Abstract

To investigate the vibrational features of nitromethane (NM), which is a kind of energy material and a well known low-sensitivity and high explosive, experiments are performed to obtain the stimulated Raman scattering (SRS) of NM by employing a 532 nm pulsed pump laser. The Raman signal involves two stimulated emissions at 918 and 2,963 cm−1, attributed to the C-N and C-H stretching vibrations, respectively. To overcome the complexity of cross pump in the pure NM, one stimulated Raman radiation is chosen as a pump source to excite the other Raman mode. Two fluorescence dyes were added to selectively enhance each Raman cross section. By internally seeding the Raman gain medium with fluorescent photons, a significant modification in the stimulated Raman scattering spectrum has been observed. The enhanced Stokes emission at 918 cm−1 was able to induce the 2,963 cm−1 vibration mode when the all-trans-β-carotene was internal seeding in the NM, while the Raman radiation at 2,963 cm−1 was enhanced to excite the C-N mode with the addition of m-Cresol purple. The output energy of both 918 and 2,963 cm−1 under different input energy was also measured to illustrate this result.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of stimulated Raman scattering in terrace-microspheres

Hiyori Uehara, Tetsuo Kishi, Tetsuji Yano, and Shuichi Shibata
J. Opt. Soc. Am. B 28(10) 2436-2443 (2011)

Dynamic high pressure induced strong and weak hydrogen bonds enhanced by pre-resonance stimulated Raman scattering in liquid water

Shenghan Wang, Wenhui Fang, Fabing Li, Nan Gong, Zhanlong Li, Zuowei Li, Chenglin Sun, and Zhiwei Men
Opt. Express 25(25) 31670-31677 (2017)

Generation of 224-nm radiation by stimulated Raman scattering of ArF excimer laser radiation in a mixture of H2 and D2

Genie G. M. Stoffels, Patrick Schmidt, Nico Dam, and J. J. ter Meulen
Appl. Opt. 36(27) 6797-6801 (1997)

References

  • View by:
  • |
  • |
  • |

  1. J. Li, H. He, and W. Hu, “Theoretical and experimental analysis of Inter-channel crosstalk between TWDM and fronthaul wavelengths due to stimulated Raman scattering,” Opt. Express 23(7), 8809–8817 (2015).
    [Crossref] [PubMed]
  2. A. McKay, R. P. Mildren, D. W. Coutts, and D. J. Spence, “SRS in the strong-focusing regime for Raman amplifiers,” Opt. Express 23(11), 15012–15020 (2015).
    [Crossref] [PubMed]
  3. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  4. Y. Ganot, S. Shrenkel, B. D. Barmashenko, and I. Bar, “Enhanced stimulated Raman scattering in temperature controlled liquid water,” Appl. Phys. Lett. 105(6), 061107 (2014).
    [Crossref]
  5. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [Crossref] [PubMed]
  6. R. W. Boyd, Nonlinear Optics (Academic Press, 1992), pp. 365–389.
  7. F. Vanier, Y. A. Peter, and M. Rochette, “Cascaded Raman lasing in packaged high quality As2S3 microspheres,” Opt. Express 22(23), 28731–28739 (2014).
    [Crossref] [PubMed]
  8. A. J. Lee, T. Omatsu, and H. M. Pask, “Direct generation of a first-Stokes vortex laser beam from a self-Raman laser,” Opt. Express 21(10), 12401–12409 (2013).
    [Crossref] [PubMed]
  9. Z. W. Men, W. H. Fang, Z. W. Li, X. P. Sun, S. Q. Gao, and G. H. Lu, “Growth profile of stimulated Raman anti-Stokes scattering influenced by fluorescence seeding in liquid-core optical fiber,” J. Raman Spectrosc. 41(1), 49–52 (2010).
    [Crossref]
  10. A. S. Kwok and R. K. Chang, “Fluorescence seeding of weaker-gain Raman modes in microdroplets: enhancement of stimulated Raman scattering,” Opt. Lett. 17(18), 1262–1264 (1992).
    [Crossref] [PubMed]
  11. A. Biswas, R. G. Pinnick, and R. L. Armstrong, “Stimulated Raman-scattering threshold behavior of binary mixture micrometer-sized droplets,” Opt. Lett. 15(21), 1191–1193 (1990).
    [Crossref] [PubMed]
  12. X. Y. Pu, Z. Yang, N. Jiang, Y. K. Chen, and H. Dai, “Observation of stimulated Raman scattering of weak-gain Raman modes by means of lasing gain,” Wuli Xuebao 52(10), 2443–2448 (2003).
  13. L. Pasternack, J. W. Fleming, and J. C. Owrutsky, “Optically seeded stimulated Raman scattering of aqueous sulfate microdroplets,” J. Opt. Soc. Am. B 13(7), 1510–1516 (1996).
    [Crossref]
  14. Z. W. Men, W. H. Fang, Z. W. Li, G. Qu, C. L. Sun, S. Q. Gao, and G. H. Lu, “Influence of fluorescent dye on the linear polarization direction of stimulated Raman Stokes scattering in liquid-core optical fibers,” J. Raman Spectrosc. 41(12), 1661–1663 (2010).
    [Crossref]
  15. Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42(7), 1489–1491 (2011).
    [Crossref]
  16. S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. L. Brédas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276(5316), 1233–1236 (1997).
    [Crossref] [PubMed]
  17. A. B. Bhattacherjee, “Estimation of resonant third-order hyperpolarizability of beta-carotene from raman and absorption spectroscopy,” Bulg. J. Phys. 25(34), 166–170 (1998).
  18. G. L. Zhang, B. L. Yu, and W. J. Chen, “Spectroscopic study on sodium fluorescein in ethanol solution,” Wuli Huaxue Xuebao 8(04), 505–509 (1992).
  19. R. Dawes, A. Siavosh-Haghighi, T. D. Sewell, and D. L. Thompson, “Shock-induced melting of (100)-oriented nitromethane: Energy partitioning and vibrational mode heating,” J. Chem. Phys. 131(22), 224513 (2009).
    [Crossref] [PubMed]
  20. V. N. Kabadi and B. M. Rice, “Molecular dynamics simulations of normal mode vibrational energy transfer in liquid nitromethane,” J. Phys. Chem. A 108(4), 532–540 (2004).
    [Crossref]
  21. N. Rom, S. V. Zybin, A. C. van Duin, W. A. Goddard, Y. Zeiri, G. Katz, and R. Kosloff, “Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF,” J. Phys. Chem. A 115(36), 10181–10202 (2011).
    [Crossref] [PubMed]
  22. F. Guo, X. L. Cheng, and H. Zhang, “Reactive molecular dynamics simulation of solid nitromethane impact on (010) surfaces induced and nonimpact thermal decomposition,” J. Phys. Chem. A 116(14), 3514–3520 (2012).
    [Crossref] [PubMed]
  23. L. He, T. D. Sewell, and D. L. Thompson, “Molecular dynamics simulations of shock waves in oriented nitromethane single crystals,” J. Chem. Phys. 134(12), 124506 (2011).
    [Crossref] [PubMed]
  24. J. C. White, “Tunable lasers,” Top. Appl. Phys. 59, 115–207 (1987).
    [Crossref]
  25. X. Pu, Z. Yang, and W. Lee, “Enhancement of stimulated Raman scattering of weak-gain Raman modes in a pendant drop by dye-lasing gain,” J. Opt. Soc. Am. B 21(2), 343–348 (2004).
    [Crossref]
  26. M. Galperin, M. A. Ratner, and A. Nitzan, “Molecular transport junctions: vibrational effects,” J. Phys. Condens. Matter 19(10), 103201 (2007).
    [Crossref]
  27. R. Yang, H. Ma, and H. Jin, “Influencing factors of external fluorescence seeding enhancing stimulated Raman scattering in liquid-core optical fiber,” J. Raman Spectrosc. 44(12), 1689–1692 (2013).
    [Crossref]

2015 (2)

2014 (2)

Y. Ganot, S. Shrenkel, B. D. Barmashenko, and I. Bar, “Enhanced stimulated Raman scattering in temperature controlled liquid water,” Appl. Phys. Lett. 105(6), 061107 (2014).
[Crossref]

F. Vanier, Y. A. Peter, and M. Rochette, “Cascaded Raman lasing in packaged high quality As2S3 microspheres,” Opt. Express 22(23), 28731–28739 (2014).
[Crossref] [PubMed]

2013 (2)

A. J. Lee, T. Omatsu, and H. M. Pask, “Direct generation of a first-Stokes vortex laser beam from a self-Raman laser,” Opt. Express 21(10), 12401–12409 (2013).
[Crossref] [PubMed]

R. Yang, H. Ma, and H. Jin, “Influencing factors of external fluorescence seeding enhancing stimulated Raman scattering in liquid-core optical fiber,” J. Raman Spectrosc. 44(12), 1689–1692 (2013).
[Crossref]

2012 (1)

F. Guo, X. L. Cheng, and H. Zhang, “Reactive molecular dynamics simulation of solid nitromethane impact on (010) surfaces induced and nonimpact thermal decomposition,” J. Phys. Chem. A 116(14), 3514–3520 (2012).
[Crossref] [PubMed]

2011 (3)

L. He, T. D. Sewell, and D. L. Thompson, “Molecular dynamics simulations of shock waves in oriented nitromethane single crystals,” J. Chem. Phys. 134(12), 124506 (2011).
[Crossref] [PubMed]

N. Rom, S. V. Zybin, A. C. van Duin, W. A. Goddard, Y. Zeiri, G. Katz, and R. Kosloff, “Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF,” J. Phys. Chem. A 115(36), 10181–10202 (2011).
[Crossref] [PubMed]

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42(7), 1489–1491 (2011).
[Crossref]

2010 (2)

Z. W. Men, W. H. Fang, Z. W. Li, X. P. Sun, S. Q. Gao, and G. H. Lu, “Growth profile of stimulated Raman anti-Stokes scattering influenced by fluorescence seeding in liquid-core optical fiber,” J. Raman Spectrosc. 41(1), 49–52 (2010).
[Crossref]

Z. W. Men, W. H. Fang, Z. W. Li, G. Qu, C. L. Sun, S. Q. Gao, and G. H. Lu, “Influence of fluorescent dye on the linear polarization direction of stimulated Raman Stokes scattering in liquid-core optical fibers,” J. Raman Spectrosc. 41(12), 1661–1663 (2010).
[Crossref]

2009 (1)

R. Dawes, A. Siavosh-Haghighi, T. D. Sewell, and D. L. Thompson, “Shock-induced melting of (100)-oriented nitromethane: Energy partitioning and vibrational mode heating,” J. Chem. Phys. 131(22), 224513 (2009).
[Crossref] [PubMed]

2008 (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

2007 (1)

M. Galperin, M. A. Ratner, and A. Nitzan, “Molecular transport junctions: vibrational effects,” J. Phys. Condens. Matter 19(10), 103201 (2007).
[Crossref]

2004 (2)

X. Pu, Z. Yang, and W. Lee, “Enhancement of stimulated Raman scattering of weak-gain Raman modes in a pendant drop by dye-lasing gain,” J. Opt. Soc. Am. B 21(2), 343–348 (2004).
[Crossref]

V. N. Kabadi and B. M. Rice, “Molecular dynamics simulations of normal mode vibrational energy transfer in liquid nitromethane,” J. Phys. Chem. A 108(4), 532–540 (2004).
[Crossref]

2003 (1)

X. Y. Pu, Z. Yang, N. Jiang, Y. K. Chen, and H. Dai, “Observation of stimulated Raman scattering of weak-gain Raman modes by means of lasing gain,” Wuli Xuebao 52(10), 2443–2448 (2003).

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

1998 (1)

A. B. Bhattacherjee, “Estimation of resonant third-order hyperpolarizability of beta-carotene from raman and absorption spectroscopy,” Bulg. J. Phys. 25(34), 166–170 (1998).

1997 (1)

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. L. Brédas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276(5316), 1233–1236 (1997).
[Crossref] [PubMed]

1996 (1)

1992 (2)

G. L. Zhang, B. L. Yu, and W. J. Chen, “Spectroscopic study on sodium fluorescein in ethanol solution,” Wuli Huaxue Xuebao 8(04), 505–509 (1992).

A. S. Kwok and R. K. Chang, “Fluorescence seeding of weaker-gain Raman modes in microdroplets: enhancement of stimulated Raman scattering,” Opt. Lett. 17(18), 1262–1264 (1992).
[Crossref] [PubMed]

1990 (1)

1987 (1)

J. C. White, “Tunable lasers,” Top. Appl. Phys. 59, 115–207 (1987).
[Crossref]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Armstrong, R. L.

Bar, I.

Y. Ganot, S. Shrenkel, B. D. Barmashenko, and I. Bar, “Enhanced stimulated Raman scattering in temperature controlled liquid water,” Appl. Phys. Lett. 105(6), 061107 (2014).
[Crossref]

Barmashenko, B. D.

Y. Ganot, S. Shrenkel, B. D. Barmashenko, and I. Bar, “Enhanced stimulated Raman scattering in temperature controlled liquid water,” Appl. Phys. Lett. 105(6), 061107 (2014).
[Crossref]

Benabid, F.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Bhattacherjee, A. B.

A. B. Bhattacherjee, “Estimation of resonant third-order hyperpolarizability of beta-carotene from raman and absorption spectroscopy,” Bulg. J. Phys. 25(34), 166–170 (1998).

Biswas, A.

Blanchard-Desce, M.

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. L. Brédas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276(5316), 1233–1236 (1997).
[Crossref] [PubMed]

Boxer, S. G.

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. L. Brédas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276(5316), 1233–1236 (1997).
[Crossref] [PubMed]

Brédas, J. L.

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. L. Brédas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276(5316), 1233–1236 (1997).
[Crossref] [PubMed]

Bublitz, G. U.

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. L. Brédas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276(5316), 1233–1236 (1997).
[Crossref] [PubMed]

Cao, A. Y.

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42(7), 1489–1491 (2011).
[Crossref]

Chang, R. K.

Chen, W. J.

G. L. Zhang, B. L. Yu, and W. J. Chen, “Spectroscopic study on sodium fluorescein in ethanol solution,” Wuli Huaxue Xuebao 8(04), 505–509 (1992).

Chen, Y. K.

X. Y. Pu, Z. Yang, N. Jiang, Y. K. Chen, and H. Dai, “Observation of stimulated Raman scattering of weak-gain Raman modes by means of lasing gain,” Wuli Xuebao 52(10), 2443–2448 (2003).

Cheng, X. L.

F. Guo, X. L. Cheng, and H. Zhang, “Reactive molecular dynamics simulation of solid nitromethane impact on (010) surfaces induced and nonimpact thermal decomposition,” J. Phys. Chem. A 116(14), 3514–3520 (2012).
[Crossref] [PubMed]

Coutts, D. W.

Dai, H.

X. Y. Pu, Z. Yang, N. Jiang, Y. K. Chen, and H. Dai, “Observation of stimulated Raman scattering of weak-gain Raman modes by means of lasing gain,” Wuli Xuebao 52(10), 2443–2448 (2003).

Dawes, R.

R. Dawes, A. Siavosh-Haghighi, T. D. Sewell, and D. L. Thompson, “Shock-induced melting of (100)-oriented nitromethane: Energy partitioning and vibrational mode heating,” J. Chem. Phys. 131(22), 224513 (2009).
[Crossref] [PubMed]

Fang, W. H.

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42(7), 1489–1491 (2011).
[Crossref]

Z. W. Men, W. H. Fang, Z. W. Li, G. Qu, C. L. Sun, S. Q. Gao, and G. H. Lu, “Influence of fluorescent dye on the linear polarization direction of stimulated Raman Stokes scattering in liquid-core optical fibers,” J. Raman Spectrosc. 41(12), 1661–1663 (2010).
[Crossref]

Z. W. Men, W. H. Fang, Z. W. Li, X. P. Sun, S. Q. Gao, and G. H. Lu, “Growth profile of stimulated Raman anti-Stokes scattering influenced by fluorescence seeding in liquid-core optical fiber,” J. Raman Spectrosc. 41(1), 49–52 (2010).
[Crossref]

Fleming, J. W.

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Galperin, M.

M. Galperin, M. A. Ratner, and A. Nitzan, “Molecular transport junctions: vibrational effects,” J. Phys. Condens. Matter 19(10), 103201 (2007).
[Crossref]

Ganot, Y.

Y. Ganot, S. Shrenkel, B. D. Barmashenko, and I. Bar, “Enhanced stimulated Raman scattering in temperature controlled liquid water,” Appl. Phys. Lett. 105(6), 061107 (2014).
[Crossref]

Gao, S. Q.

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42(7), 1489–1491 (2011).
[Crossref]

Z. W. Men, W. H. Fang, Z. W. Li, G. Qu, C. L. Sun, S. Q. Gao, and G. H. Lu, “Influence of fluorescent dye on the linear polarization direction of stimulated Raman Stokes scattering in liquid-core optical fibers,” J. Raman Spectrosc. 41(12), 1661–1663 (2010).
[Crossref]

Z. W. Men, W. H. Fang, Z. W. Li, X. P. Sun, S. Q. Gao, and G. H. Lu, “Growth profile of stimulated Raman anti-Stokes scattering influenced by fluorescence seeding in liquid-core optical fiber,” J. Raman Spectrosc. 41(1), 49–52 (2010).
[Crossref]

Gilmour, S.

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. L. Brédas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276(5316), 1233–1236 (1997).
[Crossref] [PubMed]

Goddard, W. A.

N. Rom, S. V. Zybin, A. C. van Duin, W. A. Goddard, Y. Zeiri, G. Katz, and R. Kosloff, “Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF,” J. Phys. Chem. A 115(36), 10181–10202 (2011).
[Crossref] [PubMed]

Guo, F.

F. Guo, X. L. Cheng, and H. Zhang, “Reactive molecular dynamics simulation of solid nitromethane impact on (010) surfaces induced and nonimpact thermal decomposition,” J. Phys. Chem. A 116(14), 3514–3520 (2012).
[Crossref] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

He, H.

He, L.

L. He, T. D. Sewell, and D. L. Thompson, “Molecular dynamics simulations of shock waves in oriented nitromethane single crystals,” J. Chem. Phys. 134(12), 124506 (2011).
[Crossref] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Hu, W.

Jiang, N.

X. Y. Pu, Z. Yang, N. Jiang, Y. K. Chen, and H. Dai, “Observation of stimulated Raman scattering of weak-gain Raman modes by means of lasing gain,” Wuli Xuebao 52(10), 2443–2448 (2003).

Jin, H.

R. Yang, H. Ma, and H. Jin, “Influencing factors of external fluorescence seeding enhancing stimulated Raman scattering in liquid-core optical fiber,” J. Raman Spectrosc. 44(12), 1689–1692 (2013).
[Crossref]

Kabadi, V. N.

V. N. Kabadi and B. M. Rice, “Molecular dynamics simulations of normal mode vibrational energy transfer in liquid nitromethane,” J. Phys. Chem. A 108(4), 532–540 (2004).
[Crossref]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Katz, G.

N. Rom, S. V. Zybin, A. C. van Duin, W. A. Goddard, Y. Zeiri, G. Katz, and R. Kosloff, “Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF,” J. Phys. Chem. A 115(36), 10181–10202 (2011).
[Crossref] [PubMed]

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Kosloff, R.

N. Rom, S. V. Zybin, A. C. van Duin, W. A. Goddard, Y. Zeiri, G. Katz, and R. Kosloff, “Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF,” J. Phys. Chem. A 115(36), 10181–10202 (2011).
[Crossref] [PubMed]

Kwok, A. S.

Lee, A. J.

Lee, W.

Li, J.

J. Li, H. He, and W. Hu, “Theoretical and experimental analysis of Inter-channel crosstalk between TWDM and fronthaul wavelengths due to stimulated Raman scattering,” Opt. Express 23(7), 8809–8817 (2015).
[Crossref] [PubMed]

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. L. Brédas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276(5316), 1233–1236 (1997).
[Crossref] [PubMed]

Li, Z. W.

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42(7), 1489–1491 (2011).
[Crossref]

Z. W. Men, W. H. Fang, Z. W. Li, G. Qu, C. L. Sun, S. Q. Gao, and G. H. Lu, “Influence of fluorescent dye on the linear polarization direction of stimulated Raman Stokes scattering in liquid-core optical fibers,” J. Raman Spectrosc. 41(12), 1661–1663 (2010).
[Crossref]

Z. W. Men, W. H. Fang, Z. W. Li, X. P. Sun, S. Q. Gao, and G. H. Lu, “Growth profile of stimulated Raman anti-Stokes scattering influenced by fluorescence seeding in liquid-core optical fiber,” J. Raman Spectrosc. 41(1), 49–52 (2010).
[Crossref]

Lu, G. H.

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42(7), 1489–1491 (2011).
[Crossref]

Z. W. Men, W. H. Fang, Z. W. Li, G. Qu, C. L. Sun, S. Q. Gao, and G. H. Lu, “Influence of fluorescent dye on the linear polarization direction of stimulated Raman Stokes scattering in liquid-core optical fibers,” J. Raman Spectrosc. 41(12), 1661–1663 (2010).
[Crossref]

Z. W. Men, W. H. Fang, Z. W. Li, X. P. Sun, S. Q. Gao, and G. H. Lu, “Growth profile of stimulated Raman anti-Stokes scattering influenced by fluorescence seeding in liquid-core optical fiber,” J. Raman Spectrosc. 41(1), 49–52 (2010).
[Crossref]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Ma, H.

R. Yang, H. Ma, and H. Jin, “Influencing factors of external fluorescence seeding enhancing stimulated Raman scattering in liquid-core optical fiber,” J. Raman Spectrosc. 44(12), 1689–1692 (2013).
[Crossref]

Marder, S. R.

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. L. Brédas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276(5316), 1233–1236 (1997).
[Crossref] [PubMed]

McKay, A.

Men, Z. W.

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42(7), 1489–1491 (2011).
[Crossref]

Z. W. Men, W. H. Fang, Z. W. Li, G. Qu, C. L. Sun, S. Q. Gao, and G. H. Lu, “Influence of fluorescent dye on the linear polarization direction of stimulated Raman Stokes scattering in liquid-core optical fibers,” J. Raman Spectrosc. 41(12), 1661–1663 (2010).
[Crossref]

Z. W. Men, W. H. Fang, Z. W. Li, X. P. Sun, S. Q. Gao, and G. H. Lu, “Growth profile of stimulated Raman anti-Stokes scattering influenced by fluorescence seeding in liquid-core optical fiber,” J. Raman Spectrosc. 41(1), 49–52 (2010).
[Crossref]

Mildren, R. P.

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Nitzan, A.

M. Galperin, M. A. Ratner, and A. Nitzan, “Molecular transport junctions: vibrational effects,” J. Phys. Condens. Matter 19(10), 103201 (2007).
[Crossref]

Omatsu, T.

Owrutsky, J. C.

Pask, H. M.

Pasternack, L.

Peter, Y. A.

Pinnick, R. G.

Pu, X.

Pu, X. Y.

X. Y. Pu, Z. Yang, N. Jiang, Y. K. Chen, and H. Dai, “Observation of stimulated Raman scattering of weak-gain Raman modes by means of lasing gain,” Wuli Xuebao 52(10), 2443–2448 (2003).

Qu, G.

Z. W. Men, W. H. Fang, Z. W. Li, G. Qu, C. L. Sun, S. Q. Gao, and G. H. Lu, “Influence of fluorescent dye on the linear polarization direction of stimulated Raman Stokes scattering in liquid-core optical fibers,” J. Raman Spectrosc. 41(12), 1661–1663 (2010).
[Crossref]

Qu, G. N.

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42(7), 1489–1491 (2011).
[Crossref]

Ratner, M. A.

M. Galperin, M. A. Ratner, and A. Nitzan, “Molecular transport junctions: vibrational effects,” J. Phys. Condens. Matter 19(10), 103201 (2007).
[Crossref]

Ricci, V.

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. L. Brédas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276(5316), 1233–1236 (1997).
[Crossref] [PubMed]

Rice, B. M.

V. N. Kabadi and B. M. Rice, “Molecular dynamics simulations of normal mode vibrational energy transfer in liquid nitromethane,” J. Phys. Chem. A 108(4), 532–540 (2004).
[Crossref]

Rochette, M.

Rom, N.

N. Rom, S. V. Zybin, A. C. van Duin, W. A. Goddard, Y. Zeiri, G. Katz, and R. Kosloff, “Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF,” J. Phys. Chem. A 115(36), 10181–10202 (2011).
[Crossref] [PubMed]

Russell, P. St. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Sewell, T. D.

L. He, T. D. Sewell, and D. L. Thompson, “Molecular dynamics simulations of shock waves in oriented nitromethane single crystals,” J. Chem. Phys. 134(12), 124506 (2011).
[Crossref] [PubMed]

R. Dawes, A. Siavosh-Haghighi, T. D. Sewell, and D. L. Thompson, “Shock-induced melting of (100)-oriented nitromethane: Energy partitioning and vibrational mode heating,” J. Chem. Phys. 131(22), 224513 (2009).
[Crossref] [PubMed]

Shrenkel, S.

Y. Ganot, S. Shrenkel, B. D. Barmashenko, and I. Bar, “Enhanced stimulated Raman scattering in temperature controlled liquid water,” Appl. Phys. Lett. 105(6), 061107 (2014).
[Crossref]

Siavosh-Haghighi, A.

R. Dawes, A. Siavosh-Haghighi, T. D. Sewell, and D. L. Thompson, “Shock-induced melting of (100)-oriented nitromethane: Energy partitioning and vibrational mode heating,” J. Chem. Phys. 131(22), 224513 (2009).
[Crossref] [PubMed]

Spence, D. J.

Stegeman, G. I.

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. L. Brédas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276(5316), 1233–1236 (1997).
[Crossref] [PubMed]

Sun, C. L.

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42(7), 1489–1491 (2011).
[Crossref]

Z. W. Men, W. H. Fang, Z. W. Li, G. Qu, C. L. Sun, S. Q. Gao, and G. H. Lu, “Influence of fluorescent dye on the linear polarization direction of stimulated Raman Stokes scattering in liquid-core optical fibers,” J. Raman Spectrosc. 41(12), 1661–1663 (2010).
[Crossref]

Sun, X. P.

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42(7), 1489–1491 (2011).
[Crossref]

Z. W. Men, W. H. Fang, Z. W. Li, X. P. Sun, S. Q. Gao, and G. H. Lu, “Growth profile of stimulated Raman anti-Stokes scattering influenced by fluorescence seeding in liquid-core optical fiber,” J. Raman Spectrosc. 41(1), 49–52 (2010).
[Crossref]

Thompson, D. L.

L. He, T. D. Sewell, and D. L. Thompson, “Molecular dynamics simulations of shock waves in oriented nitromethane single crystals,” J. Chem. Phys. 134(12), 124506 (2011).
[Crossref] [PubMed]

R. Dawes, A. Siavosh-Haghighi, T. D. Sewell, and D. L. Thompson, “Shock-induced melting of (100)-oriented nitromethane: Energy partitioning and vibrational mode heating,” J. Chem. Phys. 131(22), 224513 (2009).
[Crossref] [PubMed]

Torruellas, W. E.

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. L. Brédas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276(5316), 1233–1236 (1997).
[Crossref] [PubMed]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

van Duin, A. C.

N. Rom, S. V. Zybin, A. C. van Duin, W. A. Goddard, Y. Zeiri, G. Katz, and R. Kosloff, “Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF,” J. Phys. Chem. A 115(36), 10181–10202 (2011).
[Crossref] [PubMed]

Vanier, F.

White, J. C.

J. C. White, “Tunable lasers,” Top. Appl. Phys. 59, 115–207 (1987).
[Crossref]

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Yang, R.

R. Yang, H. Ma, and H. Jin, “Influencing factors of external fluorescence seeding enhancing stimulated Raman scattering in liquid-core optical fiber,” J. Raman Spectrosc. 44(12), 1689–1692 (2013).
[Crossref]

Yang, Z.

X. Pu, Z. Yang, and W. Lee, “Enhancement of stimulated Raman scattering of weak-gain Raman modes in a pendant drop by dye-lasing gain,” J. Opt. Soc. Am. B 21(2), 343–348 (2004).
[Crossref]

X. Y. Pu, Z. Yang, N. Jiang, Y. K. Chen, and H. Dai, “Observation of stimulated Raman scattering of weak-gain Raman modes by means of lasing gain,” Wuli Xuebao 52(10), 2443–2448 (2003).

Yu, B. L.

G. L. Zhang, B. L. Yu, and W. J. Chen, “Spectroscopic study on sodium fluorescein in ethanol solution,” Wuli Huaxue Xuebao 8(04), 505–509 (1992).

Zeiri, Y.

N. Rom, S. V. Zybin, A. C. van Duin, W. A. Goddard, Y. Zeiri, G. Katz, and R. Kosloff, “Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF,” J. Phys. Chem. A 115(36), 10181–10202 (2011).
[Crossref] [PubMed]

Zhang, G. L.

G. L. Zhang, B. L. Yu, and W. J. Chen, “Spectroscopic study on sodium fluorescein in ethanol solution,” Wuli Huaxue Xuebao 8(04), 505–509 (1992).

Zhang, H.

F. Guo, X. L. Cheng, and H. Zhang, “Reactive molecular dynamics simulation of solid nitromethane impact on (010) surfaces induced and nonimpact thermal decomposition,” J. Phys. Chem. A 116(14), 3514–3520 (2012).
[Crossref] [PubMed]

Zybin, S. V.

N. Rom, S. V. Zybin, A. C. van Duin, W. A. Goddard, Y. Zeiri, G. Katz, and R. Kosloff, “Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF,” J. Phys. Chem. A 115(36), 10181–10202 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y. Ganot, S. Shrenkel, B. D. Barmashenko, and I. Bar, “Enhanced stimulated Raman scattering in temperature controlled liquid water,” Appl. Phys. Lett. 105(6), 061107 (2014).
[Crossref]

Bulg. J. Phys. (1)

A. B. Bhattacherjee, “Estimation of resonant third-order hyperpolarizability of beta-carotene from raman and absorption spectroscopy,” Bulg. J. Phys. 25(34), 166–170 (1998).

J. Chem. Phys. (2)

R. Dawes, A. Siavosh-Haghighi, T. D. Sewell, and D. L. Thompson, “Shock-induced melting of (100)-oriented nitromethane: Energy partitioning and vibrational mode heating,” J. Chem. Phys. 131(22), 224513 (2009).
[Crossref] [PubMed]

L. He, T. D. Sewell, and D. L. Thompson, “Molecular dynamics simulations of shock waves in oriented nitromethane single crystals,” J. Chem. Phys. 134(12), 124506 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. A (3)

V. N. Kabadi and B. M. Rice, “Molecular dynamics simulations of normal mode vibrational energy transfer in liquid nitromethane,” J. Phys. Chem. A 108(4), 532–540 (2004).
[Crossref]

N. Rom, S. V. Zybin, A. C. van Duin, W. A. Goddard, Y. Zeiri, G. Katz, and R. Kosloff, “Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF,” J. Phys. Chem. A 115(36), 10181–10202 (2011).
[Crossref] [PubMed]

F. Guo, X. L. Cheng, and H. Zhang, “Reactive molecular dynamics simulation of solid nitromethane impact on (010) surfaces induced and nonimpact thermal decomposition,” J. Phys. Chem. A 116(14), 3514–3520 (2012).
[Crossref] [PubMed]

J. Phys. Condens. Matter (1)

M. Galperin, M. A. Ratner, and A. Nitzan, “Molecular transport junctions: vibrational effects,” J. Phys. Condens. Matter 19(10), 103201 (2007).
[Crossref]

J. Raman Spectrosc. (4)

R. Yang, H. Ma, and H. Jin, “Influencing factors of external fluorescence seeding enhancing stimulated Raman scattering in liquid-core optical fiber,” J. Raman Spectrosc. 44(12), 1689–1692 (2013).
[Crossref]

Z. W. Men, W. H. Fang, Z. W. Li, X. P. Sun, S. Q. Gao, and G. H. Lu, “Growth profile of stimulated Raman anti-Stokes scattering influenced by fluorescence seeding in liquid-core optical fiber,” J. Raman Spectrosc. 41(1), 49–52 (2010).
[Crossref]

Z. W. Men, W. H. Fang, Z. W. Li, G. Qu, C. L. Sun, S. Q. Gao, and G. H. Lu, “Influence of fluorescent dye on the linear polarization direction of stimulated Raman Stokes scattering in liquid-core optical fibers,” J. Raman Spectrosc. 41(12), 1661–1663 (2010).
[Crossref]

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42(7), 1489–1491 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Science (3)

S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. L. Brédas, J. Li, G. U. Bublitz, and S. G. Boxer, “Large molecular third-order optical nonlinearities in polarized carotenoids,” Science 276(5316), 1233–1236 (1997).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Top. Appl. Phys. (1)

J. C. White, “Tunable lasers,” Top. Appl. Phys. 59, 115–207 (1987).
[Crossref]

Wuli Huaxue Xuebao (1)

G. L. Zhang, B. L. Yu, and W. J. Chen, “Spectroscopic study on sodium fluorescein in ethanol solution,” Wuli Huaxue Xuebao 8(04), 505–509 (1992).

Wuli Xuebao (1)

X. Y. Pu, Z. Yang, N. Jiang, Y. K. Chen, and H. Dai, “Observation of stimulated Raman scattering of weak-gain Raman modes by means of lasing gain,” Wuli Xuebao 52(10), 2443–2448 (2003).

Other (1)

R. W. Boyd, Nonlinear Optics (Academic Press, 1992), pp. 365–389.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup.
Fig. 2
Fig. 2 SRS spectrum of the pure NM at 13.68 mJ laser energy. Stokes Raman is at 918. Stokes Raman of C-H stretching vibration is at 2,963 cm−1 and follows the peak at 3,881 cm−1.
Fig. 3
Fig. 3 The spectra of Stokes lines of NM without and with different concentration of fluorescent dye, (a) Stokes lines of C-N vibration mode at 918 cm−1 without and with all-trans-β-carotene, and the concentration is I: 0 mol/L II: 5.6 × 10−1 mol/L III: 5.6 × 10−2 mol/L IV: 5.6 × 10−3 mol/L V: 5.6 × 10−4 mol/L VI: 5.6 × 10−5 mol/L VII: 5.6 × 10−6 mol/L under pumping power 11.54 mJ, with an upper right curves of relative intensity of C-N mode with different concentrations of all- trans-β-carotene (solid square) and its result of Gauss fitting (b) Stokes lines of C-H vibration mode at 2,963 cm−1 without and with m-Cresol purple, and the concentration is I:0 mol/L II: 1.0 × 10−3 mol/L III: 1.0 × 10−4 mol/L IV:1.0 × 10−5 mol/L V:1.0 × 10−6 mol/L VI: 1.0 × 10−7 mol/L VII: 1.0 × 10−8 mol/L under pumping power 13.62 mJ with an upper right curves of relative intensity of C-H mode with different concentrations of all- m-Cresol purple (solid triangle) and its result of Gauss fitting.
Fig. 4
Fig. 4 (a)SRS spectrum of pure NM(I), fluorescence characteristic spectrum of m-Cresol purple (II), and m-Cresol purple NM solution with the concentration of 1.0 × 10−2 mol/L(III) at 13.68 mJ laser energy. (b)SRS Spectrum of pure NM(I), fluorescence characteristic spectrum of all-trans-β-carotene(II), and all-trans-β-carotene NM solution with the concentration of 5.6 × 10−4 mol/L(III) at 13.68 mJ laser energy.
Fig. 5
Fig. 5 (a) Energy conversion to 2,963 cm−1 (solid triangle) and 918 cm−1 (hollow triangle) for the NM solution with m-Cresol purple(1.0 × 10−6 mol/L) under different input laser energy, and pump direction in NM is the C-H (2,963 cm−1) stimulating C-N by the m-Cresol purple enhancement. (b) Energy conversion to 918 cm−1 (hollow triangle) and 2,963 cm−1 (solid triangle) for the NM solution with all-trans-β-carotene(5.6 × 10−4 mol/L) under different input laser energy, and the pump process in the NM is the C-N (918 cm−1) exciting C-H mode by the all-trans-β-carotene enhancement.
Fig. 6
Fig. 6 Energy conversion to 3,881 cm−1 for NM solution with m-Cresol purple(1.0 × 10−6 mol/L) in solid triangle, all-trans-β-carotene(5.6 × 10−4 mol/L) in solid circle and without dye in solid rhombus under different input laser energy.

Tables (2)

Tables Icon

Table 1 Maximum and the best concentration values for the all-trans-β-carotene NM solution and m-Cresol purple NM solution respectively

Tables Icon

Table 2 Thresholds of 918cm−1 and 2,963cm−1 of neat NM, all-trans-β-carotene NM solution, and m-Cresol purple NM solution respectively

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I s (L)= I s (0)exp( G ss z)= I s (0)exp[ g ss I p (0)z]
I s ( ω s ,z)=[ I sn ( ω s )+ I seed ( ω s ) ]exp{ [ I p ( g r + g l )α ]z }

Metrics