Abstract

In this work, we report numerical simulations and experiments of the optical response of a gold nanostrip embedded in a silicon strip waveguide gap at telecom wavelengths. We show that the spectral features observed in transmission and reflection when the metallic nanostructure is inserted in the gap are extremely different than those observed in free-space excitation. First, we find that interference between the guided field and the electric dipolar resonance of the metallic nanostructure results in high-contrast (> 10) spectral features showing an asymmetric Fano spectral profile. Secondly, we reveal a crossing in the transmission and reflection responses close to the nanostructure resonance wavelength as a key feature of our system. This approach, which can be realized using standard semiconductor nanofabrication tools, could lead to a full exploitation of the extreme properties of subwavelength metallic nanostructures in an on-chip configuration, with special relevance in fields such as biosensing or optical switching.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Scattering of a plasmonic nanoantenna embedded in a silicon waveguide

M. Castro-Lopez, N. de Sousa, A. Garcia-Martin, F. Y. Gardes, and R. Sapienza
Opt. Express 23(22) 28108-28118 (2015)

Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide

Frédéric Peyskens, Ananth Z. Subramanian, Pieter Neutens, Ashim Dhakal, Pol Van Dorpe, Nicolas Le Thomas, and Roel Baets
Opt. Express 23(3) 3088-3101 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localised surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
    [Crossref]
  2. D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  5. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  6. L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  7. M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute Extinction Cross Section of Individual Magnetic Split-Ring Resonators,” Nat. Photonics 2(10), 614–617 (2008).
    [Crossref]
  8. P. J. Rodríguez-Cantó, M. Martínez-Marco, F. J. Rodríguez-Fortuño, B. Tomás-Navarro, R. Ortuño, S. Peransí-Llopis, and A. Martínez, “Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon,” Opt. Express 19(8), 7664–7672 (2011).
    [Crossref] [PubMed]
  9. P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
    [Crossref] [PubMed]
  10. H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
    [Crossref] [PubMed]
  11. M. Lipson, “Guiding, modulating, and emitting light on silicon - Challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [Crossref]
  12. M. Hochberg and T. Baehr-Jones, “Toward fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
    [Crossref]
  13. A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
    [Crossref]
  14. N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Belluti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
    [Crossref]
  15. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
    [Crossref] [PubMed]
  16. I. Alepuz-Benache, C. García-Meca, F. J. Rodríguez-Fortuño, R. Ortuño, M. Lorente-Crespo, A. Griol, and A. Martínez, “Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide,” Proc. SPIE 8424, 84242J (2012).
    [Crossref]
  17. F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
    [Crossref] [PubMed]
  18. M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
    [Crossref] [PubMed]
  19. M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
    [Crossref] [PubMed]
  20. F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23(3), 3088–3101 (2015).
    [Crossref] [PubMed]
  21. F. B. Arango, R. Thijssen, B. Brenny, T. Coenen, and A. F. Koenderink, “Robustness of plasmon phased array nanoantennas to disorder,” Sci. Rep. 5, 10911 (2015).
    [Crossref] [PubMed]
  22. F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
    [Crossref]
  23. M. Castro-Lopez, N. de Sousa, A. Garcia-Martin, F. Y. Gardes, and R. Sapienza, “Scattering of a plasmonic nanoantenna embedded in a silicon waveguide,” Opt. Express 23(22), 28108–28118 (2015).
    [Crossref] [PubMed]
  24. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31(9), 1259–1261 (2006).
    [Crossref] [PubMed]
  25. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
    [Crossref] [PubMed]
  26. D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
    [Crossref] [PubMed]
  27. I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14(1), 166–171 (2014).
    [Crossref] [PubMed]
  28. A. Espinosa-Soria and A. Martinez, “Transverse spin and spin-orbit coupling in silicon waveguides,” http://arxiv.org/abs/1507.04859
    [Crossref]
  29. F. J. Rodríguez-Fortuño, D. Puerto, A. Griol, L. Bellieres, J. Martí, and A. Martínez, “Sorting linearly polarized photons with a single scatterer,” Opt. Lett. 39(6), 1394–1397 (2014).
    [Crossref] [PubMed]
  30. F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martinez, “Resolving light handedness with an on-chip silicon microdisk,” ACS Photonics 1(9), 762–767 (2014).
    [Crossref]
  31. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  32. U. K. Chettiar, R. F. Garcia, S. A. Maier, and N. Engheta, “Enhancement of radiation from dielectric waveguides using resonant plasmonic coreshells,” Opt. Express 20(14), 16104–16112 (2012).
    [Crossref] [PubMed]
  33. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  34. S. H. Shams Mousavi, A. A. Eftekhar, A. H. Atabaki, and A. Adibi, “Band-edge bilayer plasmonic nanostructure for surface enhanced Raman spectroscopy,” ACS Photonics 2(11), 1546–1551 (2015).
    [Crossref]
  35. N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled fano- and lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
    [Crossref] [PubMed]

2016 (1)

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

2015 (4)

M. Castro-Lopez, N. de Sousa, A. Garcia-Martin, F. Y. Gardes, and R. Sapienza, “Scattering of a plasmonic nanoantenna embedded in a silicon waveguide,” Opt. Express 23(22), 28108–28118 (2015).
[Crossref] [PubMed]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23(3), 3088–3101 (2015).
[Crossref] [PubMed]

F. B. Arango, R. Thijssen, B. Brenny, T. Coenen, and A. F. Koenderink, “Robustness of plasmon phased array nanoantennas to disorder,” Sci. Rep. 5, 10911 (2015).
[Crossref] [PubMed]

S. H. Shams Mousavi, A. A. Eftekhar, A. H. Atabaki, and A. Adibi, “Band-edge bilayer plasmonic nanostructure for surface enhanced Raman spectroscopy,” ACS Photonics 2(11), 1546–1551 (2015).
[Crossref]

2014 (7)

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled fano- and lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

F. J. Rodríguez-Fortuño, D. Puerto, A. Griol, L. Bellieres, J. Martí, and A. Martínez, “Sorting linearly polarized photons with a single scatterer,” Opt. Lett. 39(6), 1394–1397 (2014).
[Crossref] [PubMed]

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martinez, “Resolving light handedness with an on-chip silicon microdisk,” ACS Photonics 1(9), 762–767 (2014).
[Crossref]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
[Crossref]

2013 (3)

2012 (5)

U. K. Chettiar, R. F. Garcia, S. A. Maier, and N. Engheta, “Enhancement of radiation from dielectric waveguides using resonant plasmonic coreshells,” Opt. Express 20(14), 16104–16112 (2012).
[Crossref] [PubMed]

I. Alepuz-Benache, C. García-Meca, F. J. Rodríguez-Fortuño, R. Ortuño, M. Lorente-Crespo, A. Griol, and A. Martínez, “Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide,” Proc. SPIE 8424, 84242J (2012).
[Crossref]

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

2011 (2)

2010 (4)

D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

M. Hochberg and T. Baehr-Jones, “Toward fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

2009 (1)

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

2008 (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute Extinction Cross Section of Individual Magnetic Split-Ring Resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

2006 (1)

2005 (1)

2004 (1)

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Belluti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

2003 (1)

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localised surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Aassime, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Adibi, A.

S. H. Shams Mousavi, A. A. Eftekhar, A. H. Atabaki, and A. Adibi, “Band-edge bilayer plasmonic nanostructure for surface enhanced Raman spectroscopy,” ACS Photonics 2(11), 1546–1551 (2015).
[Crossref]

M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
[Crossref] [PubMed]

Alepuz-Benache, I.

I. Alepuz-Benache, C. García-Meca, F. J. Rodríguez-Fortuño, R. Ortuño, M. Lorente-Crespo, A. Griol, and A. Martínez, “Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide,” Proc. SPIE 8424, 84242J (2012).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Aouani, H.

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Apuzzo, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Arango, F. B.

F. B. Arango, R. Thijssen, B. Brenny, T. Coenen, and A. F. Koenderink, “Robustness of plasmon phased array nanoantennas to disorder,” Sci. Rep. 5, 10911 (2015).
[Crossref] [PubMed]

Atabaki, A. H.

S. H. Shams Mousavi, A. A. Eftekhar, A. H. Atabaki, and A. Adibi, “Band-edge bilayer plasmonic nanostructure for surface enhanced Raman spectroscopy,” ACS Photonics 2(11), 1546–1551 (2015).
[Crossref]

Baehr-Jones, T.

M. Hochberg and T. Baehr-Jones, “Toward fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Baets, R.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23(3), 3088–3101 (2015).
[Crossref] [PubMed]

Barber-Sanz, I.

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martinez, “Resolving light handedness with an on-chip silicon microdisk,” ACS Photonics 1(9), 762–767 (2014).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Bellieres, L.

Belluti, P.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Belluti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Bernal Arango, F.

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref] [PubMed]

Blaize, S.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Bozhelvonyi, S. I.

D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Brenny, B.

F. B. Arango, R. Thijssen, B. Brenny, T. Coenen, and A. F. Koenderink, “Robustness of plasmon phased array nanoantennas to disorder,” Sci. Rep. 5, 10911 (2015).
[Crossref] [PubMed]

Brongersma, M. L.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Busch, K.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute Extinction Cross Section of Individual Magnetic Split-Ring Resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Castro-Lopez, M.

Castro-López, M.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

Chamanzar, M.

Chelnokov, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Chettiar, U. K.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Coenen, T.

F. B. Arango, R. Thijssen, B. Brenny, T. Coenen, and A. F. Koenderink, “Robustness of plasmon phased array nanoantennas to disorder,” Sci. Rep. 5, 10911 (2015).
[Crossref] [PubMed]

Crivellari, M.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Belluti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Curto, A. G.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

Dagens, B.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Daldosso, N.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Belluti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

de Sousa, N.

Delacour, C.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Denkova, D.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled fano- and lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Dhakal, A.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23(3), 3088–3101 (2015).
[Crossref] [PubMed]

Di Martino, G.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

Eftekhar, A. A.

S. H. Shams Mousavi, A. A. Eftekhar, A. H. Atabaki, and A. Adibi, “Band-edge bilayer plasmonic nanostructure for surface enhanced Raman spectroscopy,” ACS Photonics 2(11), 1546–1551 (2015).
[Crossref]

Engheta, N.

Enkrich, C.

Fan, P.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Fan, S.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Feth, N.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute Extinction Cross Section of Individual Magnetic Split-Ring Resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Février, M.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Finkelstein, H.

Fuchs, F. B.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

Garcia, R. F.

Garcia-Martin, A.

García-Meca, C.

I. Alepuz-Benache, C. García-Meca, F. J. Rodríguez-Fortuño, R. Ortuño, M. Lorente-Crespo, A. Griol, and A. Martínez, “Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide,” Proc. SPIE 8424, 84242J (2012).
[Crossref]

Gardes, F. Y.

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gogol, P.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Griol, A.

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martinez, “Resolving light handedness with an on-chip silicon microdisk,” ACS Photonics 1(9), 762–767 (2014).
[Crossref]

F. J. Rodríguez-Fortuño, D. Puerto, A. Griol, L. Bellieres, J. Martí, and A. Martínez, “Sorting linearly polarized photons with a single scatterer,” Opt. Lett. 39(6), 1394–1397 (2014).
[Crossref] [PubMed]

I. Alepuz-Benache, C. García-Meca, F. J. Rodríguez-Fortuño, R. Ortuño, M. Lorente-Crespo, A. Griol, and A. Martínez, “Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide,” Proc. SPIE 8424, 84242J (2012).
[Crossref]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hancu, I. M.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

Hao, F.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Hochberg, M.

M. Hochberg and T. Baehr-Jones, “Toward fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

Husnik, M.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute Extinction Cross Section of Individual Magnetic Split-Ring Resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Klein, M. W.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute Extinction Cross Section of Individual Magnetic Split-Ring Resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31(9), 1259–1261 (2006).
[Crossref] [PubMed]

Koenderink, A. F.

F. B. Arango, R. Thijssen, B. Brenny, T. Coenen, and A. F. Koenderink, “Robustness of plasmon phased array nanoantennas to disorder,” Sci. Rep. 5, 10911 (2015).
[Crossref] [PubMed]

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref] [PubMed]

Kompocholis, C.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Belluti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

König, M.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute Extinction Cross Section of Individual Magnetic Split-Ring Resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Kuttge, M.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

Kwadrin, A.

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref] [PubMed]

Lagae, L.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled fano- and lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

Le Thomas, N.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23(3), 3088–3101 (2015).
[Crossref] [PubMed]

Linden, S.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute Extinction Cross Section of Individual Magnetic Split-Ring Resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31(9), 1259–1261 (2006).
[Crossref] [PubMed]

Lipson, M.

López-Tejeira, F.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled fano- and lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Lorente-Crespo, M.

I. Alepuz-Benache, C. García-Meca, F. J. Rodríguez-Fortuño, R. Ortuño, M. Lorente-Crespo, A. Griol, and A. Martínez, “Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide,” Proc. SPIE 8424, 84242J (2012).
[Crossref]

Lourtioz, J.-M.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Lui, A.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Belluti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Maier, S. A.

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

U. K. Chettiar, R. F. Garcia, S. A. Maier, and N. Engheta, “Enhancement of radiation from dielectric waveguides using resonant plasmonic coreshells,” Opt. Express 20(14), 16104–16112 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Martí, J.

Martinez, A.

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martinez, “Resolving light handedness with an on-chip silicon microdisk,” ACS Photonics 1(9), 762–767 (2014).
[Crossref]

Martínez, A.

Martínez-Marco, M.

Mégy, R.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Melchiorri, M.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Belluti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Merget, F.

Moshchalkov, V. V.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled fano- and lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Navarro-Cía, M.

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Neutens, P.

Niegemann, J.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute Extinction Cross Section of Individual Magnetic Split-Ring Resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Ortuño, R.

I. Alepuz-Benache, C. García-Meca, F. J. Rodríguez-Fortuño, R. Ortuño, M. Lorente-Crespo, A. Griol, and A. Martínez, “Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide,” Proc. SPIE 8424, 84242J (2012).
[Crossref]

P. J. Rodríguez-Cantó, M. Martínez-Marco, F. J. Rodríguez-Fortuño, B. Tomás-Navarro, R. Ortuño, S. Peransí-Llopis, and A. Martínez, “Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon,” Opt. Express 19(8), 7664–7672 (2011).
[Crossref] [PubMed]

Paniagua-Domínguez, R.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled fano- and lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Pavesi, L.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Belluti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Peransí-Llopis, S.

Peyskens, F.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23(3), 3088–3101 (2015).
[Crossref] [PubMed]

Pucker, G.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Belluti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Puerto, D.

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martinez, “Resolving light handedness with an on-chip silicon microdisk,” ACS Photonics 1(9), 762–767 (2014).
[Crossref]

F. J. Rodríguez-Fortuño, D. Puerto, A. Griol, L. Bellieres, J. Martí, and A. Martínez, “Sorting linearly polarized photons with a single scatterer,” Opt. Lett. 39(6), 1394–1397 (2014).
[Crossref] [PubMed]

Rahmani, M.

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Riboli, F.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Belluti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Rickman, A.

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
[Crossref]

Rodríguez-Cantó, P. J.

Rodríguez-Fortuño, F. J.

F. J. Rodríguez-Fortuño, D. Puerto, A. Griol, L. Bellieres, J. Martí, and A. Martínez, “Sorting linearly polarized photons with a single scatterer,” Opt. Lett. 39(6), 1394–1397 (2014).
[Crossref] [PubMed]

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martinez, “Resolving light handedness with an on-chip silicon microdisk,” ACS Photonics 1(9), 762–767 (2014).
[Crossref]

I. Alepuz-Benache, C. García-Meca, F. J. Rodríguez-Fortuño, R. Ortuño, M. Lorente-Crespo, A. Griol, and A. Martínez, “Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide,” Proc. SPIE 8424, 84242J (2012).
[Crossref]

P. J. Rodríguez-Cantó, M. Martínez-Marco, F. J. Rodríguez-Fortuño, B. Tomás-Navarro, R. Ortuño, S. Peransí-Llopis, and A. Martínez, “Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon,” Opt. Express 19(8), 7664–7672 (2011).
[Crossref] [PubMed]

Romero-García, S.

Sánchez-Gil, J. A.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled fano- and lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Sapienza, R.

Sbrana, F.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Belluti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shams Mousavi, S. H.

S. H. Shams Mousavi, A. A. Eftekhar, A. H. Atabaki, and A. Adibi, “Band-edge bilayer plasmonic nanostructure for surface enhanced Raman spectroscopy,” ACS Photonics 2(11), 1546–1551 (2015).
[Crossref]

Smolyaninov, I. I.

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localised surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[Crossref]

Sobhani, H.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Sonnefraud, Y.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Soukoulis, C. M.

Subramanian, A. Z.

Thijssen, R.

F. B. Arango, R. Thijssen, B. Brenny, T. Coenen, and A. F. Koenderink, “Robustness of plasmon phased array nanoantennas to disorder,” Sci. Rep. 5, 10911 (2015).
[Crossref] [PubMed]

Tomás-Navarro, B.

Van Dorpe, P.

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23(3), 3088–3101 (2015).
[Crossref] [PubMed]

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled fano- and lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

van Hulst, N. F.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Vercruysse, D.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled fano- and lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

Verellen, N.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled fano- and lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Wegener, M.

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute Extinction Cross Section of Individual Magnetic Split-Ring Resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31(9), 1259–1261 (2006).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Witzens, J.

Xia, Z.

Yegnanarayanan, S.

Yu, Z.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localised surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhong, F.

ACS Nano (1)

F. Bernal Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano 6(11), 10156–10167 (2012).
[Crossref] [PubMed]

ACS Photonics (3)

F. J. Rodríguez-Fortuño, I. Barber-Sanz, D. Puerto, A. Griol, and A. Martinez, “Resolving light handedness with an on-chip silicon microdisk,” ACS Photonics 1(9), 762–767 (2014).
[Crossref]

S. H. Shams Mousavi, A. A. Eftekhar, A. H. Atabaki, and A. Adibi, “Band-edge bilayer plasmonic nanostructure for surface enhanced Raman spectroscopy,” ACS Photonics 2(11), 1546–1551 (2015).
[Crossref]

F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform,” ACS Photonics 3(1), 102–108 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localised surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[Crossref]

Mater. Sci. Semicond. Process. (1)

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Belluti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Nano Lett. (5)

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar interference for directed light emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled fano- and lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Nat. Mater. (4)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Nat. Photonics (6)

M. Hochberg and T. Baehr-Jones, “Toward fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute Extinction Cross Section of Individual Magnetic Split-Ring Resonators,” Nat. Photonics 2(10), 614–617 (2008).
[Crossref]

D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Opt. Express (6)

F. Peyskens, A. Z. Subramanian, P. Neutens, A. Dhakal, P. Van Dorpe, N. Le Thomas, and R. Baets, “Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide,” Opt. Express 23(3), 3088–3101 (2015).
[Crossref] [PubMed]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref] [PubMed]

M. Castro-Lopez, N. de Sousa, A. Garcia-Martin, F. Y. Gardes, and R. Sapienza, “Scattering of a plasmonic nanoantenna embedded in a silicon waveguide,” Opt. Express 23(22), 28108–28118 (2015).
[Crossref] [PubMed]

P. J. Rodríguez-Cantó, M. Martínez-Marco, F. J. Rodríguez-Fortuño, B. Tomás-Navarro, R. Ortuño, S. Peransí-Llopis, and A. Martínez, “Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon,” Opt. Express 19(8), 7664–7672 (2011).
[Crossref] [PubMed]

M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Opt. Express 21(26), 32086–32098 (2013).
[Crossref] [PubMed]

U. K. Chettiar, R. F. Garcia, S. A. Maier, and N. Engheta, “Enhancement of radiation from dielectric waveguides using resonant plasmonic coreshells,” Opt. Express 20(14), 16104–16112 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Proc. SPIE (1)

I. Alepuz-Benache, C. García-Meca, F. J. Rodríguez-Fortuño, R. Ortuño, M. Lorente-Crespo, A. Griol, and A. Martínez, “Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide,” Proc. SPIE 8424, 84242J (2012).
[Crossref]

Sci. Rep. (1)

F. B. Arango, R. Thijssen, B. Brenny, T. Coenen, and A. F. Koenderink, “Robustness of plasmon phased array nanoantennas to disorder,” Sci. Rep. 5, 10911 (2015).
[Crossref] [PubMed]

Other (1)

A. Espinosa-Soria and A. Martinez, “Transverse spin and spin-orbit coupling in silicon waveguides,” http://arxiv.org/abs/1507.04859
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Scheme of the proposed approach for full excitation of a plasmonic nanostructure (in this work as well as in the figure, we consider a gold nanostrip with dimensions lxdxh placed inside a sub-micron gap (width g) created in a strip silicon waveguide with rectangular cross-section wxt. The surrounding medium is silica, although other low-index dielectric (such as air) could be used.
Fig. 2
Fig. 2 Numerical study of the gap effects. Normalized transmission (T) and reflection (R) spectra for excitation using the fundamental TE-like (a) and TM-like (b) modes at different gap widths. The vertical axis is in dB units. Snapshot of the electric field components recorded at a plane placed at the middle of the gap (g = 300 nm) for TE-like (c) and TM-like (d) waveguide modes.
Fig. 3
Fig. 3 (a) Numerical results when the gold nanostrip is included. Simulated scattering (RCS, blue solid), and absorption (ACS, red solid) cross-sections for a gold nanostrip with dimensions l = 320 nm, d = 155 nm and h = 40 nm, surrounded by silica. Transmission (T, black dashed) and reflection (R, green dashed) of the complet system with the nanostrip embedded in a g = 300 nm gap and Fano fitting (orange dashed) to the simulated transmission. (b) Electric permittivity of gold from ellipsometry of thin deposited layers (used in the numerical simualtions) and from the Johnson and Christy results [31].
Fig. 4
Fig. 4 Transmission and reflection through the silicon waveguide at TE-like (top) and TM-like (bottom) excitation for variations of the nanostrip dimensions (l and d). Both transmission (solid line) and reflection (dashed line) are represented in dB.
Fig. 5
Fig. 5 SEM images of three fabricated structures. The top view of the fabricated systems is shown, with the top dimensions of the gold nanostrip (at the center) depicted in nm. The thickness of the nanostrip is 40 nm. Deviations in the nanoparticle position or dimensions were taken in account for the simulations.
Fig. 6
Fig. 6 Scheme of the optical set-up used in the experimental measurements. Insets show details of the lensed fiber and a SEM of the gap region of one of the tested samples.
Fig. 7
Fig. 7 Simulated and measured transmission (T, in dB) with respect to a waveguide with gap but without nanostrip. Experimental results are depicted in dashed line, while simulated results are depicted in solid line. TE-like and TM-like transmission from left to right (right to left) are depicted in red and black (blue and green), respectively. Each subfigure (a,b,c) corresponds to the structures shown in Fig. 5 (a,b,c) respectively.

Metrics