Abstract

We perform a comprehensive theoretical assessment of fabrication tolerances for a 2D eight-level binary phase grating that is the central element of a multi-focal plane 3D microscopy apparatus. The fabrication process encompasses a sequence of aligned lithography and etching steps with stringent requirements on layer-to-layer overlay, etch depth and etched sidewall slope, which we show are nonetheless achievable with state-of-the-art optical lithography and etching tools. We also perform broadband spectroscopic diffraction pattern measurements on a fabricated grating, and show how such measurements can be valuable in determining small fabrication errors in diffractive optical elements.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multilevel blazed gratings in resonance domain: an alternative to the classical fabrication approach

M. Oliva, T. Harzendorf, D. Michaelis, U. D. Zeitner, and A. Tünnermann
Opt. Express 19(15) 14735-14745 (2011)

Astigmatic multifocus microscopy enables deep 3D super-resolved imaging

Laura Oudjedi, Jean-Bernard Fiche, Sara Abrahamsson, Laurent Mazenq, Aurélie Lecestre, Pierre-François Calmon, Aline Cerf, and Marcelo Nöllmann
Biomed. Opt. Express 7(6) 2163-2173 (2016)

Efficient fabrication method of nano-grating for 3D holographic display with full parallax views

Wenqiang Wan, Wen Qiao, Wenbin Huang, Ming Zhu, Zongbao Fang, Donglin Pu, Yan Ye, Yanhua Liu, and Linsen Chen
Opt. Express 24(6) 6203-6212 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Wiley-VCH, 1998).
  2. D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test, Vol. 62, (SPIE Press, 2004).
  3. J. N. Mait, “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A 12, 2145–2158 (1995).
    [Crossref]
  4. G. Kim, J. A. Domínguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20, 2814–2823 (2012).
    [Crossref] [PubMed]
  5. S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. Agard, M. Daha, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10, 60–63 (2013).
    [Crossref]
  6. S. Abrahamsson, M. McQuilken, S. B. Mehta, A. Verma, J. Larsch, R. Ilic, R. Heintzmann, C. I. Bargmann, A. S. Gladfelter, and R. Oldenbourg, “MultiFocus Polarization Microscope (MF-PolScope) for 3D polarization imaging of up to 25 focal planes simultaneously,” Opt. Express 23, 7734–7754 (2015).
    [Crossref]
  7. A. Vasara, M. R. Taghizadeh, J. Turunen, J. Westerholm, E. Noponen, H. Ichikawa, J. M. Miller, T. Jaakkola, and S. Kuisma, “Binary surface-relief gratings for array illumination in digitaloptics,” Appl. Opt. 31, 3320–3336 (1992).
    [Crossref]
  8. M. W. Farn and W. B. Veldkamp, “Binary optics,” in Handbook of Optics (McGraw-Hill, 1995).
  9. G. H. Swanson, “Binary Optics Technology : Theoretical Limits on the Dif fraction Ef ficiency of Multilevel Diffractive Optical Elements,” Tech. Rep., MIT (1991).
  10. J. M. Miller, M. R. Taghizadeh, J. Turunen, and N. Ross, “Multilevel-grating array generators: fabrication error analysis and experiments,” Appl. Opt. 32, 2519–2525 (1993).
    [Crossref]
  11. S. Abrahamsson, R. Ilic, J. Wisniewski, B. Mehl, L. Yu, L. Chen, M. Davanco, L. Oudjedi, J.-B. Fiche, B. Hajj, X. Jin, J. Pulupa, C. Cho, M. Mir, M. E. Beheiry, X. Darzacq, M. Nollmann, M. Dahan, C. Wu, T. Lionnet, J. A. Liddle, and C. I. Bargmann, “Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging,” Biomed. Opt. Express 7, 855–869 (2016).
    [Crossref]
  12. D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” App. Opt. 34, 2462–2468 (1995).
    [Crossref]
  13. J. Garzón, D. Duque, A. Alean, M. Toledo, J. Meneses, and T. Gharbi, “Diffractive elements performance in chromatic confocal microscopy,” J. Phys.: Conf. Series274, 012069 (2011).
  14. J. Choi, A. A. Cruz-Cabrera, and A. Tanbakuchi, “Practical implementation of broadband diffractive optical elements,” in SPIE MOEMS-MEMS (SPIE, 2013), paper 86120G.
  15. P. M. Blanchard and A. H. Greenaway, “Simultaneous multiplane imaging with a distorted diffraction grating,” Appl. Opt. 38, 6692–6699 (1999).
    [Crossref]
  16. J. A. Cox, B. S. Fritz, and T. R. Werner, “Process error limitations on binary optics performance,” inSan Diego,’91, San Diego, CA pp. 80–88 (1991).
  17. A. J. Caley, M. Braun, A. J. Waddie, and M. R. Taghizadeh, “Analysis of multimask fabrication errors for diffractive optical elements,” Appl. Opt. 46, 2180–2188 (2007).
    [Crossref]
  18. E. N. Glytsis, M. E. Harrigan, T. K. Gaylord, and K. Hirayama, “Effects of fabrication errors on the performance of cylindrical diffractive lenses: rigorous boundary-element method and scalar approximation,” Appl. Opt. 37, 6591–6602 (1998).
    [Crossref]
  19. M. S. Mirotznik, D. W. Prather, J. N. Mait, W. A. Beck, S. Shi, and X. Gao, “Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method,” Appl. Opt. 39, 2871–2880 (2000).
    [Crossref]

2016 (1)

2015 (1)

2013 (1)

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. Agard, M. Daha, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10, 60–63 (2013).
[Crossref]

2012 (1)

2007 (1)

2000 (1)

1999 (1)

1998 (1)

1995 (2)

J. N. Mait, “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A 12, 2145–2158 (1995).
[Crossref]

D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” App. Opt. 34, 2462–2468 (1995).
[Crossref]

1993 (1)

1992 (1)

Abrahamsson, S.

Agard, D.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. Agard, M. Daha, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10, 60–63 (2013).
[Crossref]

Alean, A.

J. Garzón, D. Duque, A. Alean, M. Toledo, J. Meneses, and T. Gharbi, “Diffractive elements performance in chromatic confocal microscopy,” J. Phys.: Conf. Series274, 012069 (2011).

Bargmann, C. I.

Beck, W. A.

Beheiry, M. E.

Blanchard, P. M.

Braun, M.

Caley, A. J.

Chen, J.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. Agard, M. Daha, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10, 60–63 (2013).
[Crossref]

Chen, L.

Cho, C.

Choi, J.

J. Choi, A. A. Cruz-Cabrera, and A. Tanbakuchi, “Practical implementation of broadband diffractive optical elements,” in SPIE MOEMS-MEMS (SPIE, 2013), paper 86120G.

Cox, J. A.

J. A. Cox, B. S. Fritz, and T. R. Werner, “Process error limitations on binary optics performance,” inSan Diego,’91, San Diego, CA pp. 80–88 (1991).

Cruz-Cabrera, A. A.

J. Choi, A. A. Cruz-Cabrera, and A. Tanbakuchi, “Practical implementation of broadband diffractive optical elements,” in SPIE MOEMS-MEMS (SPIE, 2013), paper 86120G.

Daha, M.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. Agard, M. Daha, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10, 60–63 (2013).
[Crossref]

Dahan, M.

Darzacq, C. D.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. Agard, M. Daha, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10, 60–63 (2013).
[Crossref]

Darzacq, X.

S. Abrahamsson, R. Ilic, J. Wisniewski, B. Mehl, L. Yu, L. Chen, M. Davanco, L. Oudjedi, J.-B. Fiche, B. Hajj, X. Jin, J. Pulupa, C. Cho, M. Mir, M. E. Beheiry, X. Darzacq, M. Nollmann, M. Dahan, C. Wu, T. Lionnet, J. A. Liddle, and C. I. Bargmann, “Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging,” Biomed. Opt. Express 7, 855–869 (2016).
[Crossref]

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. Agard, M. Daha, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10, 60–63 (2013).
[Crossref]

Davanco, M.

Domínguez-Caballero, J. A.

Duque, D.

J. Garzón, D. Duque, A. Alean, M. Toledo, J. Meneses, and T. Gharbi, “Diffractive elements performance in chromatic confocal microscopy,” J. Phys.: Conf. Series274, 012069 (2011).

Faklis, D.

D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” App. Opt. 34, 2462–2468 (1995).
[Crossref]

Farn, M. W.

M. W. Farn and W. B. Veldkamp, “Binary optics,” in Handbook of Optics (McGraw-Hill, 1995).

Fiche, J.-B.

Fritz, B. S.

J. A. Cox, B. S. Fritz, and T. R. Werner, “Process error limitations on binary optics performance,” inSan Diego,’91, San Diego, CA pp. 80–88 (1991).

Gao, X.

Garzón, J.

J. Garzón, D. Duque, A. Alean, M. Toledo, J. Meneses, and T. Gharbi, “Diffractive elements performance in chromatic confocal microscopy,” J. Phys.: Conf. Series274, 012069 (2011).

Gaylord, T. K.

Gharbi, T.

J. Garzón, D. Duque, A. Alean, M. Toledo, J. Meneses, and T. Gharbi, “Diffractive elements performance in chromatic confocal microscopy,” J. Phys.: Conf. Series274, 012069 (2011).

Gladfelter, A. S.

Glytsis, E. N.

Greenaway, A. H.

Gustafsson, M. G.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. Agard, M. Daha, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10, 60–63 (2013).
[Crossref]

Hajj, B.

S. Abrahamsson, R. Ilic, J. Wisniewski, B. Mehl, L. Yu, L. Chen, M. Davanco, L. Oudjedi, J.-B. Fiche, B. Hajj, X. Jin, J. Pulupa, C. Cho, M. Mir, M. E. Beheiry, X. Darzacq, M. Nollmann, M. Dahan, C. Wu, T. Lionnet, J. A. Liddle, and C. I. Bargmann, “Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging,” Biomed. Opt. Express 7, 855–869 (2016).
[Crossref]

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. Agard, M. Daha, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10, 60–63 (2013).
[Crossref]

Harrigan, M. E.

Heintzmann, R.

Hirayama, K.

Ichikawa, H.

Ilic, R.

Jaakkola, T.

Jin, X.

Kathman, A. D.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test, Vol. 62, (SPIE Press, 2004).

Katsov, A. Y.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. Agard, M. Daha, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10, 60–63 (2013).
[Crossref]

Kim, G.

Kuisma, S.

Larsch, J.

Liddle, J. A.

Lionnet, T.

Mait, J. N.

McQuilken, M.

Mehl, B.

Mehta, S. B.

Meneses, J.

J. Garzón, D. Duque, A. Alean, M. Toledo, J. Meneses, and T. Gharbi, “Diffractive elements performance in chromatic confocal microscopy,” J. Phys.: Conf. Series274, 012069 (2011).

Menon, R.

Miller, J. M.

Mir, M.

Mirotznik, M. S.

Mizuguchi, G.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. Agard, M. Daha, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10, 60–63 (2013).
[Crossref]

Morris, G. M.

D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” App. Opt. 34, 2462–2468 (1995).
[Crossref]

Mueller, F.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. Agard, M. Daha, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10, 60–63 (2013).
[Crossref]

Nollmann, M.

Noponen, E.

O’Shea, D. C.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test, Vol. 62, (SPIE Press, 2004).

Oldenbourg, R.

Oudjedi, L.

Prather, D. W.

Pulupa, J.

Ross, N.

Shi, S.

Soule, P.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. Agard, M. Daha, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10, 60–63 (2013).
[Crossref]

Stallinga, S.

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. Agard, M. Daha, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10, 60–63 (2013).
[Crossref]

Suleski, T. J.

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test, Vol. 62, (SPIE Press, 2004).

Swanson, G. H.

G. H. Swanson, “Binary Optics Technology : Theoretical Limits on the Dif fraction Ef ficiency of Multilevel Diffractive Optical Elements,” Tech. Rep., MIT (1991).

Taghizadeh, M. R.

Tanbakuchi, A.

J. Choi, A. A. Cruz-Cabrera, and A. Tanbakuchi, “Practical implementation of broadband diffractive optical elements,” in SPIE MOEMS-MEMS (SPIE, 2013), paper 86120G.

Toledo, M.

J. Garzón, D. Duque, A. Alean, M. Toledo, J. Meneses, and T. Gharbi, “Diffractive elements performance in chromatic confocal microscopy,” J. Phys.: Conf. Series274, 012069 (2011).

Turunen, J.

Vasara, A.

Veldkamp, W. B.

M. W. Farn and W. B. Veldkamp, “Binary optics,” in Handbook of Optics (McGraw-Hill, 1995).

Verma, A.

Waddie, A. J.

Werner, T. R.

J. A. Cox, B. S. Fritz, and T. R. Werner, “Process error limitations on binary optics performance,” inSan Diego,’91, San Diego, CA pp. 80–88 (1991).

Westerholm, J.

Wisniewski, J.

S. Abrahamsson, R. Ilic, J. Wisniewski, B. Mehl, L. Yu, L. Chen, M. Davanco, L. Oudjedi, J.-B. Fiche, B. Hajj, X. Jin, J. Pulupa, C. Cho, M. Mir, M. E. Beheiry, X. Darzacq, M. Nollmann, M. Dahan, C. Wu, T. Lionnet, J. A. Liddle, and C. I. Bargmann, “Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging,” Biomed. Opt. Express 7, 855–869 (2016).
[Crossref]

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. Agard, M. Daha, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10, 60–63 (2013).
[Crossref]

Wu, C.

S. Abrahamsson, R. Ilic, J. Wisniewski, B. Mehl, L. Yu, L. Chen, M. Davanco, L. Oudjedi, J.-B. Fiche, B. Hajj, X. Jin, J. Pulupa, C. Cho, M. Mir, M. E. Beheiry, X. Darzacq, M. Nollmann, M. Dahan, C. Wu, T. Lionnet, J. A. Liddle, and C. I. Bargmann, “Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging,” Biomed. Opt. Express 7, 855–869 (2016).
[Crossref]

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. Agard, M. Daha, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10, 60–63 (2013).
[Crossref]

Wyrowski, F.

J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Wiley-VCH, 1998).

Yu, L.

App. Opt. (1)

D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” App. Opt. 34, 2462–2468 (1995).
[Crossref]

Appl. Opt. (6)

Biomed. Opt. Express (1)

J. Opt. Soc. Am. A (1)

Nat. Methods (1)

S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. D. Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. Agard, M. Daha, and M. G. Gustafsson, “Fast multicolor 3D imaging using aberration-corrected multifocus microscopy,” Nat. Methods 10, 60–63 (2013).
[Crossref]

Opt. Express (2)

Other (7)

J. A. Cox, B. S. Fritz, and T. R. Werner, “Process error limitations on binary optics performance,” inSan Diego,’91, San Diego, CA pp. 80–88 (1991).

J. Garzón, D. Duque, A. Alean, M. Toledo, J. Meneses, and T. Gharbi, “Diffractive elements performance in chromatic confocal microscopy,” J. Phys.: Conf. Series274, 012069 (2011).

J. Choi, A. A. Cruz-Cabrera, and A. Tanbakuchi, “Practical implementation of broadband diffractive optical elements,” in SPIE MOEMS-MEMS (SPIE, 2013), paper 86120G.

J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Wiley-VCH, 1998).

D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test, Vol. 62, (SPIE Press, 2004).

M. W. Farn and W. B. Veldkamp, “Binary optics,” in Handbook of Optics (McGraw-Hill, 1995).

G. H. Swanson, “Binary Optics Technology : Theoretical Limits on the Dif fraction Ef ficiency of Multilevel Diffractive Optical Elements,” Tech. Rep., MIT (1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Eight phase layer multi-focus grating fabrication sequence. Top: cross-sectional etch depths at each step. Bottom: lithography patterns used in each step. (c) Rendering of multi-focus grating surface topography in 3D.
Fig. 2
Fig. 2 Calculated deviations in (a) total diffraction efficiency, (b) zero-order power, (c) high-order power uniformity and (d) RMS high-order power, as functions of etch depths d1, d2 and d3 of lithography layers 1, 2 and 3 respectively.
Fig. 3
Fig. 3 Percentage decrease in diffraction efficiency and percentage deviations in zero- and high-order diffractive powers, and in high-order diffracted power distribution as functions of (a) overall maximum etch depth deviation, (b) overall maximum overlay deviation, and (c) etched sidewall slope.
Fig. 4
Fig. 4 Calculated diffraction efficiencies into the first nine orders as a function of wavelength for the ideal multi-focus grating design (λ = 515 nm). Top: sum of the nine orders; Bottom: individual orders.
Fig. 5
Fig. 5 Experimental setup used for measuring diffraction orders of the multi-focus grating over a wide wavelength range. MFG: multi-focus grating.
Fig. 6
Fig. 6 (a) Experimental multi-focus grating diffraction pattern at λ = 550 nm, recorded with a CMOS camera. Nine orders, labeled (m,n), m,n = 1,0,1, are shown. Yellow numbers are the intensity in each diffraction order, normalized to the sum of all nine intensities. Errors are of one standard deviation, as explained in the main text. (b) Integrated intensity for one diffraction order (shown in the inset) as a function of integration area. Blue: Background-corrected; red: uncorrected; dashed: linear fit to last ten samples of red curve. The telescoping integration area used is illustrated in the inset. (c) Calibration of the diffraction order power measurement, showing integrated intensity for a single, 532 nm laser beam spot as a function of beam power. Circles: experimental data; continuous line: linear fit.
Fig. 7
Fig. 7 Intensity of the nine diffraction orders, normalized by the sum of the intensities, as a function of wavelength, for a non-ideal multi-focus grating. Continuous lines: simulation, assuming grating steps measured from the fabricated sample. Symbols: measured quantities from the same fabricated multi-focus grating. Matching colors correspond to the same diffraction orders in calculation and experiment (note that some of the simulated curves are coincident throughout, so only five curves effectively appear on the graph). Intensity error bars are for one standard deviation, as explained in the main text. Horizontal error bars correspond to a 20 % manufacturer-specified monochromator wavelength uncertainty.
Fig. 8
Fig. 8 Finite-difference time-domain calculated diffraction efficiencies into the first nine orders as a function of wavelength, for multi-focus gratings with layer-to-layer deviations Δ = 0, Δ = 143 nm and Δ = 238 nm. Top: sum of the nine orders; Bottom: intensity of the nine diffraction orders, normalized by the sum of the intensities. The dashed line marks the design wavelength.

Metrics