Abstract

It was recently proposed that ionization-induced self-compression could be used as an effective method to further compress femtosecond laser pulses propagating freely in a gas jet [He et al., Phys. Rev. Lett. 113, 263904 2014]. Here, we address the question of the homogeneity of the self-compression process and show experimentally that homogeneous self-compression down to 12fs can be obtained by finding the appropriate focusing geometry for the laser pulse. Simulations are used to reproduce the experimental results and give insight into the self-compression process and its limitations. Simulations suggest that the ionization process induces spatio-temporal couplings which lengthen the pulse duration at focus, possibly making this method ineffective for increasing the laser peak intensity.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Application of optical-field-ionization-induced spectral broadening in helium gas to the postcompression of high-energy femtosecond laser pulses

Thierry Auguste, Oliver Gobert, Coralie Fourcade Dutin, Antoine Dubrouil, Eric Mével, Stéphane Petit, Eric Constant, and Dominique Descamps
J. Opt. Soc. Am. B 29(6) 1277-1286 (2012)

Laser chirp effect on femtosecond laser filamentation generated for pulse compression

Juyun Park, Jae-hwan Lee, and Chang Hee Nam
Opt. Express 16(7) 4465-4470 (2008)

Spatio-temporal characterization of few-cycle pulses obtained by filamentation

A. Zaïr, A. Guandalini, F. Schapper, M. Holler, J. Biegert, L. Gallmann, A. Couairon, M. Franco, A. Mysyrowicz, and U. Keller
Opt. Express 15(9) 5394-5405 (2007)

References

  • View by:
  • |
  • |
  • |

  1. E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2013).
    [Crossref]
  2. A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
    [Crossref]
  3. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
    [Crossref]
  4. A. F. Lifschitz and V. Malka, “Optical phase effects in electron wakefield acceleration using few-cycle laser pulses,” New J. Phys. 14, 053045 (2012).
    [Crossref]
  5. A. Borot, A. Malvache, X. Chen, A. Jullien, J.-P. Geindre, P. Audebert, G. Mourou, F. Quéré, and R. Lopez-Martens, “Attosecond control of collective electron motion in plasmas,” Nat. Phys. 8, 416–421 (2012).
    [Crossref]
  6. Z.-H. He, A. G. R. Thomas, B. Beaurepaire, J. A. Nees, B. Hou, V. Malka, K. Krushelnick, and J. Faure, “Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate,” Appl. Phys. Lett. 102, 064104 (2013).
    [Crossref]
  7. B. Beaurepaire, A. Lifschitz, and J. Faure, “Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses,” New J. Phys. 16, 023023 (2014).
    [Crossref]
  8. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
    [Crossref]
  9. D. Herrman, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34, 2459–2461 (2009).
    [Crossref]
  10. S. C. Wilks, J. M. Dawson, and W. B. Mori, “Frequency up-conversion of electromagnetic radiation with use of an overdense plasma,” Phys. Rev. Lett. 61, 337–340 (1988).
    [Crossref] [PubMed]
  11. Wm. M. Wood, C. W. Siders, and M. C. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett. 67, 3523–3526 (1991).
    [Crossref] [PubMed]
  12. F. S. Tsung, C. Ren, L. O. Silva, W. B. Mori, and T. Katsouleas, “Generation of ultra-intense single-cycle laser pulses by using photon deceleration,” Proc. Natl. Acad. Sci. U. S. A. 99, 29–32 (2002).
    [Crossref]
  13. J. Faure, Y. Glinec, J. J. Santos, F. Ewald, J.-P. Rousseau, S. Kiselev, A. Pukhov, T. Hosokai, and V. Malka, “Observation of laser pulse shortening in nonlinear plasma waves,” Phys. Rev. Lett. 95, 205003 (2005).
    [Crossref]
  14. E. Yablonovitch, “Self-phase modulation and short-pulse generation from laser-breakdown plasmas,” Phys. Rev. A 10, 1888–1895 (1974).
    [Crossref]
  15. M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
    [Crossref]
  16. J. Park, J.-H. Lee, and C. Hee Nam, “Generation of 1.5 cycle 0.3 TW laser pulses using a hollow-fiber pulse compressor,” Opt. Lett. 34, 2342–2344 (2009).
    [Crossref] [PubMed]
  17. X. Chen, A. Jullien, A. Malvache, L. Canova, A. Borot, A. Trisorio, C. G. Durfee, and R. Lopez-Martens, “Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber,” Opt. Lett. 34, 1588–1590 (2009).
    [Crossref] [PubMed]
  18. F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11, 095401 (2014).
    [Crossref]
  19. N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping,” Phys. Rev. Lett. 93, 173902 (2004).
    [Crossref] [PubMed]
  20. C. Fourcade Dutin, A. Dubrouil, S. Petit, E. Mével, E. Constant, and D. Descamps, “Post-compression of high-energy femtosecond pulses using gas ionization,” Opt. Lett. 35, 253–255 (2010).
    [Crossref] [PubMed]
  21. Z.-H. He, J. A. Nees, B. Hou, K. Krushelnick, and A. G. R. Thomas, “Ionization-induced self-compression of tightly focused femtosecond laser pulses,” Phys. Rev. Lett. 113, 263904 (2014).
    [Crossref]
  22. S. Akturk, C. D Amico, and A. Mysyrowicz, “Measuring ultrashort pulses in the single-cycle regime using frequency-resolved optical gating,” J. Opt. Soc. Am. B 25, A63–A69 (2008).
    [Crossref]
  23. P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marqus, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
    [Crossref]
  24. A.F. Lifschitz, X. Davoine, E. Lefebvre, J. Faure, C. Rechatin, and V. Malka, “Particle-in-Cell modelling of laserplasma interaction using Fourier decomposition,” J. Comp. Phys. 228, 1803–1814 (2009).
    [Crossref]
  25. M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Zh. Eksp. Teor. Fiz. 91, 2008–2013 (1986).
  26. R. Nuter, L. Gremillet, E. Lefebvre, A. Lévy, T. Ceccotti, and P. Martin, “Field ionization model implemented in particle in cell code and applied to laser-accelerated carbon ions,” Phys. Plasmas 18, 033107 (2011).
    [Crossref]
  27. R.W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).
  28. B. Beaurepaire, A. Vernier, M. Bocoum, F. Böhle, A. Jullien, J-P. Rousseau, T. Lefrou, D. Douillet, G. Iaquaniello, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Effect of thelLaser wave front in a laser-plasma accelerator,” Phys. Rev. X 5, 031012 (2015).
  29. C. Bourassin-Bouchet, M. Stephens, S. de Rossi, F. Delmotte, and P. Chavel, “Duration of ultrashort pulses in the presence of spatio-temporal coupling,” Opt. Express 19, 17357–17371 (2011).
    [Crossref] [PubMed]
  30. S. Akturk, X. Gun, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. of Optics 12, 093001 (2010).
    [Crossref]
  31. Z. Bor, Z. Gogolak, and G. Szabo, “Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry,” Opt. Lett. 14, 862–864 (1989).
    [Crossref] [PubMed]
  32. T. A. Planchon, S. Ferré, G. Hamoniaux, G. Chériaux, and J.-P. Chambaret, “Experimental evidence of 25-fs laser pulse distortion in singlet beam expanders,” Opt. Lett. 29, 2300–2302 (2004).
    [Crossref] [PubMed]

2015 (1)

B. Beaurepaire, A. Vernier, M. Bocoum, F. Böhle, A. Jullien, J-P. Rousseau, T. Lefrou, D. Douillet, G. Iaquaniello, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Effect of thelLaser wave front in a laser-plasma accelerator,” Phys. Rev. X 5, 031012 (2015).

2014 (3)

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11, 095401 (2014).
[Crossref]

Z.-H. He, J. A. Nees, B. Hou, K. Krushelnick, and A. G. R. Thomas, “Ionization-induced self-compression of tightly focused femtosecond laser pulses,” Phys. Rev. Lett. 113, 263904 (2014).
[Crossref]

B. Beaurepaire, A. Lifschitz, and J. Faure, “Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses,” New J. Phys. 16, 023023 (2014).
[Crossref]

2013 (3)

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2013).
[Crossref]

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[Crossref]

Z.-H. He, A. G. R. Thomas, B. Beaurepaire, J. A. Nees, B. Hou, V. Malka, K. Krushelnick, and J. Faure, “Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate,” Appl. Phys. Lett. 102, 064104 (2013).
[Crossref]

2012 (2)

A. F. Lifschitz and V. Malka, “Optical phase effects in electron wakefield acceleration using few-cycle laser pulses,” New J. Phys. 14, 053045 (2012).
[Crossref]

A. Borot, A. Malvache, X. Chen, A. Jullien, J.-P. Geindre, P. Audebert, G. Mourou, F. Quéré, and R. Lopez-Martens, “Attosecond control of collective electron motion in plasmas,” Nat. Phys. 8, 416–421 (2012).
[Crossref]

2011 (2)

R. Nuter, L. Gremillet, E. Lefebvre, A. Lévy, T. Ceccotti, and P. Martin, “Field ionization model implemented in particle in cell code and applied to laser-accelerated carbon ions,” Phys. Plasmas 18, 033107 (2011).
[Crossref]

C. Bourassin-Bouchet, M. Stephens, S. de Rossi, F. Delmotte, and P. Chavel, “Duration of ultrashort pulses in the presence of spatio-temporal coupling,” Opt. Express 19, 17357–17371 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (5)

2008 (1)

2005 (1)

J. Faure, Y. Glinec, J. J. Santos, F. Ewald, J.-P. Rousseau, S. Kiselev, A. Pukhov, T. Hosokai, and V. Malka, “Observation of laser pulse shortening in nonlinear plasma waves,” Phys. Rev. Lett. 95, 205003 (2005).
[Crossref]

2004 (2)

N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping,” Phys. Rev. Lett. 93, 173902 (2004).
[Crossref] [PubMed]

T. A. Planchon, S. Ferré, G. Hamoniaux, G. Chériaux, and J.-P. Chambaret, “Experimental evidence of 25-fs laser pulse distortion in singlet beam expanders,” Opt. Lett. 29, 2300–2302 (2004).
[Crossref] [PubMed]

2002 (1)

F. S. Tsung, C. Ren, L. O. Silva, W. B. Mori, and T. Katsouleas, “Generation of ultra-intense single-cycle laser pulses by using photon deceleration,” Proc. Natl. Acad. Sci. U. S. A. 99, 29–32 (2002).
[Crossref]

1999 (1)

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marqus, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

1996 (1)

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

1991 (1)

Wm. M. Wood, C. W. Siders, and M. C. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett. 67, 3523–3526 (1991).
[Crossref] [PubMed]

1989 (1)

1988 (1)

S. C. Wilks, J. M. Dawson, and W. B. Mori, “Frequency up-conversion of electromagnetic radiation with use of an overdense plasma,” Phys. Rev. Lett. 61, 337–340 (1988).
[Crossref] [PubMed]

1986 (1)

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Zh. Eksp. Teor. Fiz. 91, 2008–2013 (1986).

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

1974 (1)

E. Yablonovitch, “Self-phase modulation and short-pulse generation from laser-breakdown plasmas,” Phys. Rev. A 10, 1888–1895 (1974).
[Crossref]

1972 (1)

R.W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Akturk, S.

S. Akturk, X. Gun, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. of Optics 12, 093001 (2010).
[Crossref]

S. Akturk, C. D Amico, and A. Mysyrowicz, “Measuring ultrashort pulses in the single-cycle regime using frequency-resolved optical gating,” J. Opt. Soc. Am. B 25, A63–A69 (2008).
[Crossref]

Amico, C. D

Amiranoff, F.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marqus, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

Ammosov, M. V.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Zh. Eksp. Teor. Fiz. 91, 2008–2013 (1986).

Audebert, P.

A. Borot, A. Malvache, X. Chen, A. Jullien, J.-P. Geindre, P. Audebert, G. Mourou, F. Quéré, and R. Lopez-Martens, “Attosecond control of collective electron motion in plasmas,” Nat. Phys. 8, 416–421 (2012).
[Crossref]

Beaurepaire, B.

B. Beaurepaire, A. Vernier, M. Bocoum, F. Böhle, A. Jullien, J-P. Rousseau, T. Lefrou, D. Douillet, G. Iaquaniello, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Effect of thelLaser wave front in a laser-plasma accelerator,” Phys. Rev. X 5, 031012 (2015).

B. Beaurepaire, A. Lifschitz, and J. Faure, “Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses,” New J. Phys. 16, 023023 (2014).
[Crossref]

Z.-H. He, A. G. R. Thomas, B. Beaurepaire, J. A. Nees, B. Hou, V. Malka, K. Krushelnick, and J. Faure, “Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate,” Appl. Phys. Lett. 102, 064104 (2013).
[Crossref]

Bocoum, M.

B. Beaurepaire, A. Vernier, M. Bocoum, F. Böhle, A. Jullien, J-P. Rousseau, T. Lefrou, D. Douillet, G. Iaquaniello, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Effect of thelLaser wave front in a laser-plasma accelerator,” Phys. Rev. X 5, 031012 (2015).

Böhle, F.

B. Beaurepaire, A. Vernier, M. Bocoum, F. Böhle, A. Jullien, J-P. Rousseau, T. Lefrou, D. Douillet, G. Iaquaniello, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Effect of thelLaser wave front in a laser-plasma accelerator,” Phys. Rev. X 5, 031012 (2015).

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11, 095401 (2014).
[Crossref]

Bor, Z.

Borghesi, M.

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[Crossref]

Borot, A.

A. Borot, A. Malvache, X. Chen, A. Jullien, J.-P. Geindre, P. Audebert, G. Mourou, F. Quéré, and R. Lopez-Martens, “Attosecond control of collective electron motion in plasmas,” Nat. Phys. 8, 416–421 (2012).
[Crossref]

X. Chen, A. Jullien, A. Malvache, L. Canova, A. Borot, A. Trisorio, C. G. Durfee, and R. Lopez-Martens, “Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber,” Opt. Lett. 34, 1588–1590 (2009).
[Crossref] [PubMed]

Bourassin-Bouchet, C.

Bowlan, P.

S. Akturk, X. Gun, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. of Optics 12, 093001 (2010).
[Crossref]

Canova, L.

Ceccotti, T.

R. Nuter, L. Gremillet, E. Lefebvre, A. Lévy, T. Ceccotti, and P. Martin, “Field ionization model implemented in particle in cell code and applied to laser-accelerated carbon ions,” Phys. Plasmas 18, 033107 (2011).
[Crossref]

Chambaret, J.-P.

Chavel, P.

Chen, X.

A. Borot, A. Malvache, X. Chen, A. Jullien, J.-P. Geindre, P. Audebert, G. Mourou, F. Quéré, and R. Lopez-Martens, “Attosecond control of collective electron motion in plasmas,” Nat. Phys. 8, 416–421 (2012).
[Crossref]

X. Chen, A. Jullien, A. Malvache, L. Canova, A. Borot, A. Trisorio, C. G. Durfee, and R. Lopez-Martens, “Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber,” Opt. Lett. 34, 1588–1590 (2009).
[Crossref] [PubMed]

Chériaux, G.

Chessa, P.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marqus, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

Christov, I. P.

N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping,” Phys. Rev. Lett. 93, 173902 (2004).
[Crossref] [PubMed]

Constant, E.

Crespo, H.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11, 095401 (2014).
[Crossref]

Davoine, X.

A.F. Lifschitz, X. Davoine, E. Lefebvre, J. Faure, C. Rechatin, and V. Malka, “Particle-in-Cell modelling of laserplasma interaction using Fourier decomposition,” J. Comp. Phys. 228, 1803–1814 (2009).
[Crossref]

Dawson, J. M.

S. C. Wilks, J. M. Dawson, and W. B. Mori, “Frequency up-conversion of electromagnetic radiation with use of an overdense plasma,” Phys. Rev. Lett. 61, 337–340 (1988).
[Crossref] [PubMed]

de Rossi, S.

De Wispelaere, E.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marqus, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

Delmotte, F.

Delone, N. B.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Zh. Eksp. Teor. Fiz. 91, 2008–2013 (1986).

Descamps, D.

DeSilvestri, S.

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Dorchies, F.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marqus, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

Douillet, D.

B. Beaurepaire, A. Vernier, M. Bocoum, F. Böhle, A. Jullien, J-P. Rousseau, T. Lefrou, D. Douillet, G. Iaquaniello, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Effect of thelLaser wave front in a laser-plasma accelerator,” Phys. Rev. X 5, 031012 (2015).

Downer, M. C.

Wm. M. Wood, C. W. Siders, and M. C. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett. 67, 3523–3526 (1991).
[Crossref] [PubMed]

Dubrouil, A.

Durfee, C. G.

Esarey, E.

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2013).
[Crossref]

Ewald, F.

J. Faure, Y. Glinec, J. J. Santos, F. Ewald, J.-P. Rousseau, S. Kiselev, A. Pukhov, T. Hosokai, and V. Malka, “Observation of laser pulse shortening in nonlinear plasma waves,” Phys. Rev. Lett. 95, 205003 (2005).
[Crossref]

Faure, J.

B. Beaurepaire, A. Vernier, M. Bocoum, F. Böhle, A. Jullien, J-P. Rousseau, T. Lefrou, D. Douillet, G. Iaquaniello, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Effect of thelLaser wave front in a laser-plasma accelerator,” Phys. Rev. X 5, 031012 (2015).

B. Beaurepaire, A. Lifschitz, and J. Faure, “Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses,” New J. Phys. 16, 023023 (2014).
[Crossref]

Z.-H. He, A. G. R. Thomas, B. Beaurepaire, J. A. Nees, B. Hou, V. Malka, K. Krushelnick, and J. Faure, “Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate,” Appl. Phys. Lett. 102, 064104 (2013).
[Crossref]

A.F. Lifschitz, X. Davoine, E. Lefebvre, J. Faure, C. Rechatin, and V. Malka, “Particle-in-Cell modelling of laserplasma interaction using Fourier decomposition,” J. Comp. Phys. 228, 1803–1814 (2009).
[Crossref]

J. Faure, Y. Glinec, J. J. Santos, F. Ewald, J.-P. Rousseau, S. Kiselev, A. Pukhov, T. Hosokai, and V. Malka, “Observation of laser pulse shortening in nonlinear plasma waves,” Phys. Rev. Lett. 95, 205003 (2005).
[Crossref]

Ferré, S.

Fourcade Dutin, C.

Geindre, J.-P.

A. Borot, A. Malvache, X. Chen, A. Jullien, J.-P. Geindre, P. Audebert, G. Mourou, F. Quéré, and R. Lopez-Martens, “Attosecond control of collective electron motion in plasmas,” Nat. Phys. 8, 416–421 (2012).
[Crossref]

Gerchberg, R.W.

R.W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Gibson, E. A.

N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping,” Phys. Rev. Lett. 93, 173902 (2004).
[Crossref] [PubMed]

Glinec, Y.

J. Faure, Y. Glinec, J. J. Santos, F. Ewald, J.-P. Rousseau, S. Kiselev, A. Pukhov, T. Hosokai, and V. Malka, “Observation of laser pulse shortening in nonlinear plasma waves,” Phys. Rev. Lett. 95, 205003 (2005).
[Crossref]

Gogolak, Z.

Gremillet, L.

R. Nuter, L. Gremillet, E. Lefebvre, A. Lévy, T. Ceccotti, and P. Martin, “Field ionization model implemented in particle in cell code and applied to laser-accelerated carbon ions,” Phys. Plasmas 18, 033107 (2011).
[Crossref]

Gun, X.

S. Akturk, X. Gun, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. of Optics 12, 093001 (2010).
[Crossref]

Hamoniaux, G.

T. A. Planchon, S. Ferré, G. Hamoniaux, G. Chériaux, and J.-P. Chambaret, “Experimental evidence of 25-fs laser pulse distortion in singlet beam expanders,” Opt. Lett. 29, 2300–2302 (2004).
[Crossref] [PubMed]

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marqus, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

He, Z.-H.

Z.-H. He, J. A. Nees, B. Hou, K. Krushelnick, and A. G. R. Thomas, “Ionization-induced self-compression of tightly focused femtosecond laser pulses,” Phys. Rev. Lett. 113, 263904 (2014).
[Crossref]

Z.-H. He, A. G. R. Thomas, B. Beaurepaire, J. A. Nees, B. Hou, V. Malka, K. Krushelnick, and J. Faure, “Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate,” Appl. Phys. Lett. 102, 064104 (2013).
[Crossref]

Hee Nam, C.

Herrman, D.

Hosokai, T.

J. Faure, Y. Glinec, J. J. Santos, F. Ewald, J.-P. Rousseau, S. Kiselev, A. Pukhov, T. Hosokai, and V. Malka, “Observation of laser pulse shortening in nonlinear plasma waves,” Phys. Rev. Lett. 95, 205003 (2005).
[Crossref]

Hou, B.

Z.-H. He, J. A. Nees, B. Hou, K. Krushelnick, and A. G. R. Thomas, “Ionization-induced self-compression of tightly focused femtosecond laser pulses,” Phys. Rev. Lett. 113, 263904 (2014).
[Crossref]

Z.-H. He, A. G. R. Thomas, B. Beaurepaire, J. A. Nees, B. Hou, V. Malka, K. Krushelnick, and J. Faure, “Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate,” Appl. Phys. Lett. 102, 064104 (2013).
[Crossref]

Iaquaniello, G.

B. Beaurepaire, A. Vernier, M. Bocoum, F. Böhle, A. Jullien, J-P. Rousseau, T. Lefrou, D. Douillet, G. Iaquaniello, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Effect of thelLaser wave front in a laser-plasma accelerator,” Phys. Rev. X 5, 031012 (2015).

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

Jullien, A.

B. Beaurepaire, A. Vernier, M. Bocoum, F. Böhle, A. Jullien, J-P. Rousseau, T. Lefrou, D. Douillet, G. Iaquaniello, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Effect of thelLaser wave front in a laser-plasma accelerator,” Phys. Rev. X 5, 031012 (2015).

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11, 095401 (2014).
[Crossref]

A. Borot, A. Malvache, X. Chen, A. Jullien, J.-P. Geindre, P. Audebert, G. Mourou, F. Quéré, and R. Lopez-Martens, “Attosecond control of collective electron motion in plasmas,” Nat. Phys. 8, 416–421 (2012).
[Crossref]

X. Chen, A. Jullien, A. Malvache, L. Canova, A. Borot, A. Trisorio, C. G. Durfee, and R. Lopez-Martens, “Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber,” Opt. Lett. 34, 1588–1590 (2009).
[Crossref] [PubMed]

Kapteyn, H. C.

N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping,” Phys. Rev. Lett. 93, 173902 (2004).
[Crossref] [PubMed]

Katsouleas, T.

F. S. Tsung, C. Ren, L. O. Silva, W. B. Mori, and T. Katsouleas, “Generation of ultra-intense single-cycle laser pulses by using photon deceleration,” Proc. Natl. Acad. Sci. U. S. A. 99, 29–32 (2002).
[Crossref]

Kiselev, S.

J. Faure, Y. Glinec, J. J. Santos, F. Ewald, J.-P. Rousseau, S. Kiselev, A. Pukhov, T. Hosokai, and V. Malka, “Observation of laser pulse shortening in nonlinear plasma waves,” Phys. Rev. Lett. 95, 205003 (2005).
[Crossref]

Kovacs, M.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11, 095401 (2014).
[Crossref]

Krainov, V. P.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Zh. Eksp. Teor. Fiz. 91, 2008–2013 (1986).

Krausz, F.

Kretschmar, M.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11, 095401 (2014).
[Crossref]

Krushelnick, K.

Z.-H. He, J. A. Nees, B. Hou, K. Krushelnick, and A. G. R. Thomas, “Ionization-induced self-compression of tightly focused femtosecond laser pulses,” Phys. Rev. Lett. 113, 263904 (2014).
[Crossref]

Z.-H. He, A. G. R. Thomas, B. Beaurepaire, J. A. Nees, B. Hou, V. Malka, K. Krushelnick, and J. Faure, “Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate,” Appl. Phys. Lett. 102, 064104 (2013).
[Crossref]

Lee, J.-H.

Leemans, W. P.

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2013).
[Crossref]

Lefebvre, E.

R. Nuter, L. Gremillet, E. Lefebvre, A. Lévy, T. Ceccotti, and P. Martin, “Field ionization model implemented in particle in cell code and applied to laser-accelerated carbon ions,” Phys. Plasmas 18, 033107 (2011).
[Crossref]

A.F. Lifschitz, X. Davoine, E. Lefebvre, J. Faure, C. Rechatin, and V. Malka, “Particle-in-Cell modelling of laserplasma interaction using Fourier decomposition,” J. Comp. Phys. 228, 1803–1814 (2009).
[Crossref]

Lefrou, T.

B. Beaurepaire, A. Vernier, M. Bocoum, F. Böhle, A. Jullien, J-P. Rousseau, T. Lefrou, D. Douillet, G. Iaquaniello, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Effect of thelLaser wave front in a laser-plasma accelerator,” Phys. Rev. X 5, 031012 (2015).

Lévy, A.

R. Nuter, L. Gremillet, E. Lefebvre, A. Lévy, T. Ceccotti, and P. Martin, “Field ionization model implemented in particle in cell code and applied to laser-accelerated carbon ions,” Phys. Plasmas 18, 033107 (2011).
[Crossref]

Lifschitz, A.

B. Beaurepaire, A. Vernier, M. Bocoum, F. Böhle, A. Jullien, J-P. Rousseau, T. Lefrou, D. Douillet, G. Iaquaniello, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Effect of thelLaser wave front in a laser-plasma accelerator,” Phys. Rev. X 5, 031012 (2015).

B. Beaurepaire, A. Lifschitz, and J. Faure, “Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses,” New J. Phys. 16, 023023 (2014).
[Crossref]

Lifschitz, A. F.

A. F. Lifschitz and V. Malka, “Optical phase effects in electron wakefield acceleration using few-cycle laser pulses,” New J. Phys. 14, 053045 (2012).
[Crossref]

Lifschitz, A.F.

A.F. Lifschitz, X. Davoine, E. Lefebvre, J. Faure, C. Rechatin, and V. Malka, “Particle-in-Cell modelling of laserplasma interaction using Fourier decomposition,” J. Comp. Phys. 228, 1803–1814 (2009).
[Crossref]

Lopez-Martens, R.

B. Beaurepaire, A. Vernier, M. Bocoum, F. Böhle, A. Jullien, J-P. Rousseau, T. Lefrou, D. Douillet, G. Iaquaniello, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Effect of thelLaser wave front in a laser-plasma accelerator,” Phys. Rev. X 5, 031012 (2015).

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11, 095401 (2014).
[Crossref]

A. Borot, A. Malvache, X. Chen, A. Jullien, J.-P. Geindre, P. Audebert, G. Mourou, F. Quéré, and R. Lopez-Martens, “Attosecond control of collective electron motion in plasmas,” Nat. Phys. 8, 416–421 (2012).
[Crossref]

X. Chen, A. Jullien, A. Malvache, L. Canova, A. Borot, A. Trisorio, C. G. Durfee, and R. Lopez-Martens, “Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber,” Opt. Lett. 34, 1588–1590 (2009).
[Crossref] [PubMed]

Macchi, A.

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[Crossref]

Malka, V.

Z.-H. He, A. G. R. Thomas, B. Beaurepaire, J. A. Nees, B. Hou, V. Malka, K. Krushelnick, and J. Faure, “Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate,” Appl. Phys. Lett. 102, 064104 (2013).
[Crossref]

A. F. Lifschitz and V. Malka, “Optical phase effects in electron wakefield acceleration using few-cycle laser pulses,” New J. Phys. 14, 053045 (2012).
[Crossref]

A.F. Lifschitz, X. Davoine, E. Lefebvre, J. Faure, C. Rechatin, and V. Malka, “Particle-in-Cell modelling of laserplasma interaction using Fourier decomposition,” J. Comp. Phys. 228, 1803–1814 (2009).
[Crossref]

J. Faure, Y. Glinec, J. J. Santos, F. Ewald, J.-P. Rousseau, S. Kiselev, A. Pukhov, T. Hosokai, and V. Malka, “Observation of laser pulse shortening in nonlinear plasma waves,” Phys. Rev. Lett. 95, 205003 (2005).
[Crossref]

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marqus, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

Malvache, A.

A. Borot, A. Malvache, X. Chen, A. Jullien, J.-P. Geindre, P. Audebert, G. Mourou, F. Quéré, and R. Lopez-Martens, “Attosecond control of collective electron motion in plasmas,” Nat. Phys. 8, 416–421 (2012).
[Crossref]

X. Chen, A. Jullien, A. Malvache, L. Canova, A. Borot, A. Trisorio, C. G. Durfee, and R. Lopez-Martens, “Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber,” Opt. Lett. 34, 1588–1590 (2009).
[Crossref] [PubMed]

Marqus, J. R.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marqus, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

Martin, P.

R. Nuter, L. Gremillet, E. Lefebvre, A. Lévy, T. Ceccotti, and P. Martin, “Field ionization model implemented in particle in cell code and applied to laser-accelerated carbon ions,” Phys. Plasmas 18, 033107 (2011).
[Crossref]

Mével, E.

Miranda, M.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11, 095401 (2014).
[Crossref]

Mora, P.

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marqus, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

Morgner, U.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11, 095401 (2014).
[Crossref]

Mori, W. B.

F. S. Tsung, C. Ren, L. O. Silva, W. B. Mori, and T. Katsouleas, “Generation of ultra-intense single-cycle laser pulses by using photon deceleration,” Proc. Natl. Acad. Sci. U. S. A. 99, 29–32 (2002).
[Crossref]

S. C. Wilks, J. M. Dawson, and W. B. Mori, “Frequency up-conversion of electromagnetic radiation with use of an overdense plasma,” Phys. Rev. Lett. 61, 337–340 (1988).
[Crossref] [PubMed]

Mourou, G.

A. Borot, A. Malvache, X. Chen, A. Jullien, J.-P. Geindre, P. Audebert, G. Mourou, F. Quéré, and R. Lopez-Martens, “Attosecond control of collective electron motion in plasmas,” Nat. Phys. 8, 416–421 (2012).
[Crossref]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

Murnane, M. M.

N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping,” Phys. Rev. Lett. 93, 173902 (2004).
[Crossref] [PubMed]

Mysyrowicz, A.

Nagy, T.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11, 095401 (2014).
[Crossref]

Nees, J. A.

Z.-H. He, J. A. Nees, B. Hou, K. Krushelnick, and A. G. R. Thomas, “Ionization-induced self-compression of tightly focused femtosecond laser pulses,” Phys. Rev. Lett. 113, 263904 (2014).
[Crossref]

Z.-H. He, A. G. R. Thomas, B. Beaurepaire, J. A. Nees, B. Hou, V. Malka, K. Krushelnick, and J. Faure, “Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate,” Appl. Phys. Lett. 102, 064104 (2013).
[Crossref]

Nisoli, M.

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Nuter, R.

R. Nuter, L. Gremillet, E. Lefebvre, A. Lévy, T. Ceccotti, and P. Martin, “Field ionization model implemented in particle in cell code and applied to laser-accelerated carbon ions,” Phys. Plasmas 18, 033107 (2011).
[Crossref]

Park, J.

Passoni, M.

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[Crossref]

Pervak, V.

Petit, S.

Planchon, T. A.

Popmintchev, T.

N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping,” Phys. Rev. Lett. 93, 173902 (2004).
[Crossref] [PubMed]

Pukhov, A.

J. Faure, Y. Glinec, J. J. Santos, F. Ewald, J.-P. Rousseau, S. Kiselev, A. Pukhov, T. Hosokai, and V. Malka, “Observation of laser pulse shortening in nonlinear plasma waves,” Phys. Rev. Lett. 95, 205003 (2005).
[Crossref]

Quéré, F.

A. Borot, A. Malvache, X. Chen, A. Jullien, J.-P. Geindre, P. Audebert, G. Mourou, F. Quéré, and R. Lopez-Martens, “Attosecond control of collective electron motion in plasmas,” Nat. Phys. 8, 416–421 (2012).
[Crossref]

Rechatin, C.

A.F. Lifschitz, X. Davoine, E. Lefebvre, J. Faure, C. Rechatin, and V. Malka, “Particle-in-Cell modelling of laserplasma interaction using Fourier decomposition,” J. Comp. Phys. 228, 1803–1814 (2009).
[Crossref]

Ren, C.

F. S. Tsung, C. Ren, L. O. Silva, W. B. Mori, and T. Katsouleas, “Generation of ultra-intense single-cycle laser pulses by using photon deceleration,” Proc. Natl. Acad. Sci. U. S. A. 99, 29–32 (2002).
[Crossref]

Romero, R.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11, 095401 (2014).
[Crossref]

Rousseau, J.-P.

J. Faure, Y. Glinec, J. J. Santos, F. Ewald, J.-P. Rousseau, S. Kiselev, A. Pukhov, T. Hosokai, and V. Malka, “Observation of laser pulse shortening in nonlinear plasma waves,” Phys. Rev. Lett. 95, 205003 (2005).
[Crossref]

Rousseau, J-P.

B. Beaurepaire, A. Vernier, M. Bocoum, F. Böhle, A. Jullien, J-P. Rousseau, T. Lefrou, D. Douillet, G. Iaquaniello, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Effect of thelLaser wave front in a laser-plasma accelerator,” Phys. Rev. X 5, 031012 (2015).

Santos, J. J.

J. Faure, Y. Glinec, J. J. Santos, F. Ewald, J.-P. Rousseau, S. Kiselev, A. Pukhov, T. Hosokai, and V. Malka, “Observation of laser pulse shortening in nonlinear plasma waves,” Phys. Rev. Lett. 95, 205003 (2005).
[Crossref]

Saxton, W. O.

R.W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Schmid, K.

Schroeder, C. B.

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2013).
[Crossref]

Siders, C. W.

Wm. M. Wood, C. W. Siders, and M. C. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett. 67, 3523–3526 (1991).
[Crossref] [PubMed]

Silva, L. O.

F. S. Tsung, C. Ren, L. O. Silva, W. B. Mori, and T. Katsouleas, “Generation of ultra-intense single-cycle laser pulses by using photon deceleration,” Proc. Natl. Acad. Sci. U. S. A. 99, 29–32 (2002).
[Crossref]

Simon, P.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11, 095401 (2014).
[Crossref]

Stephens, M.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

Svelto, O.

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

Szabo, G.

Tautz, R.

Tavella, F.

Thomas, A. G. R.

Z.-H. He, J. A. Nees, B. Hou, K. Krushelnick, and A. G. R. Thomas, “Ionization-induced self-compression of tightly focused femtosecond laser pulses,” Phys. Rev. Lett. 113, 263904 (2014).
[Crossref]

Z.-H. He, A. G. R. Thomas, B. Beaurepaire, J. A. Nees, B. Hou, V. Malka, K. Krushelnick, and J. Faure, “Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate,” Appl. Phys. Lett. 102, 064104 (2013).
[Crossref]

Trebino, R.

S. Akturk, X. Gun, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. of Optics 12, 093001 (2010).
[Crossref]

Trisorio, A.

Tsung, F. S.

F. S. Tsung, C. Ren, L. O. Silva, W. B. Mori, and T. Katsouleas, “Generation of ultra-intense single-cycle laser pulses by using photon deceleration,” Proc. Natl. Acad. Sci. U. S. A. 99, 29–32 (2002).
[Crossref]

Veisz, L.

Vernier, A.

B. Beaurepaire, A. Vernier, M. Bocoum, F. Böhle, A. Jullien, J-P. Rousseau, T. Lefrou, D. Douillet, G. Iaquaniello, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Effect of thelLaser wave front in a laser-plasma accelerator,” Phys. Rev. X 5, 031012 (2015).

Wagner, N. L.

N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping,” Phys. Rev. Lett. 93, 173902 (2004).
[Crossref] [PubMed]

Wilks, S. C.

S. C. Wilks, J. M. Dawson, and W. B. Mori, “Frequency up-conversion of electromagnetic radiation with use of an overdense plasma,” Phys. Rev. Lett. 61, 337–340 (1988).
[Crossref] [PubMed]

Wood, Wm. M.

Wm. M. Wood, C. W. Siders, and M. C. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett. 67, 3523–3526 (1991).
[Crossref] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Self-phase modulation and short-pulse generation from laser-breakdown plasmas,” Phys. Rev. A 10, 1888–1895 (1974).
[Crossref]

Appl. Phys. Lett. (2)

Z.-H. He, A. G. R. Thomas, B. Beaurepaire, J. A. Nees, B. Hou, V. Malka, K. Krushelnick, and J. Faure, “Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate,” Appl. Phys. Lett. 102, 064104 (2013).
[Crossref]

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).
[Crossref]

J. Comp. Phys. (1)

A.F. Lifschitz, X. Davoine, E. Lefebvre, J. Faure, C. Rechatin, and V. Malka, “Particle-in-Cell modelling of laserplasma interaction using Fourier decomposition,” J. Comp. Phys. 228, 1803–1814 (2009).
[Crossref]

J. of Optics (1)

S. Akturk, X. Gun, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. of Optics 12, 093001 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy, “Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers,” Laser Phys. Lett. 11, 095401 (2014).
[Crossref]

Nat. Phys. (1)

A. Borot, A. Malvache, X. Chen, A. Jullien, J.-P. Geindre, P. Audebert, G. Mourou, F. Quéré, and R. Lopez-Martens, “Attosecond control of collective electron motion in plasmas,” Nat. Phys. 8, 416–421 (2012).
[Crossref]

New J. Phys. (2)

A. F. Lifschitz and V. Malka, “Optical phase effects in electron wakefield acceleration using few-cycle laser pulses,” New J. Phys. 14, 053045 (2012).
[Crossref]

B. Beaurepaire, A. Lifschitz, and J. Faure, “Electron acceleration in sub-relativistic wakefields driven by few-cycle laser pulses,” New J. Phys. 16, 023023 (2014).
[Crossref]

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

Optik (Stuttgart) (1)

R.W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

Phys. Plasmas (1)

R. Nuter, L. Gremillet, E. Lefebvre, A. Lévy, T. Ceccotti, and P. Martin, “Field ionization model implemented in particle in cell code and applied to laser-accelerated carbon ions,” Phys. Plasmas 18, 033107 (2011).
[Crossref]

Phys. Rev. A (1)

E. Yablonovitch, “Self-phase modulation and short-pulse generation from laser-breakdown plasmas,” Phys. Rev. A 10, 1888–1895 (1974).
[Crossref]

Phys. Rev. Lett. (6)

J. Faure, Y. Glinec, J. J. Santos, F. Ewald, J.-P. Rousseau, S. Kiselev, A. Pukhov, T. Hosokai, and V. Malka, “Observation of laser pulse shortening in nonlinear plasma waves,” Phys. Rev. Lett. 95, 205003 (2005).
[Crossref]

N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping,” Phys. Rev. Lett. 93, 173902 (2004).
[Crossref] [PubMed]

Z.-H. He, J. A. Nees, B. Hou, K. Krushelnick, and A. G. R. Thomas, “Ionization-induced self-compression of tightly focused femtosecond laser pulses,” Phys. Rev. Lett. 113, 263904 (2014).
[Crossref]

P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. R. Marqus, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett. 82, 552–555 (1999).
[Crossref]

S. C. Wilks, J. M. Dawson, and W. B. Mori, “Frequency up-conversion of electromagnetic radiation with use of an overdense plasma,” Phys. Rev. Lett. 61, 337–340 (1988).
[Crossref] [PubMed]

Wm. M. Wood, C. W. Siders, and M. C. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett. 67, 3523–3526 (1991).
[Crossref] [PubMed]

Phys. Rev. X (1)

B. Beaurepaire, A. Vernier, M. Bocoum, F. Böhle, A. Jullien, J-P. Rousseau, T. Lefrou, D. Douillet, G. Iaquaniello, R. Lopez-Martens, A. Lifschitz, and J. Faure, “Effect of thelLaser wave front in a laser-plasma accelerator,” Phys. Rev. X 5, 031012 (2015).

Proc. Natl. Acad. Sci. U. S. A. (1)

F. S. Tsung, C. Ren, L. O. Silva, W. B. Mori, and T. Katsouleas, “Generation of ultra-intense single-cycle laser pulses by using photon deceleration,” Proc. Natl. Acad. Sci. U. S. A. 99, 29–32 (2002).
[Crossref]

Rev. Mod. Phys. (3)

E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2013).
[Crossref]

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013).
[Crossref]

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[Crossref]

Zh. Eksp. Teor. Fiz. (1)

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Zh. Eksp. Teor. Fiz. 91, 2008–2013 (1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental set-up.
Fig. 2
Fig. 2 Self-compression of the laser pulse. Panels a) and b) show the raw FROG traces with and without gas. c): retrieved temporal profiles of the initial pulse (red line), after self-compression (blue line), and FTL (dashed line). d): measured spectrum (red dashed line), retrieved spectrum (blue line), and spectral phase (green line).
Fig. 3
Fig. 3 Spatial homogeneity for 2 different focusing positions. a): near-field image of the laser pulse intensity in position 1, z = 50 µm, b): without interaction with the gas jet, and c): in position 2, z = 150 µm (c). The red dots represent the 8 locations where the spectral and temporal measurements are made.
Fig. 4
Fig. 4 Results on spectral homogeneity. a–b): the blue shifted laser spectra at the 8 locations across the beam in the case of position 1 (homogeneous) and position 2 (inhomogeneous). The red curve represents the initial laser spectrum. c–d): spatially resolved spectra in the far-field.
Fig. 5
Fig. 5 Experimental measurements of the temporal homogeneity. a–b) Results for the homogeneous case: a) symmetric FROG trace recorded at a given location in the beam, b) Pulse duration and FTL duration across the beam. c–d) inhomogeneous case. c): the FROG traces are not symmetric, and the pulse duration cannot be retrieved. d): the transform limited pulse duration across the beam.
Fig. 6
Fig. 6 PIC simulations of self-compression. a–c): cut of the laser intensity distribution I(y,z) at different times in the simulation. In a), the envelope in the middle of the jet, in the region where the density is the highest. b) shows the laser envelope at the exit of the jet, and c) shows the envelope in the near-field after z = 1 mm of propagation. d–f) show the corresponding on-axis longitudinal profiles. The on-axis FWHM pulse duration is marked in red.
Fig. 7
Fig. 7 Comparison between the experimental and simulated on-axis spectrum (a), spectral phase (b) and temporal profile (c) in the near-field.
Fig. 8
Fig. 8 PIC simulation in the near field: a–c) Maps of the intensity distribution I(x,y), local pulse duration and FTL duration, in the case of focusing the laser in position 1. d–f) Same results when the laser is focused at position 2.
Fig. 9
Fig. 9 PIC simulations of spatio-temporal couplings. a) and b): Maps of the spatially resolved spectrum and spectral phase in the far-field. The spectral phase shows that the radius of curvature depends on the wavelength. c) and d): maps of the intensity distribution and local pulse duration in the far-field.
Fig. 10
Fig. 10 Effect of a “pulse front curvature” type of coupling: φ(x,y,ω) = α(x2 + y2)(ω ω0). For the calculation, the broadened spectrum was used as well as the focusing geometry of the experiment. a) Pulse intensity I(x,t) in the near-field showing a curved energy front. The on-axis pulse duration is 7 fs. b) Far-field pattern showing a lengthening of the pulse duration to 21 fs at focus.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δ ω ( r , t ) = ω 0 c n ( r , t , z ) t d z
E ( x , y , ω , z ) = T F k x , k y 1 [ E ˜ ( k x , k y , ω , z = 0 ) e i k z z ]
E n e a r ( x , y , t , z ) = T F ω 1 [ E ( x , y , ω , z ) e i k ( x 2 + y 2 ) 2 z ]

Metrics