Abstract

A three-stage dual-frequency laser signal amplification system is presented. An output from a narrow-linewidth Nd:YAG nonplanar ring-oscillator (NPRO) is split into two parts, one of them is frequency shifted by an acoustooptic modulator (AOM) then coupled into a single mode optical fiber. The other part is coupled into another single mode fiber then combined with the frequency-shifted beam with a 2 to 1 single mode fiber coupler. The combined beam has a power of 20 mW containing two frequency components with frequency separation of 150 ± 25 MHz. The dual-frequency signal is amplified via a three-stage Yb3+-doped diode pumped fiber power amplifier. The maximum amplified power is 50.3 W corresponding to a slope efficiency of 73.72% of the last stage. The modulation depth and signal to noise ratio (SNR) of the beat signal are well maintained in the amplifying process. The dual-frequency laser fiber power amplifier provides robust optical carried RF signal with high power and low noise.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High brightness, high SNR radio-frequency signal generated by an all-fibered linear-polarization single-mode dual-frequency fiber laser

Xiang Zhao, Hui Shen, Gang Bai, Jingpu Zhang, Xiaolong Chen, Yifeng Yang, Yunfeng Qi, Bing He, and Jun Zhou
Opt. Express 25(22) 27051-27059 (2017)

434 W all-fiber linear-polarization dual-frequency Yb-doped fiber laser carrying low-noise radio frequency signal

Long Huang, Lei Li, Pengfei Ma, Xiaolin Wang, and Pu Zhou
Opt. Express 24(23) 26722-26731 (2016)

Second-harmonic generation of a dual-frequency laser in a MgO:PPLN crystal

Ying Kang, Suhui Yang, Marc Brunel, Lijun Cheng, Changming Zhao, and Haiyang Zhang
Appl. Opt. 56(11) 2968-2972 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. J. Mullen and V. M. Contarino, “Hybrid lidar-radar: seeing through the scatter,” IEEE J. Microw. Mag. 1(3), 42–48 (2000).
    [Crossref]
  2. R. Diaz, S. C. Chan, and J. M. Liu, “Lidar detection using a dual-frequency source,” Opt. Lett. 31(24), 3600–3602 (2006).
    [Crossref] [PubMed]
  3. H. J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” J. Nucl. Instr. Meth. Phys. Res. A 575(3), 395–401 (2007).
    [Crossref]
  4. G. Pillet, L. Morvan, D. Dolfi, and J. P. Huignard, “Wideband dual-frequency lidar-radar for high-resolution ranging, profilometry, and Doppler measurement,” Proc. SPIE 7114, 71140E (2008).
    [Crossref]
  5. N. A. C. Hassan, K. M. Yusof, and S. K. S. Yusof, “Ranging estimation using dual-frequency doppler technique,” IT Convergence and Security (ICITCS), 2015 5th International Conference on. IEEE, 2015, pp.1–5.
    [Crossref]
  6. V. Vercesi, D. Onori, F. Laghezza, F. Scotti, A. Bogoni, and M. Scaffardi, “Frequency-agile dual-frequency lidar for integrated coherent radar-lidar architectures,” Opt. Lett. 40(7), 1358–1361 (2015).
    [Crossref] [PubMed]
  7. G. A. Blackburn, “Remote sensing of forest pigments using airborne imaging spectrometer and LIDARimagery,” J. Remote Sens. Environ. 82(2–3), 311–321 (2002).
    [Crossref]
  8. G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation,” IEEE J.Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
    [Crossref]
  9. G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Opticalgeneration and distribution of continuously tunable millimeter-wavesignals using an optical phase modulator,” J. Lightwave Technol. 23(9), 2687–2695 (2005).
    [Crossref]
  10. U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjaer, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE J. Trans. Microw. Theory Tech. 46(5), 458–468 (1998).
    [Crossref]
  11. X. Chen, J. Yao, and Z. Deng, “Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser,” Opt. Lett. 30(16), 2068–2070 (2005).
    [Crossref] [PubMed]
  12. M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S. P. Han, C. W. Lee, Y. A. Leem, D. S. Yee, H. S. Chun, and K. H. Park, “Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express 18(12), 12291–12297 (2010).
    [Crossref] [PubMed]
  13. A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz Photonic synthesizer using a dual-polarization microlaser,” IEEE J. Photon. Tech. L 22(23), 1738–1740 (2010).
    [Crossref]
  14. Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
    [Crossref]
  15. M. R. K. Soltanian, A. I. Sadegh, S. E. Alavi, and H. Ahmad, “Dual-wavelength erbium-doped fiber laser to generate terahertz radiation using photonic crystal fiber,” J. Lightwave Technol. 33(24), 5038–5046 (2015).
    [Crossref]
  16. A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33(3), 307–313 (1997).
    [Crossref]

2015 (2)

2011 (1)

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
[Crossref]

2010 (2)

2008 (1)

G. Pillet, L. Morvan, D. Dolfi, and J. P. Huignard, “Wideband dual-frequency lidar-radar for high-resolution ranging, profilometry, and Doppler measurement,” Proc. SPIE 7114, 71140E (2008).
[Crossref]

2007 (1)

H. J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” J. Nucl. Instr. Meth. Phys. Res. A 575(3), 395–401 (2007).
[Crossref]

2006 (1)

2005 (3)

2002 (1)

G. A. Blackburn, “Remote sensing of forest pigments using airborne imaging spectrometer and LIDARimagery,” J. Remote Sens. Environ. 82(2–3), 311–321 (2002).
[Crossref]

2000 (1)

L. J. Mullen and V. M. Contarino, “Hybrid lidar-radar: seeing through the scatter,” IEEE J. Microw. Mag. 1(3), 42–48 (2000).
[Crossref]

1998 (1)

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjaer, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE J. Trans. Microw. Theory Tech. 46(5), 458–468 (1998).
[Crossref]

1997 (1)

A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33(3), 307–313 (1997).
[Crossref]

Ahmad, H.

Alavi, S. E.

Bélisle, C.

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Opticalgeneration and distribution of continuously tunable millimeter-wavesignals using an optical phase modulator,” J. Lightwave Technol. 23(9), 2687–2695 (2005).
[Crossref]

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation,” IEEE J.Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

Blackburn, G. A.

G. A. Blackburn, “Remote sensing of forest pigments using airborne imaging spectrometer and LIDARimagery,” J. Remote Sens. Environ. 82(2–3), 311–321 (2002).
[Crossref]

Bogoni, A.

Bondu, F.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz Photonic synthesizer using a dual-polarization microlaser,” IEEE J. Photon. Tech. L 22(23), 1738–1740 (2010).
[Crossref]

Brunel, M.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz Photonic synthesizer using a dual-polarization microlaser,” IEEE J. Photon. Tech. L 22(23), 1738–1740 (2010).
[Crossref]

Chan, S. C.

Chen, X.

Chun, H. S.

Contarino, V. M.

L. J. Mullen and V. M. Contarino, “Hybrid lidar-radar: seeing through the scatter,” IEEE J. Microw. Mag. 1(3), 42–48 (2000).
[Crossref]

Deng, Z.

Diaz, R.

Dolfi, D.

G. Pillet, L. Morvan, D. Dolfi, and J. P. Huignard, “Wideband dual-frequency lidar-radar for high-resolution ranging, profilometry, and Doppler measurement,” Proc. SPIE 7114, 71140E (2008).
[Crossref]

Frein, L.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz Photonic synthesizer using a dual-polarization microlaser,” IEEE J. Photon. Tech. L 22(23), 1738–1740 (2010).
[Crossref]

Gliese, U.

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjaer, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE J. Trans. Microw. Theory Tech. 46(5), 458–468 (1998).
[Crossref]

Han, S. P.

Hardy, A.

A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33(3), 307–313 (1997).
[Crossref]

Huignard, J. P.

G. Pillet, L. Morvan, D. Dolfi, and J. P. Huignard, “Wideband dual-frequency lidar-radar for high-resolution ranging, profilometry, and Doppler measurement,” Proc. SPIE 7114, 71140E (2008).
[Crossref]

Jeon, M. Y.

Jeong, J. S.

Juan, Y. S.

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
[Crossref]

Kim, N.

Laghezza, F.

Lee, C. W.

Leem, Y. A.

Lin, F. Y.

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
[Crossref]

Liu, J. M.

Merlet, T.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz Photonic synthesizer using a dual-polarization microlaser,” IEEE J. Photon. Tech. L 22(23), 1738–1740 (2010).
[Crossref]

Morvan, L.

G. Pillet, L. Morvan, D. Dolfi, and J. P. Huignard, “Wideband dual-frequency lidar-radar for high-resolution ranging, profilometry, and Doppler measurement,” Proc. SPIE 7114, 71140E (2008).
[Crossref]

Mullen, L. J.

L. J. Mullen and V. M. Contarino, “Hybrid lidar-radar: seeing through the scatter,” IEEE J. Microw. Mag. 1(3), 42–48 (2000).
[Crossref]

Nielsen, T. N.

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjaer, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE J. Trans. Microw. Theory Tech. 46(5), 458–468 (1998).
[Crossref]

Nørskov, S.

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjaer, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE J. Trans. Microw. Theory Tech. 46(5), 458–468 (1998).
[Crossref]

Nyberg, S.

H. J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” J. Nucl. Instr. Meth. Phys. Res. A 575(3), 395–401 (2007).
[Crossref]

Onori, D.

Oron, R.

A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33(3), 307–313 (1997).
[Crossref]

Paquet, S.

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation,” IEEE J.Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Opticalgeneration and distribution of continuously tunable millimeter-wavesignals using an optical phase modulator,” J. Lightwave Technol. 23(9), 2687–2695 (2005).
[Crossref]

Park, K. H.

Pillet, G.

G. Pillet, L. Morvan, D. Dolfi, and J. P. Huignard, “Wideband dual-frequency lidar-radar for high-resolution ranging, profilometry, and Doppler measurement,” Proc. SPIE 7114, 71140E (2008).
[Crossref]

Qi, G.

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation,” IEEE J.Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Opticalgeneration and distribution of continuously tunable millimeter-wavesignals using an optical phase modulator,” J. Lightwave Technol. 23(9), 2687–2695 (2005).
[Crossref]

Riles, K.

H. J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” J. Nucl. Instr. Meth. Phys. Res. A 575(3), 395–401 (2007).
[Crossref]

Rolland, A.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz Photonic synthesizer using a dual-polarization microlaser,” IEEE J. Photon. Tech. L 22(23), 1738–1740 (2010).
[Crossref]

Sadegh, A. I.

Scaffardi, M.

Scotti, F.

Seregelyi, J.

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation,” IEEE J.Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Opticalgeneration and distribution of continuously tunable millimeter-wavesignals using an optical phase modulator,” J. Lightwave Technol. 23(9), 2687–2695 (2005).
[Crossref]

Shin, J.

Soltanian, M. R. K.

Stubkjaer, K. E.

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjaer, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE J. Trans. Microw. Theory Tech. 46(5), 458–468 (1998).
[Crossref]

Vallet, M.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz Photonic synthesizer using a dual-polarization microlaser,” IEEE J. Photon. Tech. L 22(23), 1738–1740 (2010).
[Crossref]

Vercesi, V.

Yang, H. J.

H. J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” J. Nucl. Instr. Meth. Phys. Res. A 575(3), 395–401 (2007).
[Crossref]

Yao, J.

Yao, J. P.

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation,” IEEE J.Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Opticalgeneration and distribution of continuously tunable millimeter-wavesignals using an optical phase modulator,” J. Lightwave Technol. 23(9), 2687–2695 (2005).
[Crossref]

Yee, D. S.

IEEE J. Microw. Mag. (1)

L. J. Mullen and V. M. Contarino, “Hybrid lidar-radar: seeing through the scatter,” IEEE J. Microw. Mag. 1(3), 42–48 (2000).
[Crossref]

IEEE J. Photon. Tech. L (1)

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40-GHz Photonic synthesizer using a dual-polarization microlaser,” IEEE J. Photon. Tech. L 22(23), 1738–1740 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Hardy and R. Oron, “Signal amplification in strongly pumped fiber amplifiers,” IEEE J. Quantum Electron. 33(3), 307–313 (1997).
[Crossref]

IEEE J. Trans. Microw. Theory Tech. (1)

U. Gliese, T. N. Nielsen, S. Nørskov, and K. E. Stubkjaer, “Multifunctional fiber-optic microwave links based on remote heterodyne detection,” IEEE J. Trans. Microw. Theory Tech. 46(5), 458–468 (1998).
[Crossref]

IEEE J.Trans. Microw. Theory Tech. (1)

G. Qi, J. P. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, “Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation,” IEEE J.Trans. Microw. Theory Tech. 53(10), 3090–3097 (2005).
[Crossref]

IEEE Photon. J. (1)

Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011).
[Crossref]

J. Lightwave Technol. (2)

J. Nucl. Instr. Meth. Phys. Res. A (1)

H. J. Yang, S. Nyberg, and K. Riles, “High-precision absolute distance measurement using dual-laser frequency scanned interferometry under realistic conditions,” J. Nucl. Instr. Meth. Phys. Res. A 575(3), 395–401 (2007).
[Crossref]

J. Remote Sens. Environ. (1)

G. A. Blackburn, “Remote sensing of forest pigments using airborne imaging spectrometer and LIDARimagery,” J. Remote Sens. Environ. 82(2–3), 311–321 (2002).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (1)

G. Pillet, L. Morvan, D. Dolfi, and J. P. Huignard, “Wideband dual-frequency lidar-radar for high-resolution ranging, profilometry, and Doppler measurement,” Proc. SPIE 7114, 71140E (2008).
[Crossref]

Other (1)

N. A. C. Hassan, K. M. Yusof, and S. K. S. Yusof, “Ranging estimation using dual-frequency doppler technique,” IT Convergence and Security (ICITCS), 2015 5th International Conference on. IEEE, 2015, pp.1–5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the dual-frequency seed laser.
Fig. 2
Fig. 2 Spectrum and oscillogram of the beat note.
Fig. 3
Fig. 3 Beat frequency versus time before amplification.
Fig. 4
Fig. 4 Pump power and signal power versus fiber length.
Fig. 5
Fig. 5 Configuration of the three-stage dual-frequency laser fiber power amplifier.
Fig. 6
Fig. 6 Output power of the third-stage amplifier versus pump power.
Fig. 7
Fig. 7 Spectrum and oscillogram of the amplified dual frequency signal at 20 W.
Fig. 8
Fig. 8 Beat frequency of the amplified signal versus time.
Fig. 9
Fig. 9 Beat signal and phase noise (a) before amplification; (b) after amplification.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d M = V max V min V max + V min
S td = 1 f ¯ 1 N1 N ( f f ¯ ) 2
d P p ( z ) dz =[ ( σ p e + σ p a ) N 2 ( r,θ,z ) σ p a N( r,θ,z ) ] P p ( z ) Γ p α p P p ( z )
d P s ( z ) dz =[ ( σ s e + σ s a ) N 2 ( r,θ,z ) σ s a N( r,θ,z ) ] P s ( z ) Γ s α s P s ( z )

Metrics