Abstract

Single-shot, tomographic imaging of the three-dimensional concentration field is demonstrated in a turbulent gaseous free jet in co-flow using volumetrically illuminated laser-induced fluorescence. The fourth-harmonic output of an Nd:YAG laser at 266 nm is formed into a collimated 15 × 20 mm2 beam to excite the ground singlet state of acetone seeded into the central jet. Subsequent fluorescence is collected along eight lines of sight for tomographic reconstruction using a combination of stereoscopes optically coupled to four two-stage intensified CMOS cameras. The performance of the imaging system is evaluated and shown to be sufficient for recording instantaneous three-dimensional features with high signal-to-noise (130:1) and nominal spatial resolution of 0.6–1.5 mm at x/D = 7–15.5.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed, three-dimensional tomographic laser-induced incandescence imaging of soot volume fraction in turbulent flames

Terrence R. Meyer, Benjamin R. Halls, Naibo Jiang, Mikhail N. Slipchenko, Sukesh Roy, and James R. Gord
Opt. Express 24(26) 29547-29555 (2016)

kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator

Benjamin R. Halls, Paul S. Hsu, Naibo Jiang, Ethan S. Legge, Josef J. Felver, Mikhail N. Slipchenko, Sukesh Roy, Terrence R. Meyer, and James R. Gord
Optica 4(8) 897-902 (2017)

Single-shot volumetric laser induced fluorescence (VLIF) measurements in turbulent flows seeded with iodine

Yue Wu, Wenjiang Xu, Qingchun Lei, and Lin Ma
Opt. Express 23(26) 33408-33418 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Escoda and M. B. Long, “Rayleigh scattering measurements of the gas concentration field in turbulent jets,” AIAA J. 21(1), 81–84 (1983).
    [Crossref]
  2. I. van Cruyningen, A. Lozano, and R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10(1), 41–49 (1990).
    [Crossref]
  3. J. P. Crimaldi, “Planar laser induced fluorescence in aqueous flows,” Exp. Fluids 44(6), 851–863 (2008).
    [Crossref]
  4. W. J. A. Dahm and P. E. Dimotakis, “Mixing at large Schmidt number in the self similar far field of turbulent jets,” J. Fluid Mech. 217(-1), 299–330 (1990).
    [Crossref]
  5. T. R. Meyer, J. C. Dutton, and R. P. Lucht, “Experimental study of the mixing transition in a gaseous axisymmetric jet,” Phys. Fluids 13(11), 3411–3424 (2001).
    [Crossref]
  6. K. M. Tacina and W. J. A. Dahm, “Effects of heat release on turbulent shear flows, Part 1. A general equivalence principle for non-buoyant flows and its application to turbulent jet flames,” J. Fluid Mech. 415, 23–44 (2000).
    [Crossref]
  7. R. L. Gordon, C. Heeger, and A. Dreizler, “High-speed mixture fraction imaging,” Appl. Phys. B 96(4), 745–748 (2009).
    [Crossref]
  8. J. D. Miller, J. B. Michael, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “Simultaneous high-speed planar imaging of mixture fraction and velocity using a burst-mode laser,” Appl. Phys. B 113(1), 93–97 (2013).
    [Crossref]
  9. T. Ueda, M. Shimura, M. Tanahashi, and T. Miyauchi, “Measurement of three-dimensional flame structure by combined laser diagnostics,” J. Mech. Sci. Technol. 23(7), 1813–1820 (2009).
    [Crossref]
  10. B. Yip, R. L. Schmitt, and M. B. Long, “Instantaneous three-dimensional concentration measurements in turbulent jets and flames,” Opt. Lett. 13(2), 96–98 (1988).
    [Crossref] [PubMed]
  11. L. K. Su and N. T. Clemens, “Planar measurements of the full three-dimensional scalar dissipation rate in gas-phase turbulent flows,” Exp. Fluids 27(6), 507–521 (1999).
    [Crossref]
  12. J. Nygren, J. Hult, M. Richter, M. Alden, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
    [Crossref]
  13. V. A. Miller, V. A. Troutman, and R. K. Hanson, “Near-kHz 3D tracer-based LIF imaging of a co-flow jet using toluene,” Meas. Sci. Technol. 25(7), 075403 (2014).
    [Crossref]
  14. K. Y. Cho, A. Satija, T. L. Pourpoint, S. F. Son, and R. P. Lucht, “High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion,” Appl. Opt. 53(3), 316–326 (2014).
    [Crossref] [PubMed]
  15. W. B. Ng and Y. Zhang, “Stereoscopic imaging and reconstruction of the 3D geometry of flame surfaces,” Exp. Fluids 34(4), 484–493 (2003).
    [Crossref]
  16. T. Medford, P. Danehy, S. Jones, B. Bathel, J. Inman, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting (2011), pp. 1–14.
    [Crossref]
  17. R. J. Santoro, H. G. Semerjian, P. J. Emmerman, and R. Goulard, “Optical tomography for flow field diagnostics,” Int. J. Heat Mass Tran. 24(7), 1139–1150 (1981).
    [Crossref]
  18. L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21(1), 1152–1162 (2013).
    [Crossref] [PubMed]
  19. C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, and W. Cai, “Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration,” Opt. Express 23(17), 22494–22511 (2015).
    [Crossref] [PubMed]
  20. K. P. Lynch and B. S. Thurow, “3-D flow visualization of axisymmetric jets at Reynolds number 6,700 and 10,200,” J. Visual. Japan 15(4), 309–319 (2012).
    [Crossref]
  21. M. L. Greene and V. Sick, “Volume-resolved flame chemiluminescence and laser-induced fluorescence imaging,” Appl. Phys. B 113(1), 87–92 (2013).
    [Crossref]
  22. G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
    [Crossref]
  23. J. Weinkauff, D. Michaelis, A. Dreizler, and B. Böhm, “Tomographic PIV measurements in a turbulent lifted jet flame,” Exp. Fluids 54(12), 1624 (2013).
    [Crossref]
  24. J. Klinner and C. Willert, “Tomographic shadowgraphy for three-dimensional reconstruction of instantaneous spray distributions,” Exp. Fluids 53(2), 531–543 (2012).
    [Crossref]
  25. A. Goyal, S. Chaudhry, and P. M. V. Subbarao, “Direct three dimensional tomography of flames using maximization of entropy technique,” Combust. Flame 161(1), 173–183 (2014).
    [Crossref]
  26. N. A. Worth and J. R. Dawson, “Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames,” Meas. Sci. Technol. 24(2), 024013 (2013).
    [Crossref]
  27. J. Floyd, P. Geipel, and A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
    [Crossref]
  28. W. Cai, X. Li, and L. Ma, “Practical aspects of implementing three-dimensional tomography inversion for volumetric flame imaging,” Appl. Opt. 52(33), 8106–8116 (2013).
    [Crossref] [PubMed]
  29. S. A. Tsekenis, N. Tait, and H. McCann, “Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images,” Rev. Sci. Instrum. 86(3), 035104 (2015).
    [Crossref] [PubMed]
  30. V. Weber, J. Brubach, R. L. Gordon, and A. Dreizler, “Pixel-based characterization of CMOS high-speed camera systems,” Appl. Phys. B 103(2), 421–433 (2011).
    [Crossref]
  31. D. Mishra, K. Muralidhar, and P. Munshi, “A robust mart algorithm for tomographic applications,” Numer. Heat Transf. B 35(4), 485–506 (1999).
    [Crossref]

2015 (2)

C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, and W. Cai, “Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration,” Opt. Express 23(17), 22494–22511 (2015).
[Crossref] [PubMed]

S. A. Tsekenis, N. Tait, and H. McCann, “Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images,” Rev. Sci. Instrum. 86(3), 035104 (2015).
[Crossref] [PubMed]

2014 (3)

A. Goyal, S. Chaudhry, and P. M. V. Subbarao, “Direct three dimensional tomography of flames using maximization of entropy technique,” Combust. Flame 161(1), 173–183 (2014).
[Crossref]

V. A. Miller, V. A. Troutman, and R. K. Hanson, “Near-kHz 3D tracer-based LIF imaging of a co-flow jet using toluene,” Meas. Sci. Technol. 25(7), 075403 (2014).
[Crossref]

K. Y. Cho, A. Satija, T. L. Pourpoint, S. F. Son, and R. P. Lucht, “High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion,” Appl. Opt. 53(3), 316–326 (2014).
[Crossref] [PubMed]

2013 (6)

L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21(1), 1152–1162 (2013).
[Crossref] [PubMed]

J. D. Miller, J. B. Michael, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “Simultaneous high-speed planar imaging of mixture fraction and velocity using a burst-mode laser,” Appl. Phys. B 113(1), 93–97 (2013).
[Crossref]

N. A. Worth and J. R. Dawson, “Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames,” Meas. Sci. Technol. 24(2), 024013 (2013).
[Crossref]

J. Weinkauff, D. Michaelis, A. Dreizler, and B. Böhm, “Tomographic PIV measurements in a turbulent lifted jet flame,” Exp. Fluids 54(12), 1624 (2013).
[Crossref]

M. L. Greene and V. Sick, “Volume-resolved flame chemiluminescence and laser-induced fluorescence imaging,” Appl. Phys. B 113(1), 87–92 (2013).
[Crossref]

W. Cai, X. Li, and L. Ma, “Practical aspects of implementing three-dimensional tomography inversion for volumetric flame imaging,” Appl. Opt. 52(33), 8106–8116 (2013).
[Crossref] [PubMed]

2012 (2)

K. P. Lynch and B. S. Thurow, “3-D flow visualization of axisymmetric jets at Reynolds number 6,700 and 10,200,” J. Visual. Japan 15(4), 309–319 (2012).
[Crossref]

J. Klinner and C. Willert, “Tomographic shadowgraphy for three-dimensional reconstruction of instantaneous spray distributions,” Exp. Fluids 53(2), 531–543 (2012).
[Crossref]

2011 (2)

J. Floyd, P. Geipel, and A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[Crossref]

V. Weber, J. Brubach, R. L. Gordon, and A. Dreizler, “Pixel-based characterization of CMOS high-speed camera systems,” Appl. Phys. B 103(2), 421–433 (2011).
[Crossref]

2009 (2)

T. Ueda, M. Shimura, M. Tanahashi, and T. Miyauchi, “Measurement of three-dimensional flame structure by combined laser diagnostics,” J. Mech. Sci. Technol. 23(7), 1813–1820 (2009).
[Crossref]

R. L. Gordon, C. Heeger, and A. Dreizler, “High-speed mixture fraction imaging,” Appl. Phys. B 96(4), 745–748 (2009).
[Crossref]

2008 (1)

J. P. Crimaldi, “Planar laser induced fluorescence in aqueous flows,” Exp. Fluids 44(6), 851–863 (2008).
[Crossref]

2006 (1)

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

2003 (1)

W. B. Ng and Y. Zhang, “Stereoscopic imaging and reconstruction of the 3D geometry of flame surfaces,” Exp. Fluids 34(4), 484–493 (2003).
[Crossref]

2002 (1)

J. Nygren, J. Hult, M. Richter, M. Alden, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[Crossref]

2001 (1)

T. R. Meyer, J. C. Dutton, and R. P. Lucht, “Experimental study of the mixing transition in a gaseous axisymmetric jet,” Phys. Fluids 13(11), 3411–3424 (2001).
[Crossref]

2000 (1)

K. M. Tacina and W. J. A. Dahm, “Effects of heat release on turbulent shear flows, Part 1. A general equivalence principle for non-buoyant flows and its application to turbulent jet flames,” J. Fluid Mech. 415, 23–44 (2000).
[Crossref]

1999 (2)

L. K. Su and N. T. Clemens, “Planar measurements of the full three-dimensional scalar dissipation rate in gas-phase turbulent flows,” Exp. Fluids 27(6), 507–521 (1999).
[Crossref]

D. Mishra, K. Muralidhar, and P. Munshi, “A robust mart algorithm for tomographic applications,” Numer. Heat Transf. B 35(4), 485–506 (1999).
[Crossref]

1990 (2)

W. J. A. Dahm and P. E. Dimotakis, “Mixing at large Schmidt number in the self similar far field of turbulent jets,” J. Fluid Mech. 217(-1), 299–330 (1990).
[Crossref]

I. van Cruyningen, A. Lozano, and R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10(1), 41–49 (1990).
[Crossref]

1988 (1)

1983 (1)

M. C. Escoda and M. B. Long, “Rayleigh scattering measurements of the gas concentration field in turbulent jets,” AIAA J. 21(1), 81–84 (1983).
[Crossref]

1981 (1)

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, and R. Goulard, “Optical tomography for flow field diagnostics,” Int. J. Heat Mass Tran. 24(7), 1139–1150 (1981).
[Crossref]

Alden, M.

J. Nygren, J. Hult, M. Richter, M. Alden, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[Crossref]

Bathel, B.

T. Medford, P. Danehy, S. Jones, B. Bathel, J. Inman, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting (2011), pp. 1–14.
[Crossref]

Böhm, B.

J. Weinkauff, D. Michaelis, A. Dreizler, and B. Böhm, “Tomographic PIV measurements in a turbulent lifted jet flame,” Exp. Fluids 54(12), 1624 (2013).
[Crossref]

Brubach, J.

V. Weber, J. Brubach, R. L. Gordon, and A. Dreizler, “Pixel-based characterization of CMOS high-speed camera systems,” Appl. Phys. B 103(2), 421–433 (2011).
[Crossref]

Cai, W.

Cao, Z.

Caswell, A. W.

Chaudhry, S.

A. Goyal, S. Chaudhry, and P. M. V. Subbarao, “Direct three dimensional tomography of flames using maximization of entropy technique,” Combust. Flame 161(1), 173–183 (2014).
[Crossref]

Chen, J.

Cho, K. Y.

Christensen, M.

J. Nygren, J. Hult, M. Richter, M. Alden, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[Crossref]

Clemens, N. T.

L. K. Su and N. T. Clemens, “Planar measurements of the full three-dimensional scalar dissipation rate in gas-phase turbulent flows,” Exp. Fluids 27(6), 507–521 (1999).
[Crossref]

Crimaldi, J. P.

J. P. Crimaldi, “Planar laser induced fluorescence in aqueous flows,” Exp. Fluids 44(6), 851–863 (2008).
[Crossref]

Dahm, W. J. A.

K. M. Tacina and W. J. A. Dahm, “Effects of heat release on turbulent shear flows, Part 1. A general equivalence principle for non-buoyant flows and its application to turbulent jet flames,” J. Fluid Mech. 415, 23–44 (2000).
[Crossref]

W. J. A. Dahm and P. E. Dimotakis, “Mixing at large Schmidt number in the self similar far field of turbulent jets,” J. Fluid Mech. 217(-1), 299–330 (1990).
[Crossref]

Danehy, P.

T. Medford, P. Danehy, S. Jones, B. Bathel, J. Inman, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting (2011), pp. 1–14.
[Crossref]

Dawson, J. R.

N. A. Worth and J. R. Dawson, “Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames,” Meas. Sci. Technol. 24(2), 024013 (2013).
[Crossref]

Dimotakis, P. E.

W. J. A. Dahm and P. E. Dimotakis, “Mixing at large Schmidt number in the self similar far field of turbulent jets,” J. Fluid Mech. 217(-1), 299–330 (1990).
[Crossref]

Dreizler, A.

J. Weinkauff, D. Michaelis, A. Dreizler, and B. Böhm, “Tomographic PIV measurements in a turbulent lifted jet flame,” Exp. Fluids 54(12), 1624 (2013).
[Crossref]

V. Weber, J. Brubach, R. L. Gordon, and A. Dreizler, “Pixel-based characterization of CMOS high-speed camera systems,” Appl. Phys. B 103(2), 421–433 (2011).
[Crossref]

R. L. Gordon, C. Heeger, and A. Dreizler, “High-speed mixture fraction imaging,” Appl. Phys. B 96(4), 745–748 (2009).
[Crossref]

Dutton, J. C.

T. R. Meyer, J. C. Dutton, and R. P. Lucht, “Experimental study of the mixing transition in a gaseous axisymmetric jet,” Phys. Fluids 13(11), 3411–3424 (2001).
[Crossref]

Elsinga, G. E.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

Emmerman, P. J.

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, and R. Goulard, “Optical tomography for flow field diagnostics,” Int. J. Heat Mass Tran. 24(7), 1139–1150 (1981).
[Crossref]

Escoda, M. C.

M. C. Escoda and M. B. Long, “Rayleigh scattering measurements of the gas concentration field in turbulent jets,” AIAA J. 21(1), 81–84 (1983).
[Crossref]

Floyd, J.

J. Floyd, P. Geipel, and A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[Crossref]

Geipel, P.

J. Floyd, P. Geipel, and A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[Crossref]

Gord, J. R.

J. D. Miller, J. B. Michael, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “Simultaneous high-speed planar imaging of mixture fraction and velocity using a burst-mode laser,” Appl. Phys. B 113(1), 93–97 (2013).
[Crossref]

L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21(1), 1152–1162 (2013).
[Crossref] [PubMed]

Gordon, R. L.

V. Weber, J. Brubach, R. L. Gordon, and A. Dreizler, “Pixel-based characterization of CMOS high-speed camera systems,” Appl. Phys. B 103(2), 421–433 (2011).
[Crossref]

R. L. Gordon, C. Heeger, and A. Dreizler, “High-speed mixture fraction imaging,” Appl. Phys. B 96(4), 745–748 (2009).
[Crossref]

Goulard, R.

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, and R. Goulard, “Optical tomography for flow field diagnostics,” Int. J. Heat Mass Tran. 24(7), 1139–1150 (1981).
[Crossref]

Goyal, A.

A. Goyal, S. Chaudhry, and P. M. V. Subbarao, “Direct three dimensional tomography of flames using maximization of entropy technique,” Combust. Flame 161(1), 173–183 (2014).
[Crossref]

Greene, M. L.

M. L. Greene and V. Sick, “Volume-resolved flame chemiluminescence and laser-induced fluorescence imaging,” Appl. Phys. B 113(1), 87–92 (2013).
[Crossref]

Hanson, R. K.

V. A. Miller, V. A. Troutman, and R. K. Hanson, “Near-kHz 3D tracer-based LIF imaging of a co-flow jet using toluene,” Meas. Sci. Technol. 25(7), 075403 (2014).
[Crossref]

I. van Cruyningen, A. Lozano, and R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10(1), 41–49 (1990).
[Crossref]

Heeger, C.

R. L. Gordon, C. Heeger, and A. Dreizler, “High-speed mixture fraction imaging,” Appl. Phys. B 96(4), 745–748 (2009).
[Crossref]

Hult, J.

J. Nygren, J. Hult, M. Richter, M. Alden, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[Crossref]

Hultqvist, A.

J. Nygren, J. Hult, M. Richter, M. Alden, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[Crossref]

Inman, J.

T. Medford, P. Danehy, S. Jones, B. Bathel, J. Inman, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting (2011), pp. 1–14.
[Crossref]

Jiang, N.

T. Medford, P. Danehy, S. Jones, B. Bathel, J. Inman, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting (2011), pp. 1–14.
[Crossref]

Johansson, B.

J. Nygren, J. Hult, M. Richter, M. Alden, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[Crossref]

Jones, S.

T. Medford, P. Danehy, S. Jones, B. Bathel, J. Inman, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting (2011), pp. 1–14.
[Crossref]

Kempf, A. M.

J. Floyd, P. Geipel, and A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[Crossref]

Klinner, J.

J. Klinner and C. Willert, “Tomographic shadowgraphy for three-dimensional reconstruction of instantaneous spray distributions,” Exp. Fluids 53(2), 531–543 (2012).
[Crossref]

Lempert, W.

T. Medford, P. Danehy, S. Jones, B. Bathel, J. Inman, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting (2011), pp. 1–14.
[Crossref]

Li, X.

Lin, Y.

Liu, C.

Long, M. B.

B. Yip, R. L. Schmitt, and M. B. Long, “Instantaneous three-dimensional concentration measurements in turbulent jets and flames,” Opt. Lett. 13(2), 96–98 (1988).
[Crossref] [PubMed]

M. C. Escoda and M. B. Long, “Rayleigh scattering measurements of the gas concentration field in turbulent jets,” AIAA J. 21(1), 81–84 (1983).
[Crossref]

Lozano, A.

I. van Cruyningen, A. Lozano, and R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10(1), 41–49 (1990).
[Crossref]

Lucht, R. P.

Lynch, K. P.

K. P. Lynch and B. S. Thurow, “3-D flow visualization of axisymmetric jets at Reynolds number 6,700 and 10,200,” J. Visual. Japan 15(4), 309–319 (2012).
[Crossref]

Ma, L.

McCann, H.

S. A. Tsekenis, N. Tait, and H. McCann, “Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images,” Rev. Sci. Instrum. 86(3), 035104 (2015).
[Crossref] [PubMed]

Medford, T.

T. Medford, P. Danehy, S. Jones, B. Bathel, J. Inman, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting (2011), pp. 1–14.
[Crossref]

Meyer, T.

T. Medford, P. Danehy, S. Jones, B. Bathel, J. Inman, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting (2011), pp. 1–14.
[Crossref]

Meyer, T. R.

J. D. Miller, J. B. Michael, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “Simultaneous high-speed planar imaging of mixture fraction and velocity using a burst-mode laser,” Appl. Phys. B 113(1), 93–97 (2013).
[Crossref]

T. R. Meyer, J. C. Dutton, and R. P. Lucht, “Experimental study of the mixing transition in a gaseous axisymmetric jet,” Phys. Fluids 13(11), 3411–3424 (2001).
[Crossref]

Michael, J. B.

J. D. Miller, J. B. Michael, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “Simultaneous high-speed planar imaging of mixture fraction and velocity using a burst-mode laser,” Appl. Phys. B 113(1), 93–97 (2013).
[Crossref]

Michaelis, D.

J. Weinkauff, D. Michaelis, A. Dreizler, and B. Böhm, “Tomographic PIV measurements in a turbulent lifted jet flame,” Exp. Fluids 54(12), 1624 (2013).
[Crossref]

Miller, J.

T. Medford, P. Danehy, S. Jones, B. Bathel, J. Inman, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting (2011), pp. 1–14.
[Crossref]

Miller, J. D.

J. D. Miller, J. B. Michael, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “Simultaneous high-speed planar imaging of mixture fraction and velocity using a burst-mode laser,” Appl. Phys. B 113(1), 93–97 (2013).
[Crossref]

Miller, V. A.

V. A. Miller, V. A. Troutman, and R. K. Hanson, “Near-kHz 3D tracer-based LIF imaging of a co-flow jet using toluene,” Meas. Sci. Technol. 25(7), 075403 (2014).
[Crossref]

Mishra, D.

D. Mishra, K. Muralidhar, and P. Munshi, “A robust mart algorithm for tomographic applications,” Numer. Heat Transf. B 35(4), 485–506 (1999).
[Crossref]

Miyauchi, T.

T. Ueda, M. Shimura, M. Tanahashi, and T. Miyauchi, “Measurement of three-dimensional flame structure by combined laser diagnostics,” J. Mech. Sci. Technol. 23(7), 1813–1820 (2009).
[Crossref]

Munshi, P.

D. Mishra, K. Muralidhar, and P. Munshi, “A robust mart algorithm for tomographic applications,” Numer. Heat Transf. B 35(4), 485–506 (1999).
[Crossref]

Muralidhar, K.

D. Mishra, K. Muralidhar, and P. Munshi, “A robust mart algorithm for tomographic applications,” Numer. Heat Transf. B 35(4), 485–506 (1999).
[Crossref]

Ng, W. B.

W. B. Ng and Y. Zhang, “Stereoscopic imaging and reconstruction of the 3D geometry of flame surfaces,” Exp. Fluids 34(4), 484–493 (2003).
[Crossref]

Nygren, J.

J. Nygren, J. Hult, M. Richter, M. Alden, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[Crossref]

Plemmons, D. H.

Pourpoint, T. L.

Richter, M.

J. Nygren, J. Hult, M. Richter, M. Alden, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[Crossref]

Roy, S.

L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21(1), 1152–1162 (2013).
[Crossref] [PubMed]

J. D. Miller, J. B. Michael, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “Simultaneous high-speed planar imaging of mixture fraction and velocity using a burst-mode laser,” Appl. Phys. B 113(1), 93–97 (2013).
[Crossref]

Sanders, S. T.

Santoro, R. J.

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, and R. Goulard, “Optical tomography for flow field diagnostics,” Int. J. Heat Mass Tran. 24(7), 1139–1150 (1981).
[Crossref]

Satija, A.

Scarano, F.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

Schmitt, R. L.

Semerjian, H. G.

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, and R. Goulard, “Optical tomography for flow field diagnostics,” Int. J. Heat Mass Tran. 24(7), 1139–1150 (1981).
[Crossref]

Shimura, M.

T. Ueda, M. Shimura, M. Tanahashi, and T. Miyauchi, “Measurement of three-dimensional flame structure by combined laser diagnostics,” J. Mech. Sci. Technol. 23(7), 1813–1820 (2009).
[Crossref]

Sick, V.

M. L. Greene and V. Sick, “Volume-resolved flame chemiluminescence and laser-induced fluorescence imaging,” Appl. Phys. B 113(1), 87–92 (2013).
[Crossref]

Slipchenko, M. N.

J. D. Miller, J. B. Michael, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “Simultaneous high-speed planar imaging of mixture fraction and velocity using a burst-mode laser,” Appl. Phys. B 113(1), 93–97 (2013).
[Crossref]

Son, S. F.

Su, L. K.

L. K. Su and N. T. Clemens, “Planar measurements of the full three-dimensional scalar dissipation rate in gas-phase turbulent flows,” Exp. Fluids 27(6), 507–521 (1999).
[Crossref]

Subbarao, P. M. V.

A. Goyal, S. Chaudhry, and P. M. V. Subbarao, “Direct three dimensional tomography of flames using maximization of entropy technique,” Combust. Flame 161(1), 173–183 (2014).
[Crossref]

Tacina, K. M.

K. M. Tacina and W. J. A. Dahm, “Effects of heat release on turbulent shear flows, Part 1. A general equivalence principle for non-buoyant flows and its application to turbulent jet flames,” J. Fluid Mech. 415, 23–44 (2000).
[Crossref]

Tait, N.

S. A. Tsekenis, N. Tait, and H. McCann, “Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images,” Rev. Sci. Instrum. 86(3), 035104 (2015).
[Crossref] [PubMed]

Tanahashi, M.

T. Ueda, M. Shimura, M. Tanahashi, and T. Miyauchi, “Measurement of three-dimensional flame structure by combined laser diagnostics,” J. Mech. Sci. Technol. 23(7), 1813–1820 (2009).
[Crossref]

Thurow, B. S.

K. P. Lynch and B. S. Thurow, “3-D flow visualization of axisymmetric jets at Reynolds number 6,700 and 10,200,” J. Visual. Japan 15(4), 309–319 (2012).
[Crossref]

Troutman, V. A.

V. A. Miller, V. A. Troutman, and R. K. Hanson, “Near-kHz 3D tracer-based LIF imaging of a co-flow jet using toluene,” Meas. Sci. Technol. 25(7), 075403 (2014).
[Crossref]

Tsekenis, S. A.

S. A. Tsekenis, N. Tait, and H. McCann, “Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images,” Rev. Sci. Instrum. 86(3), 035104 (2015).
[Crossref] [PubMed]

Ueda, T.

T. Ueda, M. Shimura, M. Tanahashi, and T. Miyauchi, “Measurement of three-dimensional flame structure by combined laser diagnostics,” J. Mech. Sci. Technol. 23(7), 1813–1820 (2009).
[Crossref]

van Cruyningen, I.

I. van Cruyningen, A. Lozano, and R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10(1), 41–49 (1990).
[Crossref]

van Oudheusden, B. W.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

Weber, V.

V. Weber, J. Brubach, R. L. Gordon, and A. Dreizler, “Pixel-based characterization of CMOS high-speed camera systems,” Appl. Phys. B 103(2), 421–433 (2011).
[Crossref]

Webster, M.

T. Medford, P. Danehy, S. Jones, B. Bathel, J. Inman, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting (2011), pp. 1–14.
[Crossref]

Weinkauff, J.

J. Weinkauff, D. Michaelis, A. Dreizler, and B. Böhm, “Tomographic PIV measurements in a turbulent lifted jet flame,” Exp. Fluids 54(12), 1624 (2013).
[Crossref]

Wieneke, B.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

Willert, C.

J. Klinner and C. Willert, “Tomographic shadowgraphy for three-dimensional reconstruction of instantaneous spray distributions,” Exp. Fluids 53(2), 531–543 (2012).
[Crossref]

Worth, N. A.

N. A. Worth and J. R. Dawson, “Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames,” Meas. Sci. Technol. 24(2), 024013 (2013).
[Crossref]

Xu, L.

Yip, B.

Zhang, Y.

W. B. Ng and Y. Zhang, “Stereoscopic imaging and reconstruction of the 3D geometry of flame surfaces,” Exp. Fluids 34(4), 484–493 (2003).
[Crossref]

AIAA J. (1)

M. C. Escoda and M. B. Long, “Rayleigh scattering measurements of the gas concentration field in turbulent jets,” AIAA J. 21(1), 81–84 (1983).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (4)

V. Weber, J. Brubach, R. L. Gordon, and A. Dreizler, “Pixel-based characterization of CMOS high-speed camera systems,” Appl. Phys. B 103(2), 421–433 (2011).
[Crossref]

R. L. Gordon, C. Heeger, and A. Dreizler, “High-speed mixture fraction imaging,” Appl. Phys. B 96(4), 745–748 (2009).
[Crossref]

J. D. Miller, J. B. Michael, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “Simultaneous high-speed planar imaging of mixture fraction and velocity using a burst-mode laser,” Appl. Phys. B 113(1), 93–97 (2013).
[Crossref]

M. L. Greene and V. Sick, “Volume-resolved flame chemiluminescence and laser-induced fluorescence imaging,” Appl. Phys. B 113(1), 87–92 (2013).
[Crossref]

Combust. Flame (2)

J. Floyd, P. Geipel, and A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[Crossref]

A. Goyal, S. Chaudhry, and P. M. V. Subbarao, “Direct three dimensional tomography of flames using maximization of entropy technique,” Combust. Flame 161(1), 173–183 (2014).
[Crossref]

Exp. Fluids (7)

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden, “Tomographic particle image velocimetry,” Exp. Fluids 41(6), 933–947 (2006).
[Crossref]

J. Weinkauff, D. Michaelis, A. Dreizler, and B. Böhm, “Tomographic PIV measurements in a turbulent lifted jet flame,” Exp. Fluids 54(12), 1624 (2013).
[Crossref]

J. Klinner and C. Willert, “Tomographic shadowgraphy for three-dimensional reconstruction of instantaneous spray distributions,” Exp. Fluids 53(2), 531–543 (2012).
[Crossref]

W. B. Ng and Y. Zhang, “Stereoscopic imaging and reconstruction of the 3D geometry of flame surfaces,” Exp. Fluids 34(4), 484–493 (2003).
[Crossref]

L. K. Su and N. T. Clemens, “Planar measurements of the full three-dimensional scalar dissipation rate in gas-phase turbulent flows,” Exp. Fluids 27(6), 507–521 (1999).
[Crossref]

I. van Cruyningen, A. Lozano, and R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10(1), 41–49 (1990).
[Crossref]

J. P. Crimaldi, “Planar laser induced fluorescence in aqueous flows,” Exp. Fluids 44(6), 851–863 (2008).
[Crossref]

Int. J. Heat Mass Tran. (1)

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, and R. Goulard, “Optical tomography for flow field diagnostics,” Int. J. Heat Mass Tran. 24(7), 1139–1150 (1981).
[Crossref]

J. Fluid Mech. (2)

W. J. A. Dahm and P. E. Dimotakis, “Mixing at large Schmidt number in the self similar far field of turbulent jets,” J. Fluid Mech. 217(-1), 299–330 (1990).
[Crossref]

K. M. Tacina and W. J. A. Dahm, “Effects of heat release on turbulent shear flows, Part 1. A general equivalence principle for non-buoyant flows and its application to turbulent jet flames,” J. Fluid Mech. 415, 23–44 (2000).
[Crossref]

J. Mech. Sci. Technol. (1)

T. Ueda, M. Shimura, M. Tanahashi, and T. Miyauchi, “Measurement of three-dimensional flame structure by combined laser diagnostics,” J. Mech. Sci. Technol. 23(7), 1813–1820 (2009).
[Crossref]

J. Visual. Japan (1)

K. P. Lynch and B. S. Thurow, “3-D flow visualization of axisymmetric jets at Reynolds number 6,700 and 10,200,” J. Visual. Japan 15(4), 309–319 (2012).
[Crossref]

Meas. Sci. Technol. (2)

N. A. Worth and J. R. Dawson, “Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames,” Meas. Sci. Technol. 24(2), 024013 (2013).
[Crossref]

V. A. Miller, V. A. Troutman, and R. K. Hanson, “Near-kHz 3D tracer-based LIF imaging of a co-flow jet using toluene,” Meas. Sci. Technol. 25(7), 075403 (2014).
[Crossref]

Numer. Heat Transf. B (1)

D. Mishra, K. Muralidhar, and P. Munshi, “A robust mart algorithm for tomographic applications,” Numer. Heat Transf. B 35(4), 485–506 (1999).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Fluids (1)

T. R. Meyer, J. C. Dutton, and R. P. Lucht, “Experimental study of the mixing transition in a gaseous axisymmetric jet,” Phys. Fluids 13(11), 3411–3424 (2001).
[Crossref]

Proc. Combust. Inst. (1)

J. Nygren, J. Hult, M. Richter, M. Alden, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[Crossref]

Rev. Sci. Instrum. (1)

S. A. Tsekenis, N. Tait, and H. McCann, “Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images,” Rev. Sci. Instrum. 86(3), 035104 (2015).
[Crossref] [PubMed]

Other (1)

T. Medford, P. Danehy, S. Jones, B. Bathel, J. Inman, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting (2011), pp. 1–14.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of laser and multiple-intensified-camera detection system and (b) close up of stereoscope used to couple two views into a single lens objective.
Fig. 2
Fig. 2 Line plots showing (a) the linear relationship between the acetone concentration and signal intensity and (b) the consistency of the concentration of acetone in the measurements.
Fig. 3
Fig. 3 Single-shot processed images from each detector and viewing angle at ReD = 10,000.
Fig. 4
Fig. 4 Line plots displaying the effects of smoothing strength on the (a) SNR and (b) relative contrast.
Fig. 5
Fig. 5 Three-dimensional isocontours of acetone LIF signal at (a) ReD = 5,000, (b) ReD = 10,000, and (c) ReD = 15,000 at 7–15.5 jet diameters downstream of the jet exit.
Fig. 6
Fig. 6 Planar slices through the central plane of (a) the original reconstructed volume, (b) the synthetic volume, and (c) the reconstruction of the synthetic volume.
Fig. 7
Fig. 7 Line plots of central slice from volumes shown in Fig. 6 at the location of the red dashed line.
Fig. 8
Fig. 8 Volume slab rendering of isocontours of deviations from the mean signal at ReD = 10,000 for various rotated views. Blue represents positive deviations from the mean and red represents negative deviations.
Fig. 9
Fig. 9 Planar slices separated by 0.6 mm, with blue representing positive deviations from the mean and red representing negative deviations. The scale of the black box is 4.5 mm × 8 mm.

Metrics