Abstract

Silicon (Si) monolithic lasers are key devices in large-scale, high-density photonic integrated circuits. Germanium (Ge) is promising as an active layer due to the complementary metal-oxide semiconductor process compatibility with Si. A net optical gain from Ge is essential to demonstrate lasing operation. We fabricated Ge waveguides and investigated the n-type doping effect on the net optical gain. The estimated net gain of the n-Ge waveguide increased from −2200 to −500/cm, namely reducing loss, under optically pumped condition.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si

Jifeng Liu, Xiaochen Sun, Dong Pan, Xiaoxin Wang, Lionel C. Kimerling, Thomas L. Koch, and Jurgen Michel
Opt. Express 15(18) 11272-11277 (2007)

Theory for n-type doped, tensile-strained Ge-SixGeySn1-x-y quantum-well lasers at telecom wavelength

Guo-En Chang, Shu-Wei Chang, and Shun Lien Chuang
Opt. Express 17(14) 11246-11258 (2009)

Erbium-doped TeO2-coated Si3N4 waveguide amplifiers with 5  dB net gain

Henry C. Frankis, Hamidu M. Mbonde, Dawson B. Bonneville, Chenglin Zhang, Richard Mateman, Arne Leinse, and Jonathan D. B. Bradley
Photon. Res. 8(2) 127-134 (2020)

References

  • View by:
  • |
  • |
  • |

  1. P. Chaisakul, D. M. Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
    [Crossref]
  2. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct cap photoluminescence of n-type tensile-strained Ge-on Si,” Appl. Phys. Lett. 95(1), 011911 (2009).
    [Crossref]
  3. X. Xu, K. Nishida, K. Sawano, T. Maruizumi, and Y. Shiraki, “Tensile-strained, heavily n-doped germanium–on-insulator for light emitting devices on silicon,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO)2014 (OSA, 2014), paper SM4H.3.
    [Crossref]
  4. M. de Kersauson, M. El Kurdi, S. David, X. Checoury, G. Fishman, S. Sauvage, R. Jakomin, G. Beaudoin, I. Sagnes, and P. Boucaud, “Optical gain in single tensile-strained germanium photonic wire,” Opt. Express 19(19), 17925–17934 (2011).
    [Crossref] [PubMed]
  5. Y. Suwa, “First-principles study of light emission from strained germanium,” in Proceedings of IEEE Conference on Group IV Photonics 2013 (IEEE, 2013), pp. 37–38.
    [Crossref]
  6. J. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett. 34(11), 1738–1740 (2009).
    [Crossref] [PubMed]
  7. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
    [Crossref] [PubMed]
  8. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
    [Crossref] [PubMed]
  9. R. Koerner, M. Oehme, M. Gollhofer, M. Schmid, K. Kostecki, S. Bechler, D. Widmann, E. Kasper, and J. Schulze, “Electrically pumped lasing from Ge Fabry-Perot resonators on Si,” Opt. Express 23(11), 14815–14822 (2015).
    [Crossref] [PubMed]
  10. L. Carroll, P. Friedli, S. Neuenschwander, H. Sigg, S. Cecchi, F. Isa, D. Chrastina, G. Isella, Y. Fedoryshyn, and J. Faist, “Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain,” Phys. Rev. Lett. 109(5), 057402 (2012).
    [Crossref] [PubMed]
  11. X. Wang, H. Li, R. Camacho-Aguilera, Y. Cai, L. C. Kimerling, J. Michel, and J. Liu, “Infrared absorption of n-type tensile-strained Ge-on-Si,” Opt. Lett. 38(5), 652–654 (2013).
    [Crossref] [PubMed]
  12. G. Shambat, S.-L. Cheng, J. Lu, Y. Nishi, and J. Vuckovic, “Direct band Ge photoluminescence near1.6 µm coupled to Ge-on Si microdisk resonators,” Appl. Phys. Lett. 97(24), 241102 (2010).
    [Crossref]
  13. D. Nam, J. Petykiewicz, D. S. Sukhdeo, S. Gupta, S. Buckley, J. Vuckovic, and K. C. Saraswat, “Strained Ge nanowire with high-Q optical cavity for Ge Laser applications,” in Proceedings of IEEE Conference on Group IV Photonics 2015 (IEEE, 2015), paper 135–136.
    [Crossref]
  14. B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299–1306 (1975).
    [Crossref]
  15. S. Saito, F. Y. Gardes, A. Z. Al-Attili, K. Tani, K. Oda, Y. Suwa, T. Ido, Y. Ishikawa, S. Kako, S. Iwamoto, and Y. Arakawa, “Group IV light sources to enable the convergence of photonics and electronics,” Frontiers Mater. 1(15), 1–15 (2014).
  16. W. G. Oldham and A. G. Milnes, “Interface states in abrupt semiconductor heterojunctions,” Solid-State Electron. 7(2), 153–165 (1964).
    [Crossref]
  17. D. Marcuse, “Relflection loss of laser mode from tilted end mirror,” J. Lightwave Technol. 7(2), 336–339 (1989).
    [Crossref]
  18. W. G. Spitzer, F. A. Trumbore, and R. A. Logan, “Properties of heavily doped n-Type Germanium,” J. Appl. Phys. 32(10), 1822–1830 (1961).
    [Crossref]
  19. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
    [Crossref] [PubMed]
  20. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley-Interscience, 2006)
  21. J. I. Pankove and P. Aigrain, “Optical absorption of arsenic-doped degenerate germanium,” Phys. Rev. 126(3), 956–962 (1962).
    [Crossref]
  22. R. Camacho-Aguilera, Z. Han, Y. Cai, L. C. Kimerling, and J. Michel, “Direct band gap narrowing in highly doped Ge,” Appl. Phys. Lett. 102(15), 152106 (2013).
    [Crossref]

2015 (1)

2014 (1)

S. Saito, F. Y. Gardes, A. Z. Al-Attili, K. Tani, K. Oda, Y. Suwa, T. Ido, Y. Ishikawa, S. Kako, S. Iwamoto, and Y. Arakawa, “Group IV light sources to enable the convergence of photonics and electronics,” Frontiers Mater. 1(15), 1–15 (2014).

2013 (2)

X. Wang, H. Li, R. Camacho-Aguilera, Y. Cai, L. C. Kimerling, J. Michel, and J. Liu, “Infrared absorption of n-type tensile-strained Ge-on-Si,” Opt. Lett. 38(5), 652–654 (2013).
[Crossref] [PubMed]

R. Camacho-Aguilera, Z. Han, Y. Cai, L. C. Kimerling, and J. Michel, “Direct band gap narrowing in highly doped Ge,” Appl. Phys. Lett. 102(15), 152106 (2013).
[Crossref]

2012 (2)

L. Carroll, P. Friedli, S. Neuenschwander, H. Sigg, S. Cecchi, F. Isa, D. Chrastina, G. Isella, Y. Fedoryshyn, and J. Faist, “Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain,” Phys. Rev. Lett. 109(5), 057402 (2012).
[Crossref] [PubMed]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
[Crossref] [PubMed]

2011 (2)

P. Chaisakul, D. M. Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

M. de Kersauson, M. El Kurdi, S. David, X. Checoury, G. Fishman, S. Sauvage, R. Jakomin, G. Beaudoin, I. Sagnes, and P. Boucaud, “Optical gain in single tensile-strained germanium photonic wire,” Opt. Express 19(19), 17925–17934 (2011).
[Crossref] [PubMed]

2010 (2)

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
[Crossref] [PubMed]

G. Shambat, S.-L. Cheng, J. Lu, Y. Nishi, and J. Vuckovic, “Direct band Ge photoluminescence near1.6 µm coupled to Ge-on Si microdisk resonators,” Appl. Phys. Lett. 97(24), 241102 (2010).
[Crossref]

2009 (2)

J. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett. 34(11), 1738–1740 (2009).
[Crossref] [PubMed]

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct cap photoluminescence of n-type tensile-strained Ge-on Si,” Appl. Phys. Lett. 95(1), 011911 (2009).
[Crossref]

2007 (1)

1989 (1)

D. Marcuse, “Relflection loss of laser mode from tilted end mirror,” J. Lightwave Technol. 7(2), 336–339 (1989).
[Crossref]

1975 (1)

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299–1306 (1975).
[Crossref]

1964 (1)

W. G. Oldham and A. G. Milnes, “Interface states in abrupt semiconductor heterojunctions,” Solid-State Electron. 7(2), 153–165 (1964).
[Crossref]

1962 (1)

J. I. Pankove and P. Aigrain, “Optical absorption of arsenic-doped degenerate germanium,” Phys. Rev. 126(3), 956–962 (1962).
[Crossref]

1961 (1)

W. G. Spitzer, F. A. Trumbore, and R. A. Logan, “Properties of heavily doped n-Type Germanium,” J. Appl. Phys. 32(10), 1822–1830 (1961).
[Crossref]

Aigrain, P.

J. I. Pankove and P. Aigrain, “Optical absorption of arsenic-doped degenerate germanium,” Phys. Rev. 126(3), 956–962 (1962).
[Crossref]

Al-Attili, A. Z.

S. Saito, F. Y. Gardes, A. Z. Al-Attili, K. Tani, K. Oda, Y. Suwa, T. Ido, Y. Ishikawa, S. Kako, S. Iwamoto, and Y. Arakawa, “Group IV light sources to enable the convergence of photonics and electronics,” Frontiers Mater. 1(15), 1–15 (2014).

Arakawa, Y.

S. Saito, F. Y. Gardes, A. Z. Al-Attili, K. Tani, K. Oda, Y. Suwa, T. Ido, Y. Ishikawa, S. Kako, S. Iwamoto, and Y. Arakawa, “Group IV light sources to enable the convergence of photonics and electronics,” Frontiers Mater. 1(15), 1–15 (2014).

Beaudoin, G.

Bechler, S.

Bessette, J. T.

Boucaud, P.

Buckley, S.

D. Nam, J. Petykiewicz, D. S. Sukhdeo, S. Gupta, S. Buckley, J. Vuckovic, and K. C. Saraswat, “Strained Ge nanowire with high-Q optical cavity for Ge Laser applications,” in Proceedings of IEEE Conference on Group IV Photonics 2015 (IEEE, 2015), paper 135–136.
[Crossref]

Cai, Y.

Camacho-Aguilera, R.

Camacho-Aguilera, R. E.

Carroll, L.

L. Carroll, P. Friedli, S. Neuenschwander, H. Sigg, S. Cecchi, F. Isa, D. Chrastina, G. Isella, Y. Fedoryshyn, and J. Faist, “Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain,” Phys. Rev. Lett. 109(5), 057402 (2012).
[Crossref] [PubMed]

Cecchi, S.

L. Carroll, P. Friedli, S. Neuenschwander, H. Sigg, S. Cecchi, F. Isa, D. Chrastina, G. Isella, Y. Fedoryshyn, and J. Faist, “Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain,” Phys. Rev. Lett. 109(5), 057402 (2012).
[Crossref] [PubMed]

Chaisakul, P.

P. Chaisakul, D. M. Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

Checoury, X.

Cheng, S.-L.

G. Shambat, S.-L. Cheng, J. Lu, Y. Nishi, and J. Vuckovic, “Direct band Ge photoluminescence near1.6 µm coupled to Ge-on Si microdisk resonators,” Appl. Phys. Lett. 97(24), 241102 (2010).
[Crossref]

Chrastina, D.

L. Carroll, P. Friedli, S. Neuenschwander, H. Sigg, S. Cecchi, F. Isa, D. Chrastina, G. Isella, Y. Fedoryshyn, and J. Faist, “Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain,” Phys. Rev. Lett. 109(5), 057402 (2012).
[Crossref] [PubMed]

P. Chaisakul, D. M. Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

Coudevylle, J.

P. Chaisakul, D. M. Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

David, S.

de Kersauson, M.

Edmond, S.

P. Chaisakul, D. M. Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

El Kurdi, M.

Faist, J.

L. Carroll, P. Friedli, S. Neuenschwander, H. Sigg, S. Cecchi, F. Isa, D. Chrastina, G. Isella, Y. Fedoryshyn, and J. Faist, “Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain,” Phys. Rev. Lett. 109(5), 057402 (2012).
[Crossref] [PubMed]

Fedoryshyn, Y.

L. Carroll, P. Friedli, S. Neuenschwander, H. Sigg, S. Cecchi, F. Isa, D. Chrastina, G. Isella, Y. Fedoryshyn, and J. Faist, “Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain,” Phys. Rev. Lett. 109(5), 057402 (2012).
[Crossref] [PubMed]

Fishman, G.

Friedli, P.

L. Carroll, P. Friedli, S. Neuenschwander, H. Sigg, S. Cecchi, F. Isa, D. Chrastina, G. Isella, Y. Fedoryshyn, and J. Faist, “Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain,” Phys. Rev. Lett. 109(5), 057402 (2012).
[Crossref] [PubMed]

Gardes, F. Y.

S. Saito, F. Y. Gardes, A. Z. Al-Attili, K. Tani, K. Oda, Y. Suwa, T. Ido, Y. Ishikawa, S. Kako, S. Iwamoto, and Y. Arakawa, “Group IV light sources to enable the convergence of photonics and electronics,” Frontiers Mater. 1(15), 1–15 (2014).

Gollhofer, M.

Gupta, S.

D. Nam, J. Petykiewicz, D. S. Sukhdeo, S. Gupta, S. Buckley, J. Vuckovic, and K. C. Saraswat, “Strained Ge nanowire with high-Q optical cavity for Ge Laser applications,” in Proceedings of IEEE Conference on Group IV Photonics 2015 (IEEE, 2015), paper 135–136.
[Crossref]

Hakki, B. W.

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299–1306 (1975).
[Crossref]

Han, Z.

R. Camacho-Aguilera, Z. Han, Y. Cai, L. C. Kimerling, and J. Michel, “Direct band gap narrowing in highly doped Ge,” Appl. Phys. Lett. 102(15), 152106 (2013).
[Crossref]

Ido, T.

S. Saito, F. Y. Gardes, A. Z. Al-Attili, K. Tani, K. Oda, Y. Suwa, T. Ido, Y. Ishikawa, S. Kako, S. Iwamoto, and Y. Arakawa, “Group IV light sources to enable the convergence of photonics and electronics,” Frontiers Mater. 1(15), 1–15 (2014).

Isa, F.

L. Carroll, P. Friedli, S. Neuenschwander, H. Sigg, S. Cecchi, F. Isa, D. Chrastina, G. Isella, Y. Fedoryshyn, and J. Faist, “Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain,” Phys. Rev. Lett. 109(5), 057402 (2012).
[Crossref] [PubMed]

Isella, G.

L. Carroll, P. Friedli, S. Neuenschwander, H. Sigg, S. Cecchi, F. Isa, D. Chrastina, G. Isella, Y. Fedoryshyn, and J. Faist, “Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain,” Phys. Rev. Lett. 109(5), 057402 (2012).
[Crossref] [PubMed]

P. Chaisakul, D. M. Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

Ishikawa, Y.

S. Saito, F. Y. Gardes, A. Z. Al-Attili, K. Tani, K. Oda, Y. Suwa, T. Ido, Y. Ishikawa, S. Kako, S. Iwamoto, and Y. Arakawa, “Group IV light sources to enable the convergence of photonics and electronics,” Frontiers Mater. 1(15), 1–15 (2014).

Iwamoto, S.

S. Saito, F. Y. Gardes, A. Z. Al-Attili, K. Tani, K. Oda, Y. Suwa, T. Ido, Y. Ishikawa, S. Kako, S. Iwamoto, and Y. Arakawa, “Group IV light sources to enable the convergence of photonics and electronics,” Frontiers Mater. 1(15), 1–15 (2014).

Izard, N.

P. Chaisakul, D. M. Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

Jakomin, R.

Kako, S.

S. Saito, F. Y. Gardes, A. Z. Al-Attili, K. Tani, K. Oda, Y. Suwa, T. Ido, Y. Ishikawa, S. Kako, S. Iwamoto, and Y. Arakawa, “Group IV light sources to enable the convergence of photonics and electronics,” Frontiers Mater. 1(15), 1–15 (2014).

Kasper, E.

Kimerling, L. C.

Koch, T. L.

Koerner, R.

Kostecki, K.

Li, H.

Liu, J.

Logan, R. A.

W. G. Spitzer, F. A. Trumbore, and R. A. Logan, “Properties of heavily doped n-Type Germanium,” J. Appl. Phys. 32(10), 1822–1830 (1961).
[Crossref]

Lu, J.

G. Shambat, S.-L. Cheng, J. Lu, Y. Nishi, and J. Vuckovic, “Direct band Ge photoluminescence near1.6 µm coupled to Ge-on Si microdisk resonators,” Appl. Phys. Lett. 97(24), 241102 (2010).
[Crossref]

Marcuse, D.

D. Marcuse, “Relflection loss of laser mode from tilted end mirror,” J. Lightwave Technol. 7(2), 336–339 (1989).
[Crossref]

Michel, J.

Milnes, A. G.

W. G. Oldham and A. G. Milnes, “Interface states in abrupt semiconductor heterojunctions,” Solid-State Electron. 7(2), 153–165 (1964).
[Crossref]

Morini, D. M.

P. Chaisakul, D. M. Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

Nam, D.

D. Nam, J. Petykiewicz, D. S. Sukhdeo, S. Gupta, S. Buckley, J. Vuckovic, and K. C. Saraswat, “Strained Ge nanowire with high-Q optical cavity for Ge Laser applications,” in Proceedings of IEEE Conference on Group IV Photonics 2015 (IEEE, 2015), paper 135–136.
[Crossref]

Neuenschwander, S.

L. Carroll, P. Friedli, S. Neuenschwander, H. Sigg, S. Cecchi, F. Isa, D. Chrastina, G. Isella, Y. Fedoryshyn, and J. Faist, “Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain,” Phys. Rev. Lett. 109(5), 057402 (2012).
[Crossref] [PubMed]

Nishi, Y.

G. Shambat, S.-L. Cheng, J. Lu, Y. Nishi, and J. Vuckovic, “Direct band Ge photoluminescence near1.6 µm coupled to Ge-on Si microdisk resonators,” Appl. Phys. Lett. 97(24), 241102 (2010).
[Crossref]

Oda, K.

S. Saito, F. Y. Gardes, A. Z. Al-Attili, K. Tani, K. Oda, Y. Suwa, T. Ido, Y. Ishikawa, S. Kako, S. Iwamoto, and Y. Arakawa, “Group IV light sources to enable the convergence of photonics and electronics,” Frontiers Mater. 1(15), 1–15 (2014).

Oehme, M.

Oldham, W. G.

W. G. Oldham and A. G. Milnes, “Interface states in abrupt semiconductor heterojunctions,” Solid-State Electron. 7(2), 153–165 (1964).
[Crossref]

Pan, D.

Pankove, J. I.

J. I. Pankove and P. Aigrain, “Optical absorption of arsenic-doped degenerate germanium,” Phys. Rev. 126(3), 956–962 (1962).
[Crossref]

Paoli, T. L.

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299–1306 (1975).
[Crossref]

Patel, N.

Petykiewicz, J.

D. Nam, J. Petykiewicz, D. S. Sukhdeo, S. Gupta, S. Buckley, J. Vuckovic, and K. C. Saraswat, “Strained Ge nanowire with high-Q optical cavity for Ge Laser applications,” in Proceedings of IEEE Conference on Group IV Photonics 2015 (IEEE, 2015), paper 135–136.
[Crossref]

Romagnoli, M.

Roux, X. L.

P. Chaisakul, D. M. Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

Sagnes, I.

Saito, S.

S. Saito, F. Y. Gardes, A. Z. Al-Attili, K. Tani, K. Oda, Y. Suwa, T. Ido, Y. Ishikawa, S. Kako, S. Iwamoto, and Y. Arakawa, “Group IV light sources to enable the convergence of photonics and electronics,” Frontiers Mater. 1(15), 1–15 (2014).

Saraswat, K. C.

D. Nam, J. Petykiewicz, D. S. Sukhdeo, S. Gupta, S. Buckley, J. Vuckovic, and K. C. Saraswat, “Strained Ge nanowire with high-Q optical cavity for Ge Laser applications,” in Proceedings of IEEE Conference on Group IV Photonics 2015 (IEEE, 2015), paper 135–136.
[Crossref]

Sauvage, S.

Schmid, M.

Schulze, J.

Shambat, G.

G. Shambat, S.-L. Cheng, J. Lu, Y. Nishi, and J. Vuckovic, “Direct band Ge photoluminescence near1.6 µm coupled to Ge-on Si microdisk resonators,” Appl. Phys. Lett. 97(24), 241102 (2010).
[Crossref]

Sigg, H.

L. Carroll, P. Friedli, S. Neuenschwander, H. Sigg, S. Cecchi, F. Isa, D. Chrastina, G. Isella, Y. Fedoryshyn, and J. Faist, “Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain,” Phys. Rev. Lett. 109(5), 057402 (2012).
[Crossref] [PubMed]

Spitzer, W. G.

W. G. Spitzer, F. A. Trumbore, and R. A. Logan, “Properties of heavily doped n-Type Germanium,” J. Appl. Phys. 32(10), 1822–1830 (1961).
[Crossref]

Sukhdeo, D. S.

D. Nam, J. Petykiewicz, D. S. Sukhdeo, S. Gupta, S. Buckley, J. Vuckovic, and K. C. Saraswat, “Strained Ge nanowire with high-Q optical cavity for Ge Laser applications,” in Proceedings of IEEE Conference on Group IV Photonics 2015 (IEEE, 2015), paper 135–136.
[Crossref]

Sun, X.

Suwa, Y.

S. Saito, F. Y. Gardes, A. Z. Al-Attili, K. Tani, K. Oda, Y. Suwa, T. Ido, Y. Ishikawa, S. Kako, S. Iwamoto, and Y. Arakawa, “Group IV light sources to enable the convergence of photonics and electronics,” Frontiers Mater. 1(15), 1–15 (2014).

Y. Suwa, “First-principles study of light emission from strained germanium,” in Proceedings of IEEE Conference on Group IV Photonics 2013 (IEEE, 2013), pp. 37–38.
[Crossref]

Tani, K.

S. Saito, F. Y. Gardes, A. Z. Al-Attili, K. Tani, K. Oda, Y. Suwa, T. Ido, Y. Ishikawa, S. Kako, S. Iwamoto, and Y. Arakawa, “Group IV light sources to enable the convergence of photonics and electronics,” Frontiers Mater. 1(15), 1–15 (2014).

Trumbore, F. A.

W. G. Spitzer, F. A. Trumbore, and R. A. Logan, “Properties of heavily doped n-Type Germanium,” J. Appl. Phys. 32(10), 1822–1830 (1961).
[Crossref]

Vivien, L.

P. Chaisakul, D. M. Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

Vuckovic, J.

G. Shambat, S.-L. Cheng, J. Lu, Y. Nishi, and J. Vuckovic, “Direct band Ge photoluminescence near1.6 µm coupled to Ge-on Si microdisk resonators,” Appl. Phys. Lett. 97(24), 241102 (2010).
[Crossref]

D. Nam, J. Petykiewicz, D. S. Sukhdeo, S. Gupta, S. Buckley, J. Vuckovic, and K. C. Saraswat, “Strained Ge nanowire with high-Q optical cavity for Ge Laser applications,” in Proceedings of IEEE Conference on Group IV Photonics 2015 (IEEE, 2015), paper 135–136.
[Crossref]

Wang, X.

Widmann, D.

Appl. Phys. Lett. (4)

P. Chaisakul, D. M. Morini, G. Isella, D. Chrastina, N. Izard, X. L. Roux, S. Edmond, J. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct cap photoluminescence of n-type tensile-strained Ge-on Si,” Appl. Phys. Lett. 95(1), 011911 (2009).
[Crossref]

G. Shambat, S.-L. Cheng, J. Lu, Y. Nishi, and J. Vuckovic, “Direct band Ge photoluminescence near1.6 µm coupled to Ge-on Si microdisk resonators,” Appl. Phys. Lett. 97(24), 241102 (2010).
[Crossref]

R. Camacho-Aguilera, Z. Han, Y. Cai, L. C. Kimerling, and J. Michel, “Direct band gap narrowing in highly doped Ge,” Appl. Phys. Lett. 102(15), 152106 (2013).
[Crossref]

Frontiers Mater. (1)

S. Saito, F. Y. Gardes, A. Z. Al-Attili, K. Tani, K. Oda, Y. Suwa, T. Ido, Y. Ishikawa, S. Kako, S. Iwamoto, and Y. Arakawa, “Group IV light sources to enable the convergence of photonics and electronics,” Frontiers Mater. 1(15), 1–15 (2014).

J. Appl. Phys. (2)

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46(3), 1299–1306 (1975).
[Crossref]

W. G. Spitzer, F. A. Trumbore, and R. A. Logan, “Properties of heavily doped n-Type Germanium,” J. Appl. Phys. 32(10), 1822–1830 (1961).
[Crossref]

J. Lightwave Technol. (1)

D. Marcuse, “Relflection loss of laser mode from tilted end mirror,” J. Lightwave Technol. 7(2), 336–339 (1989).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. (1)

J. I. Pankove and P. Aigrain, “Optical absorption of arsenic-doped degenerate germanium,” Phys. Rev. 126(3), 956–962 (1962).
[Crossref]

Phys. Rev. Lett. (1)

L. Carroll, P. Friedli, S. Neuenschwander, H. Sigg, S. Cecchi, F. Isa, D. Chrastina, G. Isella, Y. Fedoryshyn, and J. Faist, “Direct-gap gain and optical absorption in germanium correlated to the density of photoexcited carriers, doping, and strain,” Phys. Rev. Lett. 109(5), 057402 (2012).
[Crossref] [PubMed]

Solid-State Electron. (1)

W. G. Oldham and A. G. Milnes, “Interface states in abrupt semiconductor heterojunctions,” Solid-State Electron. 7(2), 153–165 (1964).
[Crossref]

Other (4)

D. Nam, J. Petykiewicz, D. S. Sukhdeo, S. Gupta, S. Buckley, J. Vuckovic, and K. C. Saraswat, “Strained Ge nanowire with high-Q optical cavity for Ge Laser applications,” in Proceedings of IEEE Conference on Group IV Photonics 2015 (IEEE, 2015), paper 135–136.
[Crossref]

X. Xu, K. Nishida, K. Sawano, T. Maruizumi, and Y. Shiraki, “Tensile-strained, heavily n-doped germanium–on-insulator for light emitting devices on silicon,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO)2014 (OSA, 2014), paper SM4H.3.
[Crossref]

Y. Suwa, “First-principles study of light emission from strained germanium,” in Proceedings of IEEE Conference on Group IV Photonics 2013 (IEEE, 2013), pp. 37–38.
[Crossref]

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley-Interscience, 2006)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic structure, (b) cross sectional structure, and (c) cross sectional SEM view of Ge waveguide.
Fig. 2
Fig. 2 (a). Experimental setup for transmission measurement under optical pumping. (b) Schematic of optical pumping with SMF
Fig. 3
Fig. 3 Transmission spectra of Ge waveguides
Fig. 4
Fig. 4 (a) Wavelength-dependent waveguide loss and reflectivity of i-Ge waveguide measured using transmission resonant spectra. (b) n-type doping-dependent waveguide loss and reflectivity measured using transmission resonant spectra of 70μm-length cavity around 1950 nm
Fig. 5
Fig. 5 n-type doping dependent waveguide loss spectra.
Fig. 6
Fig. 6 (a) Transmission spectra of Ge waveguides under optical pumping (liner scale). (b) Net gain shift (Δg-Δα) of Ge waveguide under optical pumping obtained with Fig. 6(a) and Eq. (3).
Fig. 7
Fig. 7 (a). Transmission power change by optically pumping. (b) Loss and gain analysis of Ge waveguides depending on pumping power density

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r×exp{(gα)L}= P peak / P valley 1 P peak / P valley +1
P Ge P SLD =exp(αL)
ΔP= P Pump_on P pump_off =exp[(ΔgΔα)×15μm]
(gα) pump = (gα) passive + (ΔgΔα) pump

Metrics