Abstract

We present a design for a plasmonic absorber that is composed of a hexagonal-packed silicon nanowires (SiNWs) array with gold nanoparticles (AuNPs) decoration. Simulations and experiments demonstrated that the proposed absorber achieves a broadband absorption. Its bandwidth over an absorption of 80% ranges from 400 nm to 1000 nm at 0 degree to 30 degrees incidence. It was also demonstrated that the plasmonic absorber is polarization-insensitive. Analyzing the field distributions in the structure, we find that the wideband absorption is ascribed to the formation of cavity modes in the SiNWs and surface plasmon polaritons on the AuNPs. Such a designed plasmonic structure with high-efficiency absorption can be served as a good optical absorber.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime

Minghui Luo, Su Shen, Lei Zhou, Shangliang Wu, Yun Zhou, and Linsen Chen
Opt. Express 25(14) 16715-16724 (2017)

Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array

Bingxin Zhang, Yanhui Zhao, Qingzhen Hao, Brian Kiraly, Iam-Choon Khoo, Shufen Chen, and Tony Jun Huang
Opt. Express 19(16) 15221-15228 (2011)

Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime

Xin Huang, Wei He, Fan Yang, Jia Ran, Bing Gao, and Wei-Li Zhang
Opt. Express 26(20) 25558-25566 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  2. T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35(22), 3766–3768 (2010).
    [Crossref] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  4. D. Shreiber, M. Gupta, and R. Cravey, “Comparative study of 1-D and 2-D metamaterial lens formicrowave nondestructive evaluation of dielectric materials,” Sens. Actuators A Phys. 165(2), 256–260 (2011).
    [Crossref]
  5. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarizationselective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
    [Crossref]
  6. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
    [Crossref]
  7. C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
    [Crossref]
  8. H. Wakatsuchi, S. Greedy, C. Christopoulos, and J. Paul, “Customised broadband metamaterial absorbers for arbitrary polarisation,” Opt. Express 18(21), 22187–22198 (2010).
    [Crossref] [PubMed]
  9. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  10. D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
    [Crossref] [PubMed]
  11. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
    [Crossref] [PubMed]
  12. C. Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, and Y. M. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
    [Crossref]
  13. J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
    [Crossref]
  14. X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
    [Crossref]
  15. S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
    [Crossref]
  16. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
    [Crossref] [PubMed]
  17. Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
    [Crossref] [PubMed]
  18. Y. J. Jen, M. J. Lin, H. M. Wu, H. S. Liao, and J. W. Dai, “An interference coating of metamaterial as an ultrathin light absorber in the violet-to-infrared regime,” Opt. Express 21(8), 10259–10268 (2013).
    [Crossref] [PubMed]
  19. J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
    [Crossref] [PubMed]
  20. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
    [Crossref]
  21. J. A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-B. Luo, Y.-K. Liu, J. A. Zapien, C. Surya, and S.-T. Lee, “Enhanced Raman scattering from vertical silicon nanowires array,” Appl. Phys. Lett. 98(18), 183108 (2011).
    [Crossref]
  22. J. Yeom, D. Ratchford, C. R. Field, T. H. Brintlinger, and P. E. Pehrsson, “Decoupling diameter and pitch in Silicon nanowire arrays made by metal‐Assisted Chemical Etching,” Adv. Funct. Mater. 24(1), 106–116 (2014).
    [Crossref]
  23. J. Li, Y. Zhang, R. Jin, Q. Wang, Q. Chen, and Z. Dong, “Excitation of plasmon toroidal mode at optical frequencies by angle-resolved reflection,” Opt. Lett. 39(23), 6683–6686 (2014).
    [Crossref] [PubMed]
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), p. 290.
  25. J. Chen, X. Huang, G. Zerihun, Z. Hu, S. Wang, G. Wang, X. Hu, and M. Liu, “Polarization-independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances,” J. Electron. Mater. 44(11), 4269–4274 (2015).
    [Crossref]

2015 (3)

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

J. Chen, X. Huang, G. Zerihun, Z. Hu, S. Wang, G. Wang, X. Hu, and M. Liu, “Polarization-independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances,” J. Electron. Mater. 44(11), 4269–4274 (2015).
[Crossref]

2014 (4)

J. Yeom, D. Ratchford, C. R. Field, T. H. Brintlinger, and P. E. Pehrsson, “Decoupling diameter and pitch in Silicon nanowire arrays made by metal‐Assisted Chemical Etching,” Adv. Funct. Mater. 24(1), 106–116 (2014).
[Crossref]

J. Li, Y. Zhang, R. Jin, Q. Wang, Q. Chen, and Z. Dong, “Excitation of plasmon toroidal mode at optical frequencies by angle-resolved reflection,” Opt. Lett. 39(23), 6683–6686 (2014).
[Crossref] [PubMed]

C. Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, and Y. M. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

2013 (3)

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Y. J. Jen, M. J. Lin, H. M. Wu, H. S. Liao, and J. W. Dai, “An interference coating of metamaterial as an ultrathin light absorber in the violet-to-infrared regime,” Opt. Express 21(8), 10259–10268 (2013).
[Crossref] [PubMed]

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

2012 (1)

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

2011 (5)

D. Shreiber, M. Gupta, and R. Cravey, “Comparative study of 1-D and 2-D metamaterial lens formicrowave nondestructive evaluation of dielectric materials,” Sens. Actuators A Phys. 165(2), 256–260 (2011).
[Crossref]

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
[Crossref] [PubMed]

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

J. A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-B. Luo, Y.-K. Liu, J. A. Zapien, C. Surya, and S.-T. Lee, “Enhanced Raman scattering from vertical silicon nanowires array,” Appl. Phys. Lett. 98(18), 183108 (2011).
[Crossref]

2010 (3)

T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35(22), 3766–3768 (2010).
[Crossref] [PubMed]

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

H. Wakatsuchi, S. Greedy, C. Christopoulos, and J. Paul, “Customised broadband metamaterial absorbers for arbitrary polarisation,” Opt. Express 18(21), 22187–22198 (2010).
[Crossref] [PubMed]

2009 (2)

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarizationselective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2001 (1)

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Aydin, K.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

Bienstman, P.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[Crossref]

Brintlinger, T. H.

J. Yeom, D. Ratchford, C. R. Field, T. H. Brintlinger, and P. E. Pehrsson, “Decoupling diameter and pitch in Silicon nanowire arrays made by metal‐Assisted Chemical Etching,” Adv. Funct. Mater. 24(1), 106–116 (2014).
[Crossref]

Brueckl, H.

Butun, S.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

Cai, B.

C. Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, and Y. M. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

Chakravadhanula, V. S. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Chen, J.

J. Chen, X. Huang, G. Zerihun, Z. Hu, S. Wang, G. Wang, X. Hu, and M. Liu, “Polarization-independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances,” J. Electron. Mater. 44(11), 4269–4274 (2015).
[Crossref]

Chen, L.

C. Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, and Y. M. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

Chen, Q.

Chen, S.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Cheng, H.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Christopoulos, C.

Chui, Y. S.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Cravey, R.

D. Shreiber, M. Gupta, and R. Cravey, “Comparative study of 1-D and 2-D metamaterial lens formicrowave nondestructive evaluation of dielectric materials,” Sens. Actuators A Phys. 165(2), 256–260 (2011).
[Crossref]

Cui, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Cumming, D. R. S.

Dai, J. W.

Ding, F.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Dong, Z.

Duan, X.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Elbahri, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Fan, S.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Faupel, F.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Field, C. R.

J. Yeom, D. Ratchford, C. R. Field, T. H. Brintlinger, and P. E. Pehrsson, “Decoupling diameter and pitch in Silicon nanowire arrays made by metal‐Assisted Chemical Etching,” Adv. Funct. Mater. 24(1), 106–116 (2014).
[Crossref]

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Grant, J.

Greedy, S.

Gu, C.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Gupta, M.

D. Shreiber, M. Gupta, and R. Cravey, “Comparative study of 1-D and 2-D metamaterial lens formicrowave nondestructive evaluation of dielectric materials,” Sens. Actuators A Phys. 165(2), 256–260 (2011).
[Crossref]

Haynes, C. L.

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

He, L. F.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

He, Q.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

He, S.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

He, X.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Hedayati, M. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Hu, X.

J. Chen, X. Huang, G. Zerihun, Z. Hu, S. Wang, G. Wang, X. Hu, and M. Liu, “Polarization-independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances,” J. Electron. Mater. 44(11), 4269–4274 (2015).
[Crossref]

Hu, Z.

J. Chen, X. Huang, G. Zerihun, Z. Hu, S. Wang, G. Wang, X. Hu, and M. Liu, “Polarization-independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances,” J. Electron. Mater. 44(11), 4269–4274 (2015).
[Crossref]

Huang, J. A.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

J. A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-B. Luo, Y.-K. Liu, J. A. Zapien, C. Surya, and S.-T. Lee, “Enhanced Raman scattering from vertical silicon nanowires array,” Appl. Phys. Lett. 98(18), 183108 (2011).
[Crossref]

Huang, X.

J. Chen, X. Huang, G. Zerihun, Z. Hu, S. Wang, G. Wang, X. Hu, and M. Liu, “Polarization-independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances,” J. Electron. Mater. 44(11), 4269–4274 (2015).
[Crossref]

Huangfu, J.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Jen, Y. J.

Jia, P.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Jiang, J.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Jin, R.

Jin, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Khalid, A.

Kocer, H.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

Krishna, S.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarizationselective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, J. Y.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Lee, S. T.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Lee, S.-T.

J. A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-B. Luo, Y.-K. Liu, J. A. Zapien, C. Surya, and S.-T. Lee, “Enhanced Raman scattering from vertical silicon nanowires array,” Appl. Phys. Lett. 98(18), 183108 (2011).
[Crossref]

Li, H.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Li, J.

J. Li, Y. Zhang, R. Jin, Q. Wang, Q. Chen, and Z. Dong, “Excitation of plasmon toroidal mode at optical frequencies by angle-resolved reflection,” Opt. Lett. 39(23), 6683–6686 (2014).
[Crossref] [PubMed]

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Li, Z.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

Liao, H. S.

Lin, M. J.

Liu, M.

J. Chen, X. Huang, G. Zerihun, Z. Hu, S. Wang, G. Wang, X. Hu, and M. Liu, “Polarization-independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances,” J. Electron. Mater. 44(11), 4269–4274 (2015).
[Crossref]

Liu, Y.-K.

J. A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-B. Luo, Y.-K. Liu, J. A. Zapien, C. Surya, and S.-T. Lee, “Enhanced Raman scattering from vertical silicon nanowires array,” Appl. Phys. Lett. 98(18), 183108 (2011).
[Crossref]

Luo, L.-B.

J. A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-B. Luo, Y.-K. Liu, J. A. Zapien, C. Surya, and S.-T. Lee, “Enhanced Raman scattering from vertical silicon nanowires array,” Appl. Phys. Lett. 98(18), 183108 (2011).
[Crossref]

Ma, Q.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Ma, Y.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
[Crossref] [PubMed]

Ma, Z.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Maes, B.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[Crossref]

Maier, T.

Min, C.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Painter, O.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarizationselective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Palacios, E.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

Paul, J.

Pehrsson, P. E.

J. Yeom, D. Ratchford, C. R. Field, T. H. Brintlinger, and P. E. Pehrsson, “Decoupling diameter and pitch in Silicon nanowire arrays made by metal‐Assisted Chemical Etching,” Adv. Funct. Mater. 24(1), 106–116 (2014).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Peumans, P.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Ran, L.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Ratchford, D.

J. Yeom, D. Ratchford, C. R. Field, T. H. Brintlinger, and P. E. Pehrsson, “Decoupling diameter and pitch in Silicon nanowire arrays made by metal‐Assisted Chemical Etching,” Adv. Funct. Mater. 24(1), 106–116 (2014).
[Crossref]

Rosenberg, J.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarizationselective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Saha, S.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shen, H.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[Crossref]

Shenoi, R. V.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarizationselective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Shi, C.

C. Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, and Y. M. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

Shreiber, D.

D. Shreiber, M. Gupta, and R. Cravey, “Comparative study of 1-D and 2-D metamaterial lens formicrowave nondestructive evaluation of dielectric materials,” Sens. Actuators A Phys. 165(2), 256–260 (2011).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Sun, W.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Surya, C.

J. A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-B. Luo, Y.-K. Liu, J. A. Zapien, C. Surya, and S.-T. Lee, “Enhanced Raman scattering from vertical silicon nanowires array,” Appl. Phys. Lett. 98(18), 183108 (2011).
[Crossref]

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Tian, J.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Van Duyne, R. P.

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

Vandervelde, T. E.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarizationselective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Veronis, G.

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

Wakatsuchi, H.

Wang, G.

J. Chen, X. Huang, G. Zerihun, Z. Hu, S. Wang, G. Wang, X. Hu, and M. Liu, “Polarization-independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances,” J. Electron. Mater. 44(11), 4269–4274 (2015).
[Crossref]

Wang, Q.

Wang, S.

J. Chen, X. Huang, G. Zerihun, Z. Hu, S. Wang, G. Wang, X. Hu, and M. Liu, “Polarization-independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances,” J. Electron. Mater. 44(11), 4269–4274 (2015).
[Crossref]

Wang, Y. Q.

C. Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, and Y. M. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

Wang, Z.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Wong, T. L.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Wu, F.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Wu, H. M.

Xu, K.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Yan, S.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Yang, H.

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

Ye, D.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Yeom, J.

J. Yeom, D. Ratchford, C. R. Field, T. H. Brintlinger, and P. E. Pehrsson, “Decoupling diameter and pitch in Silicon nanowire arrays made by metal‐Assisted Chemical Etching,” Adv. Funct. Mater. 24(1), 106–116 (2014).
[Crossref]

Zang, X. F.

C. Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, and Y. M. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

Zapien, J. A.

J. A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-B. Luo, Y.-K. Liu, J. A. Zapien, C. Surya, and S.-T. Lee, “Enhanced Raman scattering from vertical silicon nanowires array,” Appl. Phys. Lett. 98(18), 183108 (2011).
[Crossref]

Zaporojtchenko, V.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Zerihun, G.

J. Chen, X. Huang, G. Zerihun, Z. Hu, S. Wang, G. Wang, X. Hu, and M. Liu, “Polarization-independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances,” J. Electron. Mater. 44(11), 4269–4274 (2015).
[Crossref]

Zhang, Q.

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Zhang, W. J.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Zhang, X. J.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Zhang, X.-J.

J. A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-B. Luo, Y.-K. Liu, J. A. Zapien, C. Surya, and S.-T. Lee, “Enhanced Raman scattering from vertical silicon nanowires array,” Appl. Phys. Lett. 98(18), 183108 (2011).
[Crossref]

Zhang, Y.

Zhao, Y. Q.

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Zhao, Y.-Q.

J. A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-B. Luo, Y.-K. Liu, J. A. Zapien, C. Surya, and S.-T. Lee, “Enhanced Raman scattering from vertical silicon nanowires array,” Appl. Phys. Lett. 98(18), 183108 (2011).
[Crossref]

Zhou, L.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhu, J.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhu, Y. M.

C. Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, and Y. M. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

Adv. Funct. Mater. (1)

J. Yeom, D. Ratchford, C. R. Field, T. H. Brintlinger, and P. E. Pehrsson, “Decoupling diameter and pitch in Silicon nanowire arrays made by metal‐Assisted Chemical Etching,” Adv. Funct. Mater. 24(1), 106–116 (2014).
[Crossref]

Adv. Mater. (1)

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

S. Chen, H. Cheng, H. Yang, J. Li, X. Duan, C. Gu, and J. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011).
[Crossref]

J. A. Huang, Y.-Q. Zhao, X.-J. Zhang, L.-B. Luo, Y.-K. Liu, J. A. Zapien, C. Surya, and S.-T. Lee, “Enhanced Raman scattering from vertical silicon nanowires array,” Appl. Phys. Lett. 98(18), 183108 (2011).
[Crossref]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarizationselective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

C. Shi, X. F. Zang, Y. Q. Wang, L. Chen, B. Cai, and Y. M. Zhu, “A polarization-independent broadband terahertz absorber,” Appl. Phys. Lett. 105(3), 031104 (2014).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

J. Appl. Phys. (1)

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[Crossref]

J. Electron. Mater. (1)

J. Chen, X. Huang, G. Zerihun, Z. Hu, S. Wang, G. Wang, X. Hu, and M. Liu, “Polarization-independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances,” J. Electron. Mater. 44(11), 4269–4274 (2015).
[Crossref]

J. Phys. Chem. B (1)

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

Nano Lett. (1)

J. A. Huang, Y. Q. Zhao, X. J. Zhang, L. F. He, T. L. Wong, Y. S. Chui, W. J. Zhang, and S. T. Lee, “Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection,” Nano Lett. 13(11), 5039–5045 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

X. He, S. Yan, Q. Ma, Q. Zhang, P. Jia, F. Wu, and J. Jiang, “Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials,” Opt. Commun. 340, 44–49 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

Science (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

D. Shreiber, M. Gupta, and R. Cravey, “Comparative study of 1-D and 2-D metamaterial lens formicrowave nondestructive evaluation of dielectric materials,” Sens. Actuators A Phys. 165(2), 256–260 (2011).
[Crossref]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), p. 290.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Structure of the plasmonic absorber. SEM images of (a) a top view and (b) a lateral view, where the scale bars are 200 nm. (c) A zoom-in figure for a nanorod with the dimensions of several nanoparticles and the distance between two adjacent nanoparticles. (d) Three-dimensional schematic of one unit cell corresponding to the red dashed lines in (a) and (b), with the dimensions of L = 519.6 nm, P = 300 nm, r1 = 55 nm, r2 = 60 nm, h1 = 5 nm, h2 = 850 nm, h3 = 5 nm, and h4 = 0.1 mm, respectively. Note that the gold layer with 5 nm thickness in Fig. 1(c) only as a schematic. In the below simulations, it is regarded as consisting of AuNPs with the diameters of 16 nm and the adjacent spacing of 4 nm.
Fig. 2
Fig. 2 Sketch maps of angle-resolved (a) reflection and (b) transmission setups.
Fig. 3
Fig. 3 Experimental reflection (the R curve), transmission (the T curve) and absorption (the A curve) as functions of wavelength under 0-degree polarization (φ = 0°).
Fig. 4
Fig. 4 Experimental absorption as a function of wavelength for different polarization angles. The inset shows the top view of the structure for different polarization angles.
Fig. 5
Fig. 5 Experimental absorption of the SiNWs sample (sample IV) as a function of wavelength for different polarization angles.
Fig. 6
Fig. 6 Simulated absorption as a function of wavelength for different polarization angles at normal incidence.
Fig. 7
Fig. 7 Experimental absorption as a function of wavelength for different incident angles. The inset represents the front view of the structure for different incident angles.
Fig. 8
Fig. 8 Experimental absorption as a function of wavelength for the (a) 20-degree and (b) 30-degree incidence with different polarization angles, respectively.
Fig. 9
Fig. 9 Electrical field intensity distributions in the x-y cross sections with (a) z = −350 nm and (b) z = −700 nm, and (e) the x-z vertical sections passing through the z axis for the incident wavelength λ = 530 nm. Electrical field intensity distributions in the x-y cross sections with (c) z = −350 nm and (d) z = −700 nm, and (h) the x-z vertical section passing through the z axis for the incident wavelength λ = 815 nm. (f) Energy density and (g) energy flow density distributions in the x-z vertical section passing through the z axis for the incident wavelength λ = 530 nm. (i) Energy density and (j) energy flow density distributions in the x-z vertical sections passing through the z axis for the incident wavelength λ = 815 nm. The incident light is x-polarized.

Metrics