Abstract

We demonstrate digital holographic microscopy that, while being based on phase-shifting interferometry, is capable of single-shot measurements. A two-dimensional (2-D) diffraction grating placed in a Fourier plane of a standard in-line holographic phase microscope generates multiple copies of a sample image on a camera sensor. The identical image copies are spatially separated with different overall phase shifts according to the diffraction orders. The overall phase shifts are adjusted by controlling the lateral position of the grating. These phase shifts are then set to be multiples of π/2. Interferograms composed of four image copies combined with a parallel reference beam are acquired in a single shot. The interferograms are processed through a phase-shifting algorithm to produce a single complex image. By taking advantage of the higher sampling capacity of the in-line holography, we can increase the imaging information density by a factor of 3 without compromising the imaging acquisition speed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-shot phase-shifting image-plane digital holography with tri-focal Fibonacci-Billet split lens

Yingge Zhang, You Li, Junyong Zhang, and Ailing Tian
Opt. Express 27(22) 32392-32397 (2019)

Parallel on-axis phase-shifting holographic phase microscopy based on reflective point-diffraction interferometer with long-term stability

Rongli Guo, Baoli Yao, Peng Gao, Junwei Min, Jun Han, Xun Yu, Ming Lei, Shaohui Yan, Yanlong Yang, Dan Dan, and Tong Ye
Appl. Opt. 52(15) 3484-3489 (2013)

Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube

J. A. Picazo-Bueno, M. Trusiak, and V. Micó
Opt. Express 27(4) 5655-5669 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. Taylor and Y.-L. Wang, eds., Methods in cell biology: Fluorescence microscopy of living cells in culture. Part B. Quantitative fluorescence microscopy-imaging and spectroscopy (Academic Press, 1989).
  2. A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7(1), 55–76 (2005).
    [Crossref] [PubMed]
  3. J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
    [Crossref] [PubMed]
  4. R. Weissleder, “Molecular imaging in cancer,” Science 312(5777), 1168–1171 (2006).
    [Crossref] [PubMed]
  5. R. C. Somers, M. G. Bawendi, and D. G. Nocera, “CdSe nanocrystal based chem-/bio- sensors,” Chem. Soc. Rev. 36(4), 579–591 (2007).
    [Crossref] [PubMed]
  6. J. W. Kang, P. T. C. So, R. R. Dasari, and D. K. Lim, “High Resolution Live Cell Raman Imaging Using Subcellular Organelle-Targeting SERS-Sensitive Gold Nanoparticles with Highly Narrow Intra-Nanogap,” Nano Lett. 15(3), 1766–1772 (2015).
    [Crossref] [PubMed]
  7. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [Crossref] [PubMed]
  8. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
    [Crossref] [PubMed]
  9. Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
    [Crossref] [PubMed]
  10. Y. Choi, T. D. Yang, K. J. Lee, and W. Choi, “Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination,” Opt. Lett. 36(13), 2465–2467 (2011).
    [Crossref] [PubMed]
  11. P. Ferraro, A. Wax, and Z. Zalevsky, eds., Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, 1st ed. (Springer New York, 2011).
  12. T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
    [Crossref]
  13. G. Popescu, Quantitative phase imaging of cells and tissues, McGraw-Hill biophotonics (McGraw-Hill, New York, 2011), pp. xx, 362 p.
  14. K. Creath, Progress in optics (Elsevier, New York, 1988), pp. 349–393.
  15. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23(15), 1221–1223 (1998).
    [Crossref] [PubMed]
  16. A. Dubois, L. Vabre, and A. C. Boccara, “Sinusoidally phase-modulated interference microscope for high-speed high-resolution topographic imagery,” Opt. Lett. 26(23), 1873–1875 (2001).
    [Crossref] [PubMed]
  17. T. Yamauchi, H. Iwai, and Y. Yamashita, “Label-free imaging of intracellular motility by low-coherent quantitative phase microscopy,” Opt. Express 19(6), 5536–5550 (2011).
    [Crossref] [PubMed]
  18. J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans. 27(2), 101–113 (1984).
    [Crossref]
  19. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
    [Crossref] [PubMed]
  20. P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, and P. So, “Scanning color optical tomography (SCOT),” Opt. Express 23(15), 19752–19762 (2015).
    [Crossref] [PubMed]
  21. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
    [Crossref] [PubMed]
  22. N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46(10), 1836–1842 (2007).
    [Crossref] [PubMed]
  23. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44(32), 6861–6868 (2005).
    [Crossref] [PubMed]
  24. G. Rodriguez-Zurita, C. Meneses-Fabian, N. I. Toto-Arellano, J. F. Vázquez-Castillo, and C. Robledo-Sánchez, “One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms,” Opt. Express 16(11), 7806–7817 (2008).
    [Crossref] [PubMed]
  25. P. Gao, B. Yao, I. Harder, J. Min, R. Guo, J. Zheng, and T. Ye, “Parallel two-step phase-shifting digital holograph microscopy based on a grating pair,” J. Opt. Soc. Am. A 28(3), 434–440 (2011).
    [Crossref] [PubMed]
  26. K. Creath and G. Goldstein, “Dynamic quantitative phase imaging for biological objects using a pixelated phase mask,” Biomed. Opt. Express 3(11), 2866–2880 (2012).
    [Crossref] [PubMed]
  27. M. Shan, B. Hao, Z. Zhong, M. Diao, and Y. Zhang, “Parallel two-step spatial carrier phase-shifting common-path interferometer with a Ronchi grating outside the Fourier plane,” Opt. Express 21(2), 2126–2132 (2013).
    [Crossref] [PubMed]
  28. A. Safrani and I. Abdulhalim, “Real-time phase shift interference microscopy,” Opt. Lett. 39(17), 5220–5223 (2014).
    [Crossref] [PubMed]
  29. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31(10), 1414–1416 (2006).
    [Crossref] [PubMed]
  30. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17(18), 15585–15591 (2009).
    [Crossref] [PubMed]
  31. B. Bhaduri, C. Edwards, H. Pham, R. J. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
    [Crossref]

2015 (2)

J. W. Kang, P. T. C. So, R. R. Dasari, and D. K. Lim, “High Resolution Live Cell Raman Imaging Using Subcellular Organelle-Targeting SERS-Sensitive Gold Nanoparticles with Highly Narrow Intra-Nanogap,” Nano Lett. 15(3), 1766–1772 (2015).
[Crossref] [PubMed]

P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, and P. So, “Scanning color optical tomography (SCOT),” Opt. Express 23(15), 19752–19762 (2015).
[Crossref] [PubMed]

2014 (3)

T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[Crossref]

A. Safrani and I. Abdulhalim, “Real-time phase shift interference microscopy,” Opt. Lett. 39(17), 5220–5223 (2014).
[Crossref] [PubMed]

B. Bhaduri, C. Edwards, H. Pham, R. J. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (3)

2009 (1)

2008 (2)

G. Rodriguez-Zurita, C. Meneses-Fabian, N. I. Toto-Arellano, J. F. Vázquez-Castillo, and C. Robledo-Sánchez, “One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms,” Opt. Express 16(11), 7806–7817 (2008).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

2007 (3)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

R. C. Somers, M. G. Bawendi, and D. G. Nocera, “CdSe nanocrystal based chem-/bio- sensors,” Chem. Soc. Rev. 36(4), 579–591 (2007).
[Crossref] [PubMed]

N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46(10), 1836–1842 (2007).
[Crossref] [PubMed]

2006 (3)

2005 (3)

2003 (1)

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[Crossref] [PubMed]

2001 (1)

1999 (1)

1998 (1)

1984 (1)

J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans. 27(2), 101–113 (1984).
[Crossref]

Abdulhalim, I.

Alivisatos, A. P.

A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7(1), 55–76 (2005).
[Crossref] [PubMed]

Babacan, S. D.

T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[Crossref]

Badizadegan, K.

Bawendi, M. G.

R. C. Somers, M. G. Bawendi, and D. G. Nocera, “CdSe nanocrystal based chem-/bio- sensors,” Chem. Soc. Rev. 36(4), 579–591 (2007).
[Crossref] [PubMed]

Bhaduri, B.

B. Bhaduri, C. Edwards, H. Pham, R. J. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Bhushan, B.

J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans. 27(2), 101–113 (1984).
[Crossref]

Boccara, A. C.

Brock, N.

Cai, L. Z.

Carney, P. S.

T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[Crossref]

Choi, W.

Y. Choi, T. D. Yang, K. J. Lee, and W. Choi, “Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination,” Opt. Lett. 36(13), 2465–2467 (2011).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46(10), 1836–1842 (2007).
[Crossref] [PubMed]

Choi, Y.

Creath, K.

Cuche, E.

Dasari, R. R.

Depeursinge, C.

Diao, M.

Diez-Silva, M.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Dong, G. Y.

Dubois, A.

Edwards, C.

B. Bhaduri, C. Edwards, H. Pham, R. J. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Fang-Yen, C.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Feld, M. S.

Gao, P.

George, O. E.

J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans. 27(2), 101–113 (1984).
[Crossref]

Goddard, L. L.

T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[Crossref]

B. Bhaduri, C. Edwards, H. Pham, R. J. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Goldstein, G.

Gu, W.

A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7(1), 55–76 (2005).
[Crossref] [PubMed]

Guo, R.

Halas, N. J.

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[Crossref] [PubMed]

Hao, B.

Harder, I.

Hayes, J.

Hosseini, P.

Ikeda, T.

Iwai, H.

Kang, J. W.

J. W. Kang, P. T. C. So, R. R. Dasari, and D. K. Lim, “High Resolution Live Cell Raman Imaging Using Subcellular Organelle-Targeting SERS-Sensitive Gold Nanoparticles with Highly Narrow Intra-Nanogap,” Nano Lett. 15(3), 1766–1772 (2015).
[Crossref] [PubMed]

Kim, T.

T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[Crossref]

Koliopoulos, C. L.

J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans. 27(2), 101–113 (1984).
[Crossref]

Larabell, C.

A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7(1), 55–76 (2005).
[Crossref] [PubMed]

Lee, K. J.

Lim, D. K.

J. W. Kang, P. T. C. So, R. R. Dasari, and D. K. Lim, “High Resolution Live Cell Raman Imaging Using Subcellular Organelle-Targeting SERS-Sensitive Gold Nanoparticles with Highly Narrow Intra-Nanogap,” Nano Lett. 15(3), 1766–1772 (2015).
[Crossref] [PubMed]

Lue, N.

Lykotrafitis, G.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Marquet, P.

Meneses-Fabian, C.

Meng, X. F.

Millerd, J.

Min, J.

Mir, M.

T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[Crossref]

Nguyen, T. H.

B. Bhaduri, C. Edwards, H. Pham, R. J. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Nocera, D. G.

R. C. Somers, M. G. Bawendi, and D. G. Nocera, “CdSe nanocrystal based chem-/bio- sensors,” Chem. Soc. Rev. 36(4), 579–591 (2007).
[Crossref] [PubMed]

North-Morris, M.

Novak, M.

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Park, Y.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Pham, H.

B. Bhaduri, C. Edwards, H. Pham, R. J. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Popescu, G.

B. Bhaduri, C. Edwards, H. Pham, R. J. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[Crossref]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46(10), 1836–1842 (2007).
[Crossref] [PubMed]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[Crossref] [PubMed]

Rinehart, M. T.

Robledo-Sánchez, C.

Rodriguez-Zurita, G.

Safrani, A.

Shaked, N. T.

Shan, M.

Shen, X. X.

So, P.

So, P. T. C.

J. W. Kang, P. T. C. So, R. R. Dasari, and D. K. Lim, “High Resolution Live Cell Raman Imaging Using Subcellular Organelle-Targeting SERS-Sensitive Gold Nanoparticles with Highly Narrow Intra-Nanogap,” Nano Lett. 15(3), 1766–1772 (2015).
[Crossref] [PubMed]

Somers, R. C.

R. C. Somers, M. G. Bawendi, and D. G. Nocera, “CdSe nanocrystal based chem-/bio- sensors,” Chem. Soc. Rev. 36(4), 579–591 (2007).
[Crossref] [PubMed]

Sung, Y.

Suresh, S.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Toto-Arellano, N. I.

Vabre, L.

Vázquez-Castillo, J. F.

Wang, Y. R.

Wax, A.

Weissleder, R.

R. Weissleder, “Molecular imaging in cancer,” Science 312(5777), 1168–1171 (2006).
[Crossref] [PubMed]

West, J. L.

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[Crossref] [PubMed]

Wyant, J.

Wyant, J. C.

J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans. 27(2), 101–113 (1984).
[Crossref]

Xu, X. F.

Yamaguchi, I.

Yamashita, Y.

Yamauchi, T.

Yang, T. D.

Yang, X. L.

Yao, B.

Yaqoob, Z.

Ye, T.

Zhang, T.

Zhang, Y.

Zheng, J.

Zhong, Z.

Zhou, R. J.

B. Bhaduri, C. Edwards, H. Pham, R. J. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[Crossref]

Zhu, Y.

Adv. Opt. Photonics (1)

B. Bhaduri, C. Edwards, H. Pham, R. J. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 (2014).
[Crossref]

Annu. Rev. Biomed. Eng. (2)

A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annu. Rev. Biomed. Eng. 7(1), 55–76 (2005).
[Crossref] [PubMed]

J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5(1), 285–292 (2003).
[Crossref] [PubMed]

Appl. Opt. (3)

ASLE Trans. (1)

J. C. Wyant, C. L. Koliopoulos, B. Bhushan, and O. E. George, “An Optical Profilometer for Surface Characterization of Magnetic Media,” ASLE Trans. 27(2), 101–113 (1984).
[Crossref]

Biomed. Opt. Express (1)

Chem. Soc. Rev. (1)

R. C. Somers, M. G. Bawendi, and D. G. Nocera, “CdSe nanocrystal based chem-/bio- sensors,” Chem. Soc. Rev. 36(4), 579–591 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

J. W. Kang, P. T. C. So, R. R. Dasari, and D. K. Lim, “High Resolution Live Cell Raman Imaging Using Subcellular Organelle-Targeting SERS-Sensitive Gold Nanoparticles with Highly Narrow Intra-Nanogap,” Nano Lett. 15(3), 1766–1772 (2015).
[Crossref] [PubMed]

Nat. Methods (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

T. Kim, R. J. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (7)

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Science (1)

R. Weissleder, “Molecular imaging in cancer,” Science 312(5777), 1168–1171 (2006).
[Crossref] [PubMed]

Other (4)

G. Popescu, Quantitative phase imaging of cells and tissues, McGraw-Hill biophotonics (McGraw-Hill, New York, 2011), pp. xx, 362 p.

K. Creath, Progress in optics (Elsevier, New York, 1988), pp. 349–393.

P. Ferraro, A. Wax, and Z. Zalevsky, eds., Coherent Light Microscopy: Imaging and Quantitative Phase Analysis, 1st ed. (Springer New York, 2011).

L. Taylor and Y.-L. Wang, eds., Methods in cell biology: Fluorescence microscopy of living cells in culture. Part B. Quantitative fluorescence microscopy-imaging and spectroscopy (Academic Press, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental schematic for the single-shot, phase-shifting quantitative phase microscope (SPQPM). (a) The 2D grating (G2D) positioned in the Fourier plane of the detection arm duplicates the object image on the camera. The lateral positions of G2D introduce different phase shifts on the image copies on the image plane. BS1 and BS2: beam splitters. OL1 and OL2: objective lens, M: mirrors, FP: Fourier plane. (b) Schematic for image acquisition on the camera sensor. Im,n is the interferogram produced by the diffraction order (m,n) by G2D.
Fig. 2
Fig. 2 Interferograms and a phase image of polystyrene beads. (a) Interference images acquired by the camera. Each image is clipped from the corresponding quadrant so that the object structures match for all individual images. The images are rearranged in a row for the purpose of presentation. (b) Wrapped phase image for the bead cluster. (c) A thickness map for the same bead cluster with that in (b). Scale bar: 10 μm, color bars: radians in (b) and micrometers in (c).
Fig. 3
Fig. 3 Extent of detection bandwidth for SPQPM in k-space. (a) Use of camera pixels for SPQPM for imaging an object and (b) for a traditional off-axis imaging configuration for imaging the object shown in (a). The magnification used is doubled for utilizing the same number of camera pixels for a fair comparison. (c) Intensity image for the object taken by SPQPM and (d) taken by an off-axis configuration. (e) Distribution of an amplitude for the speckle pattern taken by SPQPM presented in k-space which visualizes the achievable detection bandwidth for SPQPM. The image is shown in log-scale for the enhanced visibility and (f) for the off-axis configuration. The yellow circles indicate the boundaries of the spatial frequencies in different orders. The red circles indicate the areas separated by the standard image processing algorithm for the off-axis configuration.
Fig. 4
Fig. 4 Quantitative phase images of live cells acquired by SPQPM. (a), (b) Phase images for live cancer cells in culture media. Scale bars: 10 μm, color bar: radians.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I m,n = | E m,n S + E R | 2 .
I m,n =a+bcos( ϕ S + ϕ m,n G ).
I 0,0 =a+bcos( ϕ S )
I 1,0 =a+bcos( ϕ S +π/2 )=absin( ϕ S )
I 0,1 =a+bcos( ϕ S +π )=abcos( ϕ S )
I 1,1 =a+bcos( ϕ S + 3π /2 )=a+bsin( ϕ S ).
ϕ S = tan 1 ( I 1,1 I 1,0 I 0,0 I 0,1 ).

Metrics