Abstract

We propose and demonstrate a high speed and high power polarization insensitive germanium photodetector (Ge PD) with lumped structure based on related parallel Ge absorption regions. Two absorption regions are double sides illuminated to optimize the space charge density and the two dimensional (2D) grating coupler is adopted for both coupling and polarization independent operation. Being different from previous reported high power scheme with separate absorption areas, the proposed structure is specifically designed with doubled but related Ge absorption regions, forming the equivalent parallel resistor and thus the parasitic parameter can be engineered to ensure a simultaneous large bandwidth. The bandwidth is measured to be >35 GHz, while the maximum current density is measured to be 1.152 mA/μm3. The dark current and the responsivity of the proposed Ge PD are measured to be 1.82 μΑ and 1.06 A/W. Modulated signals experimentally validate the high speed operation and doubled power handling capacity for the proposed scheme. Furthermore, the bit error rate results show the superior performance for the proposed Ge PD at high photocurrent.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power dual-fed traveling wave photodetector circuits in silicon photonics

Chia-Ming Chang, Jeffrey H. Sinsky, Po Dong, Guilhem de Valicourt, and Young-Kai Chen
Opt. Express 23(17) 22857-22866 (2015)

Responsivity optimization of a high-speed germanium-on-silicon photodetector

Monireh Moayedi Pour Fard, Glenn Cowan, and Odile Liboiron-Ladouceur
Opt. Express 24(24) 27738-27752 (2016)

Integrated high-power germanium photodetectors assisted by light field manipulation

Yan Zuo, Yu Yu, Yu Zhang, De Zhou, and Xinliang Zhang
Opt. Lett. 44(13) 3338-3341 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
    [Crossref]
  2. V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Longhaul analog photonics,” J. Lightwave Technol. 29(8), 1182–1205 (2011).
    [Crossref]
  3. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
    [Crossref]
  4. T. Ishibashi and N. Shimizu, “Uni-traveling-carrier photodiodes,” in Ultrafast Electron. Optoelectron. ’97 Conf.,Incline Village, NV (1997).
  5. M. Piels and J. E. Bowers, “40 GHz Si/Ge uni-traveling carrier waveguide photodiode,” J. Lightwave Technol. 32(20), 3502–3508 (2014).
    [Crossref]
  6. X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs–InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett. 19(16), 1272–1274 (2007).
    [Crossref]
  7. E. Rouvalis, F. N. Baynes, X. Xie, K. Li, Q. Zhou, F. Quinlan, T. M. Fortier, S. A. Diddams, A. G. Steffan, A. Beling, and J. C. Campbell, “High-power and high-linearity photodetector modules for microwave photonic applications,” J. Lightwave Technol. 32(20), 3810–3816 (2014).
    [Crossref]
  8. X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. Campbell, and A. Beling, “Heterogeneously integrated waveguide-coupled photodiodes on SOI with 12 dBm output power at 40 GHz,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (OSA, 2015), paper Th5B.7.
    [Crossref]
  9. A. Beling, H. Chen, H. Pan, and J. C. Campbell, “High-power monolithically integrated traveling wave photodiode array,” IEEE Photonics Technol. Lett. 21(24), 1813–1815 (2009).
    [Crossref]
  10. N.-N. Feng, P. Dong, D. Zheng, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides,” Opt. Express 18(1), 96–101 (2010).
    [Crossref] [PubMed]
  11. J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
    [Crossref]
  12. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19(25), 24897–24904 (2011).
    [Crossref] [PubMed]
  13. S. Liao, N.-N. Feng, D. Feng, P. Dong, R. Shafiiha, C.-C. Kung, H. Liang, W. Qian, Y. Liu, J. Fong, J. E. Cunningham, Y. Luo, and M. Asghari, “36 GHz submicron silicon waveguide germanium photodetector,” Opt. Express 19(11), 10967–10972 (2011).
    [Crossref] [PubMed]
  14. G. Li, Y. Luo, X. Zheng, G. Masini, A. Mekis, S. Sahni, H. Thacker, J. Yao, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Improving CMOS-compatible Germanium photodetectors,” Opt. Express 20(24), 26345–26350 (2012).
    [Crossref] [PubMed]
  15. A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21(23), 28387–28393 (2013).
    [Crossref] [PubMed]
  16. L. Virot, L. Vivien, J.-M. Fédéli, Y. Bogumilowicz, J.-M. Hartmann, F. Bœuf, P. Crozat, D. Marris-Morini, and E. Cassan, “High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited],” Photon.Res. 1(3), 140–147 (2013).
    [Crossref]
  17. G. Chen, Y. Yu, S. Deng, L. Liu, and X. Zhang, “Bandwidth improvement for germanium photodetector using wire bonding technology,” Opt. Express 23(20), 25700–25706 (2015).
    [Crossref] [PubMed]
  18. H. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, W. Yao, L. Shen, G. Roelkens, and J. Van Campenhout, “-1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond,” Opt. Express 24(5), 4622–4631 (2016).
    [Crossref]
  19. K. J. Williams and R. D. Esman, “Design considerations for high-current photodetectors,” J. Lightwave Technol. 17(8), 1443–1454 (1999).
    [Crossref]
  20. M. Dentan and B. de Cremoux, “Numerical simulation of the nonlinear response of a p-i-n photodiode under high illumination,” J. Lightwave Technol. 8(8), 1137–1144 (1990).
    [Crossref]
  21. H. F. Taylor, O. Eknoyan, C. S. Park, K. N. Choi, and K. Chang, “Traveling wave photodetectors,” Proc. SPIE 1217, 59–63 (1990).
    [Crossref]
  22. A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power silicon-germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech. 58(11), 3336–3343 (2010).
    [Crossref]
  23. X. Luo, J. Song, X. Tu, Q. Fang, L. Jia, Y. Huang, T.-Y. Liow, M. Yu, and G.-Q. Lo, “Silicon-based traveling-wave photodetector array (Si-TWPDA) with parallel optical feeding,” Opt. Express 22(17), 20020–20026 (2014).
    [Crossref] [PubMed]
  24. C.-M. Chang, J. H. Sinsky, P. Dong, G. de Valicourt, and Y.-K. Chen, “High-power dual-fed traveling wave photodetector circuits in silicon photonics,” Opt. Express 23(17), 22857–22866 (2015).
    [Crossref] [PubMed]
  25. K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Travelling-Wave Photodetector Design and Measurements,” IEEE J. Sel. Top. Quantum Electron. 2(3), 622–629 (1996).
    [Crossref]
  26. M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
    [Crossref]
  27. K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol. 14(1), 84–96 (1996).
    [Crossref]
  28. M. Piels, A. Ramaswamy, and J. E. Bowers, “Nonlinear modeling of waveguide photodetectors,” Opt. Express 21(13), 15634–15644 (2013).
    [Crossref] [PubMed]
  29. J. Song, A. L. Eu-Jin, X. Luo, Y. Huang, X. Tu, L. Jia, Q. Fang, T. Y. Liow, M. Yu, and G. Q. Lo, “Microring resonator photodetector for enhancement in L-band performance,” Opt. Express 22(22), 26976–26984 (2014).
    [Crossref] [PubMed]

2016 (1)

2015 (2)

2014 (4)

2013 (4)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

M. Piels, A. Ramaswamy, and J. E. Bowers, “Nonlinear modeling of waveguide photodetectors,” Opt. Express 21(13), 15634–15644 (2013).
[Crossref] [PubMed]

A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21(23), 28387–28393 (2013).
[Crossref] [PubMed]

L. Virot, L. Vivien, J.-M. Fédéli, Y. Bogumilowicz, J.-M. Hartmann, F. Bœuf, P. Crozat, D. Marris-Morini, and E. Cassan, “High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited],” Photon.Res. 1(3), 140–147 (2013).
[Crossref]

2012 (1)

2011 (3)

2010 (3)

N.-N. Feng, P. Dong, D. Zheng, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides,” Opt. Express 18(1), 96–101 (2010).
[Crossref] [PubMed]

J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power silicon-germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech. 58(11), 3336–3343 (2010).
[Crossref]

2009 (1)

A. Beling, H. Chen, H. Pan, and J. C. Campbell, “High-power monolithically integrated traveling wave photodiode array,” IEEE Photonics Technol. Lett. 21(24), 1813–1815 (2009).
[Crossref]

2008 (1)

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[Crossref]

2007 (1)

X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs–InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

2002 (1)

A. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
[Crossref]

1999 (1)

1996 (2)

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol. 14(1), 84–96 (1996).
[Crossref]

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Travelling-Wave Photodetector Design and Measurements,” IEEE J. Sel. Top. Quantum Electron. 2(3), 622–629 (1996).
[Crossref]

1990 (2)

M. Dentan and B. de Cremoux, “Numerical simulation of the nonlinear response of a p-i-n photodiode under high illumination,” J. Lightwave Technol. 8(8), 1137–1144 (1990).
[Crossref]

H. F. Taylor, O. Eknoyan, C. S. Park, K. N. Choi, and K. Chang, “Traveling wave photodetectors,” Proc. SPIE 1217, 59–63 (1990).
[Crossref]

Absil, P.

Asghari, M.

Baehr-Jones, T.

Balakrishnan, S.

Baynes, F. N.

Beling, A.

Bœuf, F.

L. Virot, L. Vivien, J.-M. Fédéli, Y. Bogumilowicz, J.-M. Hartmann, F. Bœuf, P. Crozat, D. Marris-Morini, and E. Cassan, “High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited],” Photon.Res. 1(3), 140–147 (2013).
[Crossref]

Bogumilowicz, Y.

L. Virot, L. Vivien, J.-M. Fédéli, Y. Bogumilowicz, J.-M. Hartmann, F. Bœuf, P. Crozat, D. Marris-Morini, and E. Cassan, “High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited],” Photon.Res. 1(3), 140–147 (2013).
[Crossref]

Bowers, J. E.

M. Piels and J. E. Bowers, “40 GHz Si/Ge uni-traveling carrier waveguide photodiode,” J. Lightwave Technol. 32(20), 3502–3508 (2014).
[Crossref]

M. Piels, A. Ramaswamy, and J. E. Bowers, “Nonlinear modeling of waveguide photodetectors,” Opt. Express 21(13), 15634–15644 (2013).
[Crossref] [PubMed]

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power silicon-germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech. 58(11), 3336–3343 (2010).
[Crossref]

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Travelling-Wave Photodetector Design and Measurements,” IEEE J. Sel. Top. Quantum Electron. 2(3), 622–629 (1996).
[Crossref]

Bucholtz, F.

Campbell, J.

X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs–InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

Campbell, J. C.

Campillo, A. L.

Capellini, G.

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Cassan, E.

L. Virot, L. Vivien, J.-M. Fédéli, Y. Bogumilowicz, J.-M. Hartmann, F. Bœuf, P. Crozat, D. Marris-Morini, and E. Cassan, “High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited],” Photon.Res. 1(3), 140–147 (2013).
[Crossref]

Chang, C.-M.

Chang, K.

H. F. Taylor, O. Eknoyan, C. S. Park, K. N. Choi, and K. Chang, “Traveling wave photodetectors,” Proc. SPIE 1217, 59–63 (1990).
[Crossref]

Chen, G.

Chen, H.

H. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, W. Yao, L. Shen, G. Roelkens, and J. Van Campenhout, “-1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond,” Opt. Express 24(5), 4622–4631 (2016).
[Crossref]

A. Beling, H. Chen, H. Pan, and J. C. Campbell, “High-power monolithically integrated traveling wave photodiode array,” IEEE Photonics Technol. Lett. 21(24), 1813–1815 (2009).
[Crossref]

X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs–InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

Chen, Y.-K.

Choi, K. N.

H. F. Taylor, O. Eknoyan, C. S. Park, K. N. Choi, and K. Chang, “Traveling wave photodetectors,” Proc. SPIE 1217, 59–63 (1990).
[Crossref]

Choi, W.-Y.

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[Crossref]

Crozat, P.

L. Virot, L. Vivien, J.-M. Fédéli, Y. Bogumilowicz, J.-M. Hartmann, F. Bœuf, P. Crozat, D. Marris-Morini, and E. Cassan, “High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited],” Photon.Res. 1(3), 140–147 (2013).
[Crossref]

Cunningham, J. E.

Dagenais, M.

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol. 14(1), 84–96 (1996).
[Crossref]

Davids, P. S.

De Coster, J.

de Cremoux, B.

M. Dentan and B. de Cremoux, “Numerical simulation of the nonlinear response of a p-i-n photodiode under high illumination,” J. Lightwave Technol. 8(8), 1137–1144 (1990).
[Crossref]

De Heyn, P.

de Valicourt, G.

Deng, S.

Dentan, M.

M. Dentan and B. de Cremoux, “Numerical simulation of the nonlinear response of a p-i-n photodiode under high illumination,” J. Lightwave Technol. 8(8), 1137–1144 (1990).
[Crossref]

DeRose, C. T.

Devgan, P. S.

Dexter, J. L.

Diddams, S. A.

Dong, P.

Duan, N.

X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs–InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

Eknoyan, O.

H. F. Taylor, O. Eknoyan, C. S. Park, K. N. Choi, and K. Chang, “Traveling wave photodetectors,” Proc. SPIE 1217, 59–63 (1990).
[Crossref]

Esman, R. D.

K. J. Williams and R. D. Esman, “Design considerations for high-current photodetectors,” J. Lightwave Technol. 17(8), 1443–1454 (1999).
[Crossref]

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol. 14(1), 84–96 (1996).
[Crossref]

Eu-Jin, A. L.

Fang, Q.

Fédéli, J.-M.

L. Virot, L. Vivien, J.-M. Fédéli, Y. Bogumilowicz, J.-M. Hartmann, F. Bœuf, P. Crozat, D. Marris-Morini, and E. Cassan, “High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited],” Photon.Res. 1(3), 140–147 (2013).
[Crossref]

Feng, D.

Feng, N.-N.

Fisher, M.

Fong, J.

Fortier, T. M.

Giboney, K. S.

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Travelling-Wave Photodetector Design and Measurements,” IEEE J. Sel. Top. Quantum Electron. 2(3), 622–629 (1996).
[Crossref]

Gould, M.

Hartmann, J.-M.

L. Virot, L. Vivien, J.-M. Fédéli, Y. Bogumilowicz, J.-M. Hartmann, F. Bœuf, P. Crozat, D. Marris-Morini, and E. Cassan, “High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited],” Photon.Res. 1(3), 140–147 (2013).
[Crossref]

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Hochberg, M.

Huang, Y.

Jia, L.

Kang, H.-S.

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[Crossref]

Kimerling, L. C.

J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Krishnamoorthy, A. V.

Kung, C.-C.

Lee, M.-J.

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[Crossref]

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Lepage, G.

Li, G.

Li, K.

Liang, H.

Liao, S.

Lim, A. E.

Liow, T. Y.

Liow, T.-Y.

Liu, J. F.

J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Liu, L.

Liu, Y.

Lo, G. Q.

Lo, G.-Q.

Luo, X.

Luo, Y.

Marpaung, D.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Marris-Morini, D.

L. Virot, L. Vivien, J.-M. Fédéli, Y. Bogumilowicz, J.-M. Hartmann, F. Bœuf, P. Crozat, D. Marris-Morini, and E. Cassan, “High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited],” Photon.Res. 1(3), 140–147 (2013).
[Crossref]

Masini, G.

McKinney, J. D.

Mekis, A.

Michel, J.

J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Novack, A.

Nunoya, N.

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power silicon-germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech. 58(11), 3336–3343 (2010).
[Crossref]

Pan, H.

A. Beling, H. Chen, H. Pan, and J. C. Campbell, “High-power monolithically integrated traveling wave photodiode array,” IEEE Photonics Technol. Lett. 21(24), 1813–1815 (2009).
[Crossref]

Park, C. S.

H. F. Taylor, O. Eknoyan, C. S. Park, K. N. Choi, and K. Chang, “Traveling wave photodetectors,” Proc. SPIE 1217, 59–63 (1990).
[Crossref]

Piels, M.

Qian, W.

Quinlan, F.

Raj, K.

Ramaswamy, A.

M. Piels, A. Ramaswamy, and J. E. Bowers, “Nonlinear modeling of waveguide photodetectors,” Opt. Express 21(13), 15634–15644 (2013).
[Crossref] [PubMed]

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power silicon-germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech. 58(11), 3336–3343 (2010).
[Crossref]

Rodwell, M. J. W.

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Travelling-Wave Photodetector Design and Measurements,” IEEE J. Sel. Top. Quantum Electron. 2(3), 622–629 (1996).
[Crossref]

Roelkens, G.

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Rouvalis, E.

Sahni, S.

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Seeds, A.

A. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
[Crossref]

Shafiiha, R.

Shen, L.

Shubin, I.

Sinsky, J. H.

Song, J.

Starbuck, A. L.

Steffan, A. G.

Streshinsky, M.

Taylor, H. F.

H. F. Taylor, O. Eknoyan, C. S. Park, K. N. Choi, and K. Chang, “Traveling wave photodetectors,” Proc. SPIE 1217, 59–63 (1990).
[Crossref]

Thacker, H.

Trotter, D. C.

Tu, X.

Urick, V. J.

Van Campenhout, J.

Verheyen, P.

Virot, L.

L. Virot, L. Vivien, J.-M. Fédéli, Y. Bogumilowicz, J.-M. Hartmann, F. Bœuf, P. Crozat, D. Marris-Morini, and E. Cassan, “High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited],” Photon.Res. 1(3), 140–147 (2013).
[Crossref]

Vivien, L.

L. Virot, L. Vivien, J.-M. Fédéli, Y. Bogumilowicz, J.-M. Hartmann, F. Bœuf, P. Crozat, D. Marris-Morini, and E. Cassan, “High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited],” Photon.Res. 1(3), 140–147 (2013).
[Crossref]

Wang, X.

X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs–InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

Watts, M. R.

Williams, K. J.

Xie, X.

Xuan, Z.

Yang, Y.

Yao, J.

Yao, W.

Yin, T.

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power silicon-germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech. 58(11), 3336–3343 (2010).
[Crossref]

Yu, M.

Yu, Y.

Zhang, X.

Zheng, D.

Zheng, X.

Zhou, Q.

Zortman, W. A.

IEEE Electron Device Lett. (1)

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Travelling-Wave Photodetector Design and Measurements,” IEEE J. Sel. Top. Quantum Electron. 2(3), 622–629 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (1)

X. Wang, N. Duan, H. Chen, and J. Campbell, “InGaAs–InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett. 19(16), 1272–1274 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Beling, H. Chen, H. Pan, and J. C. Campbell, “High-power monolithically integrated traveling wave photodiode array,” IEEE Photonics Technol. Lett. 21(24), 1813–1815 (2009).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

A. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
[Crossref]

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power silicon-germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech. 58(11), 3336–3343 (2010).
[Crossref]

J. Lightwave Technol. (6)

Laser Photonics Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Nat. Photonics (1)

J. Michel, J. F. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Opt. Express (11)

S. Liao, N.-N. Feng, D. Feng, P. Dong, R. Shafiiha, C.-C. Kung, H. Liang, W. Qian, Y. Liu, J. Fong, J. E. Cunningham, Y. Luo, and M. Asghari, “36 GHz submicron silicon waveguide germanium photodetector,” Opt. Express 19(11), 10967–10972 (2011).
[Crossref] [PubMed]

C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19(25), 24897–24904 (2011).
[Crossref] [PubMed]

G. Li, Y. Luo, X. Zheng, G. Masini, A. Mekis, S. Sahni, H. Thacker, J. Yao, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Improving CMOS-compatible Germanium photodetectors,” Opt. Express 20(24), 26345–26350 (2012).
[Crossref] [PubMed]

M. Piels, A. Ramaswamy, and J. E. Bowers, “Nonlinear modeling of waveguide photodetectors,” Opt. Express 21(13), 15634–15644 (2013).
[Crossref] [PubMed]

A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Germanium photodetector with 60 GHz bandwidth using inductive gain peaking,” Opt. Express 21(23), 28387–28393 (2013).
[Crossref] [PubMed]

X. Luo, J. Song, X. Tu, Q. Fang, L. Jia, Y. Huang, T.-Y. Liow, M. Yu, and G.-Q. Lo, “Silicon-based traveling-wave photodetector array (Si-TWPDA) with parallel optical feeding,” Opt. Express 22(17), 20020–20026 (2014).
[Crossref] [PubMed]

N.-N. Feng, P. Dong, D. Zheng, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides,” Opt. Express 18(1), 96–101 (2010).
[Crossref] [PubMed]

J. Song, A. L. Eu-Jin, X. Luo, Y. Huang, X. Tu, L. Jia, Q. Fang, T. Y. Liow, M. Yu, and G. Q. Lo, “Microring resonator photodetector for enhancement in L-band performance,” Opt. Express 22(22), 26976–26984 (2014).
[Crossref] [PubMed]

C.-M. Chang, J. H. Sinsky, P. Dong, G. de Valicourt, and Y.-K. Chen, “High-power dual-fed traveling wave photodetector circuits in silicon photonics,” Opt. Express 23(17), 22857–22866 (2015).
[Crossref] [PubMed]

G. Chen, Y. Yu, S. Deng, L. Liu, and X. Zhang, “Bandwidth improvement for germanium photodetector using wire bonding technology,” Opt. Express 23(20), 25700–25706 (2015).
[Crossref] [PubMed]

H. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, W. Yao, L. Shen, G. Roelkens, and J. Van Campenhout, “-1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond,” Opt. Express 24(5), 4622–4631 (2016).
[Crossref]

Photon.Res. (1)

L. Virot, L. Vivien, J.-M. Fédéli, Y. Bogumilowicz, J.-M. Hartmann, F. Bœuf, P. Crozat, D. Marris-Morini, and E. Cassan, “High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited],” Photon.Res. 1(3), 140–147 (2013).
[Crossref]

Proc. SPIE (1)

H. F. Taylor, O. Eknoyan, C. S. Park, K. N. Choi, and K. Chang, “Traveling wave photodetectors,” Proc. SPIE 1217, 59–63 (1990).
[Crossref]

Other (2)

T. Ishibashi and N. Shimizu, “Uni-traveling-carrier photodiodes,” in Ultrafast Electron. Optoelectron. ’97 Conf.,Incline Village, NV (1997).

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, A. Ramaswamy, G. Fish, J. E. Bowers, J. Campbell, and A. Beling, “Heterogeneously integrated waveguide-coupled photodiodes on SOI with 12 dBm output power at 40 GHz,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (OSA, 2015), paper Th5B.7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic layout of the Ge PD for (a) type A, (b) type B and (c) type C (dimensions are not drawn to scale).
Fig. 2
Fig. 2 (a) The simulated Ge absorption rate vs. Ge length for single side illuminated case (the inserted figure is the 3D schematic diagram of Ge region). The simulated optical field distribution at the XY cross section of the Ge region for Ge PDs with single-side (b) and double-sides illumination (c). The simulated optical field distribution at the YZ cross section of the Ge region for Ge PDs with single-side (d) and double-sides illumination (e).
Fig. 3
Fig. 3 Equivalent circuit model of the (a) typical and (b) the new Ge PD; the simulated S21 for type A/B and type C.
Fig. 4
Fig. 4 (a) Cross section of the Ge PD; microscopic image of type A (b), type B (c) and type C (d).
Fig. 5
Fig. 5 (a) Dark current for three kinds of Ge PDs; (b) photocurrent as a function of input optical for three kinds of Ge PD under 3 V reverse biased voltage.
Fig. 6
Fig. 6 (a) The measured S21 for the three kinds of Ge PD when the reverse biased voltage is 3V and the photocurrent is 0.42 mA. (b) The measured S21 for the three kinds of Ge PD when the reverse biased voltage is 3V and the photocurrent is on different level.
Fig. 7
Fig. 7 The measured 10 Gb/s eye diagrams for the three kinds of Ge PDs under different photocurrent.
Fig. 8
Fig. 8 The measured 10 Gb/s BER as a function of different RF power for the three kinds of Ge PDs when the photocurrent is (a) 2 mA, (b) 8 mA, (c) 11 mA, (d) 13 mA.

Tables (2)

Tables Icon

Table 1 Fit Parameters Used in the Simulation

Tables Icon

Table 2 Comparison of the High Power Ge PD in Literature and our Work

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f RC = 1 2π(R pd +R load )(C pd +C load )
f RC = 1 2π( R pd 2 +R load )(2C pd +C load )

Metrics