020 (2014).
[Crossref]

Ursin, R.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Vasnetsov, M.

Wang, J.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

Wilcox, C. C.

C. C. Wilcox, J. R. Andrews, S. R. Restaino, T. Martinez, and S. W. Teare, “Atmospheric turbulence generator using a liquid crystal spatial light modulator,” in “2007 IEEE Aerospace Conference,” (2007), pp. 1–8.

Willner, A. E.

Wilson, T.

Wolf, E.

Xie, G.

Xuan, L.

Yan, Y.

Yanakas, M.

B. Rodenburg, M. Mirhosseini, M. Malik, O. S. Magaña-Loaiza, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16, 033020 (2014).
[Crossref]

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

Yue, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

Zadrozny, A.

Zeilinger, A.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Appl. Opt. (3)

J. Opt. Soc. Am. A (2)

Nat. Photon. (1)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6, 488–496 (2012).
[Crossref]

New J. Phys. (2)

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

B. Rodenburg, M. Mirhosseini, M. Malik, O. S. Magaña-Loaiza, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating thick atmospheric turbulence in the lab with application to orbital angular momentum communication,” New J. Phys. 16, 033020 (2014).
[Crossref]

Opt. Express (7)

Opt. Lett. (5)

Optics Communications (1)

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Optics Communications 164, 233–245 (1999).
[Crossref]

PASP (1)

L. Jolissaint, “Optical turbulence generators for testing astronomical adaptive optics systems: A review and designer guide,” PASP 118, 1205–1224 (2006).
[Crossref]

Proc. SPIE (3)

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372–383 (1994).
[Crossref]

J. Recolons and F. Dios, “Accurate calculation of phase screens for the modelling of laser beam propagation through atmospheric turbulence,” Proc. SPIE 5891, 1–12 (2005).

S. V. Mantravadi, T. A. Rhoadarmer, and R. S. Glas, “Simple laboratory system for generating well-controlled atmospheric-like turbulence,” Proc. SPIE 5553, 290–300 (2004).
[Crossref]

Other (3)

C. C. Wilcox, J. R. Andrews, S. R. Restaino, T. Martinez, and S. W. Teare, “Atmospheric turbulence generator using a liquid crystal spatial light modulator,” in “2007 IEEE Aerospace Conference,” (2007), pp. 1–8.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Press, 2005).
[Crossref]

J. D. Schmidt, Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE Press, 2010) Chap. 9, pp. 149–184.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Real-life optical communication channel of length L in turbulent atmosphere. W0 and W are input and output beam radius, correspondingly; (b) Discretized model of the optical communication channel presented in a) using thin random phase screens PS1 and PS2; (c) Laboratory setup for simulation of the optical communication channel comprising three SLMs for displaying an input beam and digital lens ℒ0 (SLM0), scaled random phase screen PS1 and digital lens ℒ1 (SLM1), scaled random phase screen PS2 and digital lens ℒ2 (SLM2).
Fig. 2
Fig. 2 Beam profiles and scintillation index for L = 2.5 km and no turbulence condition: C n 2 = 0. (a) Input beam profile, (b) Output beam profile, (c) Scintillation index versus normalized transverse coordinate. Theoretical (red), fitting (blue) and experimental (blue circles) curves.
Fig. 3
Fig. 3 Comparison between simulated (black), experimental (blue) and theoretical (red) average amplitude profiles and scintillation index for the FSOC system of length L = 2.5 km and different turbulent strength: (a) C n 2 = 1 × 10 16 m 2 / 3, (b) C n 2 = 2 × 10 16 m 2 / 3, (c) C n 2 = 5 × 10 16 m 2 / 3. The discontinuous lines indicate the position of the r = W and the associated beam amplitude value. In the first column the simulated (black), and theoretical (red) average amplitude beam profiles at the receiver plane are presented. In the second column the experimental (blue) and theoretical (red) average amplitude beam profiles at the receiver plane are presented. In the third column the SI distribution along the normalized beam transverse coordinate is displayed.
Fig. 4
Fig. 4 Comparison between simulated (black), experimental (blue) and theoretical (red) average amplitude profiles and scintillation index for the FSOC system of length L = 4 km and different turbulent strength: (a) C n 2 = 1 × 10 16 m 2 / 3, (b) C n 2 = 2 × 10 16 m 2 / 3. The discontinuous lines indicate the position of the r = W and the associated beam amplitude value. In the first column the simulated (black), and theoretical (red) average amplitude beam profiles at the receiver plane are presented. In the second column the experimental (blue) and theoretical (red) average amplitude beam profiles at the receiver plane are presented. In the third column the SI distribution along the normalized beam transverse coordinate is displayed.
Fig. 5
Fig. 5 Beam intensity distributions of Gaussian beam (a) and LG beam with radial and azimuthal index p = 0, l = 3 (b) after propagation through the simulator for the following FSOC conditions: L = 2.5 km and C n 2 = 5 × 10 16 m 2 / 3. Average intensity distributions of 100 realizations are shown in the first column. The rest of the columns correspond to beam intensity distributions for the individual turbulence atmosphere realizations.
Fig. 6
Fig. 6 Comparison between simulated (black) and experimental (blue) average amplitude profiles (a) and scintillation index (b) of a LG beam with radial and azimuthal indices p = 0, l = 3 after propagation through the turbulent atmosphere simulator (L = 2.5km, C n 2 = 5 × 10 16 m 2 / 3). The discontinuous lines in (a) indicate the position of the r = W LG = W 1 + l for the simulated profile.

Tables (1)

Tables Icon

Table 1 Setup parameters and atmosphere turbulent conditions in the experiments

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Φ ( κ ) = 0.023 r 0 5 / 3 ( κ 2 + κ 0 2 ) 11 / 6 exp ( κ 2 / κ m 2 ) ,
σ I 2 = I 2 I 2 1 ,
r 0 5 / 3 = r 01 5 / 3 + r 02 5 / 3 , 5.32 1 σ R 2 k 5 / 6 = r 01 5 / 3 ( L L 1 ) 5 / 6 + r 02 5 / 3 ( L L 2 ) 5 / 6 ,
r 01 5 / 3 = r 0 5 / 3 0.5467 L 5 / 6 z 3 5 / 6 ( z 2 + z 3 ) 5 / 6 z 3 5 / 6 ,
r 02 5 / 3 = r 0 5 / 3 ( z 2 + z 3 ) 5 / 6 0.5467 L 5 / 6 ( z 2 + z 3 ) 5 / 6 z 3 5 / 6 .
z 3 < 0.4845 L < z 2 + z 3 .
[ 1 z 0 1 ] = [ α o u t 1 0 0 α o u t ] [ 1 0 f o u t 1 1 ] [ 1 z 0 1 ] [ 1 0 f i n 1 1 ] [ α i n 0 0 α i n 1 ] ,
α i n α o u t ( 1 z f i n ) = α o u t α i n ( 1 z f o u t ) = 1 ,
z = z α i n α o u t = f i n + f o u t .
f 0 = z 1 α 0 / ( α 0 α 1 ) , f 1 = z 1 z 2 α 1 / [ z 1 ( α 1 α 2 ) + z 2 ( α 1 α 0 ) ] , f 2 = z 2 z 3 α 2 / [ z 2 ( α 2 α 3 ) + z 3 ( α 2 α 1 ) ] , α 1 = z 1 / ( α 0 z 1 ) , α 2 = z 1 z 2 α 0 / ( z 1 z 2 ) , α 3 = z 1 z 2 z 3 / ( α 0 z 1 z 2 z 3 ) ,
f 0 = z 1 α 0 2 / ( α 0 2 γ ) , f 1 = z 1 z 2 γ / [ ( z 1 + z 2 ) ( α 0 2 γ ) ] , f 2 = z 2 z 3 α 0 2 / [ ( z 2 + z 3 ) ( α 0 2 γ ) ] .
f 0 = 2 f 1 α 0 2 γ = 2 f 2 = z α 0 2 α 0 2 γ .
E = E 0 exp ( r 2 W 0 2 ) exp ( i π r 2 λ F 0 ) .
σ I 2 ( r , L ) = 3.93 σ R 2 Λ 5 / 6 [ ( Λ Q m 1 + 0.52 Λ Q m ) 1 / 6 1.29 ( Λ Q 0 ) 1 / 6 ] r 2 W 2 + 3.86 σ R 2 { 0.4 [ ( 1 + 2 Θ ) 2 + ( 2 Λ + 3 / Q m ) 2 ] 11 / 12 [ ( 1 + 2 Θ ) 2 + 4 Λ 2 ] 1 / 2 sin ( 11 6 φ 1 + φ 2 ) 6 Λ Q m 11 / 6 [ ( 1 + 2 Θ ) 2 + 4 Λ 2 ] 11 6 ( 1 + 0.31 Λ Q m Q m ) 5 / 6 } ,
φ 1 = arctan [ ( 1 + 2 Θ ) Q m 3 + 2 Λ Q m ] , φ 2 = arctan [ 2 Λ 1 + 2 Θ ] ,
W = W d 1 + 1.33 σ R 2 Λ 5 / 6 ,

Metrics