Abstract

The effect of bending and twisting on the group delay spread (GDS) of strongly coupled 3-core fibers is investigated. For the random perturbation inducing modal coupling in the fiber, two physical mechanisms, microbending or macrobending with random twist, are considered. Calculated results show that both mechanisms lead to the same effect, namely, reduced GDS under strong coupling regime. Furthermore, a novel fiber structure having an air-hole at the center is proposed for reducing the GDS. By placing the air-hole, the effective index difference between fundamental and the higher order modes is reduced, leading to strong modal mixing in the fiber, and hence, small GDS. Calculated GDS of the fiber with air-hole is almost 1/5 compared with that of the fiber without air-hole.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimum index profile of few-mode coupled multicore fibers for reducing the group delay spread

Kazuki Yoshida, Takeshi Fujisawa, Takanori Sato, and Kunimasa Saitoh
Opt. Express 27(11) 16281-16295 (2019)

Analysis of modal coupling due to birefringence and ellipticity in strongly guiding ring-core OAM fibers

Gianluca Guerra, Matteo Lonardi, Andrea Galtarossa, Leslie A. Rusch, Alberto Bononi, and Luca Palmieri
Opt. Express 27(6) 8308-8326 (2019)

The delay spread in fibers for SDM transmission: dependence on fiber parameters and perturbations

Cristian Antonelli, Antonio Mecozzi, and Mark Shtaif
Opt. Express 23(3) 2196-2202 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Sillard, M. Bigot-Astruc, and D. Molin, “Few-mode fibers for mode-division-multiplexed systems,” J. Lightwave Technol. 32(2), 2824–2829 (2014).
    [Crossref]
  2. S. O. Arik, J. M. Kahn, and K.-P. Ho, “MIMO signal processing for mode-division multiplexing,” IEEE Signal Process. Mag. 31(2), 25–34 (2014).
    [Crossref]
  3. K.-P. Ho and J. M. Kahn, “Statistics of group delays in multimode fiber with strong mode coupling,” J. Lightwave Technol. 29(21), 3119–3128 (2011).
    [Crossref]
  4. R. Ryf, R.-J. Essiambre, A. H. Gnauck, S. Randel, M. A. Mestre, C. Schmidt, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Space-division multiplexed transmission over 4200-km 3-core microstructured fiber,” in Proc. OFC (2011), paper PDP5C2.
  5. C. Antonelli, A. Mecozzi, and M. Shtaif, “The delay spread in fibers for SDM transmission: dependence on fiber parameters and perturbations,” Opt. Express 23(3), 2196–2202 (2015).
    [Crossref] [PubMed]
  6. T. Hayashi, R. Ryf, N. K. Fontaine, C. Xia, S. Randel, R.-J. Essiambre, P. J. Winzer, and T. Sasaki, “Coupled-core multi-core fibers: High-spatial-density optical transmission fibers with low differential modal properties,” in Proc. of ECOC (2015), paper We.1.4.1.
    [Crossref]
  7. T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, and F. Yamamoto, “Fiber twisting and bending induced mode conversion in coupled multi-core fiber,” in Proc. ECOC (2015), paper P.1.2.
  8. T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, F. Yamamoto, and K. Nakajima, “Fiber twisting and bending induced adiabatic/nonadiabatic super-mode transition in coupled multi-core fiber,” J. Lightwave Technol. 34(4), 1228–1237 (2016).
    [Crossref]
  9. A. A. Juarez, E. Krune, S. Warm, C. A. Bunge, and K. Petermann, “Modeling of mode coupling in multimode fibers with respect to bandwidth and loss,” J. Lightwave Technol. 32(8), 1549–1558 (2014).
    [Crossref]
  10. T. Fujisawa and K. Saitoh, “A principal mode analysis of strongly-coupled 3-core fibers,” in Proc. ECOC (2015), paper We.1.4.6.
  11. K. Saitoh, “Multicore fiber technology,” in Proc. OFC (2015), paper Th4C.1.
  12. M. B. Shemirani, W. Mao, R. A. Panicker, and J. M. Kahn, “Principal modes in graded-index multimode fiber in presence of spatial- and polarization-mode coupling,” J. Lightwave Technol. 27(10), 1248–1261 (2009).
    [Crossref]
  13. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2006).
  14. T. Fujisawa and M. Koshiba, “Finite element characterization of chromatic dispersion in nonlinear holey fibers,” Opt. Express 11(13), 1481–1489 (2003).
    [Crossref] [PubMed]
  15. S. Fan and J. M. Kahn, “Principal modes in multimode waveguides,” Opt. Lett. 30(2), 135–137 (2005).
    [Crossref] [PubMed]
  16. A. Mecozzi, C. Antonelli, and M. Shtaif, “Intensity impulse response of SDM links,” Opt. Express 23(5), 5738–5743 (2015).
    [Crossref] [PubMed]
  17. C. Antonelli, A. Mecozzi, M. Shtaif, and P. J. Winzer, “Stokes-space analysis of modal dispersion in fibers with multiple mode transmission,” Opt. Express 20(11), 11718–11733 (2012).
    [Crossref] [PubMed]
  18. T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, and F. Yamamoto, “Coupled multicore fiber design with low intercore differential mode delay for high-density space division multiplexing,” J. Lightwave Technol. 33(6), 1175–1181 (2015).
    [Crossref]

2016 (1)

2015 (3)

2014 (3)

2012 (1)

2011 (1)

2009 (1)

2005 (1)

2003 (1)

Antonelli, C.

Arik, S. O.

S. O. Arik, J. M. Kahn, and K.-P. Ho, “MIMO signal processing for mode-division multiplexing,” IEEE Signal Process. Mag. 31(2), 25–34 (2014).
[Crossref]

Bigot-Astruc, M.

Bunge, C. A.

Delbue, R.

R. Ryf, R.-J. Essiambre, A. H. Gnauck, S. Randel, M. A. Mestre, C. Schmidt, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Space-division multiplexed transmission over 4200-km 3-core microstructured fiber,” in Proc. OFC (2011), paper PDP5C2.

Essiambre, R.-J.

R. Ryf, R.-J. Essiambre, A. H. Gnauck, S. Randel, M. A. Mestre, C. Schmidt, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Space-division multiplexed transmission over 4200-km 3-core microstructured fiber,” in Proc. OFC (2011), paper PDP5C2.

T. Hayashi, R. Ryf, N. K. Fontaine, C. Xia, S. Randel, R.-J. Essiambre, P. J. Winzer, and T. Sasaki, “Coupled-core multi-core fibers: High-spatial-density optical transmission fibers with low differential modal properties,” in Proc. of ECOC (2015), paper We.1.4.1.
[Crossref]

Fan, S.

Fontaine, N. K.

T. Hayashi, R. Ryf, N. K. Fontaine, C. Xia, S. Randel, R.-J. Essiambre, P. J. Winzer, and T. Sasaki, “Coupled-core multi-core fibers: High-spatial-density optical transmission fibers with low differential modal properties,” in Proc. of ECOC (2015), paper We.1.4.1.
[Crossref]

Fujisawa, T.

Gnauck, A. H.

R. Ryf, R.-J. Essiambre, A. H. Gnauck, S. Randel, M. A. Mestre, C. Schmidt, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Space-division multiplexed transmission over 4200-km 3-core microstructured fiber,” in Proc. OFC (2011), paper PDP5C2.

Hayashi, T.

T. Hayashi, R. Ryf, N. K. Fontaine, C. Xia, S. Randel, R.-J. Essiambre, P. J. Winzer, and T. Sasaki, “Coupled-core multi-core fibers: High-spatial-density optical transmission fibers with low differential modal properties,” in Proc. of ECOC (2015), paper We.1.4.1.
[Crossref]

R. Ryf, R.-J. Essiambre, A. H. Gnauck, S. Randel, M. A. Mestre, C. Schmidt, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Space-division multiplexed transmission over 4200-km 3-core microstructured fiber,” in Proc. OFC (2011), paper PDP5C2.

Ho, K.-P.

S. O. Arik, J. M. Kahn, and K.-P. Ho, “MIMO signal processing for mode-division multiplexing,” IEEE Signal Process. Mag. 31(2), 25–34 (2014).
[Crossref]

K.-P. Ho and J. M. Kahn, “Statistics of group delays in multimode fiber with strong mode coupling,” J. Lightwave Technol. 29(21), 3119–3128 (2011).
[Crossref]

Juarez, A. A.

Kahn, J. M.

Koshiba, M.

Krune, E.

Mao, W.

Mecozzi, A.

Mestre, M. A.

R. Ryf, R.-J. Essiambre, A. H. Gnauck, S. Randel, M. A. Mestre, C. Schmidt, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Space-division multiplexed transmission over 4200-km 3-core microstructured fiber,” in Proc. OFC (2011), paper PDP5C2.

Molin, D.

Mori, T.

Nakajima, K.

Panicker, R. A.

Petermann, K.

Pupalaikis, P.

R. Ryf, R.-J. Essiambre, A. H. Gnauck, S. Randel, M. A. Mestre, C. Schmidt, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Space-division multiplexed transmission over 4200-km 3-core microstructured fiber,” in Proc. OFC (2011), paper PDP5C2.

Randel, S.

R. Ryf, R.-J. Essiambre, A. H. Gnauck, S. Randel, M. A. Mestre, C. Schmidt, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Space-division multiplexed transmission over 4200-km 3-core microstructured fiber,” in Proc. OFC (2011), paper PDP5C2.

T. Hayashi, R. Ryf, N. K. Fontaine, C. Xia, S. Randel, R.-J. Essiambre, P. J. Winzer, and T. Sasaki, “Coupled-core multi-core fibers: High-spatial-density optical transmission fibers with low differential modal properties,” in Proc. of ECOC (2015), paper We.1.4.1.
[Crossref]

Ryf, R.

R. Ryf, R.-J. Essiambre, A. H. Gnauck, S. Randel, M. A. Mestre, C. Schmidt, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Space-division multiplexed transmission over 4200-km 3-core microstructured fiber,” in Proc. OFC (2011), paper PDP5C2.

T. Hayashi, R. Ryf, N. K. Fontaine, C. Xia, S. Randel, R.-J. Essiambre, P. J. Winzer, and T. Sasaki, “Coupled-core multi-core fibers: High-spatial-density optical transmission fibers with low differential modal properties,” in Proc. of ECOC (2015), paper We.1.4.1.
[Crossref]

Saitoh, K.

K. Saitoh, “Multicore fiber technology,” in Proc. OFC (2015), paper Th4C.1.

Sakamoto, T.

Sasaki, T.

T. Hayashi, R. Ryf, N. K. Fontaine, C. Xia, S. Randel, R.-J. Essiambre, P. J. Winzer, and T. Sasaki, “Coupled-core multi-core fibers: High-spatial-density optical transmission fibers with low differential modal properties,” in Proc. of ECOC (2015), paper We.1.4.1.
[Crossref]

R. Ryf, R.-J. Essiambre, A. H. Gnauck, S. Randel, M. A. Mestre, C. Schmidt, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Space-division multiplexed transmission over 4200-km 3-core microstructured fiber,” in Proc. OFC (2011), paper PDP5C2.

Schmidt, C.

R. Ryf, R.-J. Essiambre, A. H. Gnauck, S. Randel, M. A. Mestre, C. Schmidt, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Space-division multiplexed transmission over 4200-km 3-core microstructured fiber,” in Proc. OFC (2011), paper PDP5C2.

Shemirani, M. B.

Shtaif, M.

Sillard, P.

Sureka, A.

R. Ryf, R.-J. Essiambre, A. H. Gnauck, S. Randel, M. A. Mestre, C. Schmidt, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Space-division multiplexed transmission over 4200-km 3-core microstructured fiber,” in Proc. OFC (2011), paper PDP5C2.

Taru, T.

R. Ryf, R.-J. Essiambre, A. H. Gnauck, S. Randel, M. A. Mestre, C. Schmidt, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Space-division multiplexed transmission over 4200-km 3-core microstructured fiber,” in Proc. OFC (2011), paper PDP5C2.

Wada, M.

Warm, S.

Winzer, P. J.

C. Antonelli, A. Mecozzi, M. Shtaif, and P. J. Winzer, “Stokes-space analysis of modal dispersion in fibers with multiple mode transmission,” Opt. Express 20(11), 11718–11733 (2012).
[Crossref] [PubMed]

T. Hayashi, R. Ryf, N. K. Fontaine, C. Xia, S. Randel, R.-J. Essiambre, P. J. Winzer, and T. Sasaki, “Coupled-core multi-core fibers: High-spatial-density optical transmission fibers with low differential modal properties,” in Proc. of ECOC (2015), paper We.1.4.1.
[Crossref]

R. Ryf, R.-J. Essiambre, A. H. Gnauck, S. Randel, M. A. Mestre, C. Schmidt, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Space-division multiplexed transmission over 4200-km 3-core microstructured fiber,” in Proc. OFC (2011), paper PDP5C2.

Xia, C.

T. Hayashi, R. Ryf, N. K. Fontaine, C. Xia, S. Randel, R.-J. Essiambre, P. J. Winzer, and T. Sasaki, “Coupled-core multi-core fibers: High-spatial-density optical transmission fibers with low differential modal properties,” in Proc. of ECOC (2015), paper We.1.4.1.
[Crossref]

Yamamoto, F.

Yamamoto, T.

IEEE Signal Process. Mag. (1)

S. O. Arik, J. M. Kahn, and K.-P. Ho, “MIMO signal processing for mode-division multiplexing,” IEEE Signal Process. Mag. 31(2), 25–34 (2014).
[Crossref]

J. Lightwave Technol. (6)

Opt. Express (4)

Opt. Lett. (1)

Other (6)

R. Ryf, R.-J. Essiambre, A. H. Gnauck, S. Randel, M. A. Mestre, C. Schmidt, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, T. Hayashi, T. Taru, and T. Sasaki, “Space-division multiplexed transmission over 4200-km 3-core microstructured fiber,” in Proc. OFC (2011), paper PDP5C2.

T. Hayashi, R. Ryf, N. K. Fontaine, C. Xia, S. Randel, R.-J. Essiambre, P. J. Winzer, and T. Sasaki, “Coupled-core multi-core fibers: High-spatial-density optical transmission fibers with low differential modal properties,” in Proc. of ECOC (2015), paper We.1.4.1.
[Crossref]

T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, and F. Yamamoto, “Fiber twisting and bending induced mode conversion in coupled multi-core fiber,” in Proc. ECOC (2015), paper P.1.2.

T. Fujisawa and K. Saitoh, “A principal mode analysis of strongly-coupled 3-core fibers,” in Proc. ECOC (2015), paper We.1.4.6.

K. Saitoh, “Multicore fiber technology,” in Proc. OFC (2015), paper Th4C.1.

K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) The cross section of the fiber structure and (b) guided mode field distributions of 3CF without air hole.
Fig. 2
Fig. 2 Schematics of the fiber with (a) microbending and (b) macrobending with twist.
Fig. 3
Fig. 3 κ mn of macrobending with twist model for R = 5000 mm as a function of θ(/π).
Fig. 4
Fig. 4 σ gd as a function of transmission distance of 3CF without air hole calculated by microbending model (R = 5000 mm).
Fig. 5
Fig. 5 σ gd as a function of transmission distance of 3CF without air hole calculated by macrobending with twist model (R = 5000 mm).
Fig. 6
Fig. 6 σ gd as a function of the correlation length for the transmission distance of 100 km.
Fig. 7
Fig. 7 Guided mode field distributions of 3CF with air hole (a2 = 6.2 μm).
Fig. 8
Fig. 8 DMGD and Δneff as a function of Λ for various values of a2.
Fig. 9
Fig. 9 κ mn of macrobending with twist model as a function of θ(/π) of 3CF with air-hole (a2 = 6.2 μm, R = 5000 mm).
Fig. 10
Fig. 10 σ gd as a function of transmission distance of 3CF with air hole (a2 = 6.2 μm, R = 5000 mm).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d a m d z = j β m a m j m n N κ m n a n
κ m n = ω ε 0 ( n b e n d 2 ( x , y , R x , R y ) n s t 2 ( x , y ) ) E m * E n d x d y i z ( E m * × H m + E m × H m * ) d x d y
κ m n = ω ε 0 ( n b e n d 2 ( x ' , y ' , R ) n s t 2 ( x ' , y ' ) ) E m * E n d x d y i z ( E m * × H m + E m × H m * ) d x d y .
P = 1 2 i z ( E m × H m * ) d x d y .
n b e n d 2 ( x ' , y ' , R ) = n s t 2 ( x ' , y ' ) ( 1 + 2 x ' R ) .
[ a 1 ( L ) a N ( L ) ] = T ( ω ) [ a 1 ( 0 ) a N ( 0 ) ] = i = 1 M T i [ a 1 ( 0 ) a N ( 0 ) ]
R i = [ cos Δ θ i 0 0 sin Δ θ i 0 0 0 cos Δ θ i 0 0 sin Δ θ i 0 0 0 cos Δ θ i 0 0 sin Δ θ i sin Δ θ i 0 0 cos Δ θ i 0 0 0 sin Δ θ i 0 0 cos Δ θ i 0 0 0 sin Δ θ i 0 0 cos Δ θ i ] .
G D O ( ω ) = j T ( ω ) 1 d T ( ω ) d ω .
σ g d 2 = 1 N i = 1 N τ i 2

Metrics