Abstract

A hyperspectral imaging system was demonstrated based on two acousto-optic tunable filters (AOTFs). Efficient regulation of the incoherent beam was executed by means of the wide-angular regime of Bragg diffraction in the birefringent materials. A double-filtering process was achieved when these two AOTFs operated with a central wavelength difference. In comparison with the single-filtering method, the spectral bandwidth was greatly compressed, giving an increment of 42.02% in spectral resolution at the wavelength of 651.62 nm. Experimental results and theoretical calculations are basically identical. Furthermore, the sidelobe was found to be suppressed by the double-filtering process with the first order maximum decreased from −9.25 dB to −22.35 dB. The results indicated high spectral resolution and high spectral purity were obtained simultaneously from this method. The basic spectral resolution performance was examined with a didymium glass by this configuration. We present our experimental methods and the detailed results obtained.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hyperspectral imaging performance based on two TeO2 acousto-optic tunable filters

Pengchong Wang and Zhonghua Zhang
Appl. Opt. 56(6) 1647-1653 (2017)

Hyperspectral imager, from ultraviolet to visible, with a KDP acousto-optic tunable filter

Neelam Gupta and Vitaly Voloshinov
Appl. Opt. 43(13) 2752-2759 (2004)

Efficient double-filtering with a single acoustooptic tunable filter

Jang-Woo You, Jeongho Ahn, Soohyun Kim, and Daesuk Kim
Opt. Express 16(26) 21505-21511 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. Xu and R. Stroud, Acousto-Optic Devices (Wiley, 1992).
  2. A. Goutzoulis and D. Pape, Designing and Fabrication of Acousto-Optic Devices (Marcel Dekker Inc., 1994).
  3. I. C. Chang, “Noncollinear Acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25(7), 370–372 (1974).
    [Crossref]
  4. V. Voloshinov and N. Gupta, “Acousto-optic imaging in the middle infrared region of spectrum,” Proc. SPIE 3900, 62–73 (1999).
    [Crossref]
  5. N. Gupta and V. Voloshinov, “Hyperspectral imager, from ultraviolet to visible, with a KDP acousto-optic tunable filter,” Appl. Opt. 43(13), 2752–2759 (2004).
    [Crossref] [PubMed]
  6. V. Voloshinov and N. Gupta, “Ultraviolet-visible imaging acousto-optic tunable filters in KDP,” Appl. Opt. 43(19), 3901–3909 (2004).
    [Crossref] [PubMed]
  7. N. Gupta and V. Voloshinov, “Hyperspectral imaging performance of a TeO2 acousto-optic tunable filter in the ultraviolet region,” Opt. Lett. 30(9), 985–987 (2005).
    [Crossref] [PubMed]
  8. C. Zhang, Z. Zhang, H. Wang, and Y. Yang, “Development of double-filtering imaging acousto-optic tunable filter with increased spectral resolution,” Opt. Lett. 33(18), 2020–2022 (2008).
    [Crossref] [PubMed]
  9. N. Gupta, “A no-moving-parts UV/visible hyperspectral imager,” Proc. SPIE 5268, 89–95 (2004).
    [Crossref]
  10. D. V. Bogomolov and V. B. Voloshinov, “Analysis of quality of images obtained by acousto-optic filtering,” Proc. SPIE 5828, 105–116 (2005).
    [Crossref]
  11. Z. Yaqoob and N. A. Riza, “Bulk acousto-optic wavelength agile filter module for a wavelength-multiplexed optical scanner,” Appl. Opt. 44(13), 2592–2599 (2005).
    [Crossref] [PubMed]
  12. J. W. You, J. Ahn, S. Kim, and D. Kim, “Efficient double-filtering with a single acousto-optic tunable filter,” Opt. Express 16(26), 21505–21511 (2008).
    [Crossref] [PubMed]
  13. J. C. Kastelik, H. Benaissa, S. Dupont, and M. Pommeray, “Acousto-optic tunable filter using double interaction for sidelobe reduction,” Appl. Opt. 48(7), C4–C10 (2009).
    [Crossref] [PubMed]
  14. V. I. Pustovoit, V. E. Pozhar, M. M. Mazur, V. N. Shorin, I. B. Kutuza, and A. V. Perchik, “Double-AOTF spectral imaging system,” Proc. SPIE 5953, 200–203 (2005).
  15. A. Machikhin and V. Pozhar, “Double-AOTF-based aberration-free spectral imaging endoscopic system for biomedical applications,” J. Innov. Opt. Health Sci. 8(3), 1541009 (2015).
  16. A. S. Machikhin, P. V. Zinin, A. V. Shurygin, and D. D. Khokhlov, “Imaging system based on a tandem acousto-optical tunable filter for in situ measurements of the high temperature distribution,” Opt. Lett. 41(5), 901–904 (2016).
    [Crossref] [PubMed]
  17. C. Zhang, Z. Zhang, H. Wang, and Y. Yang, “Analysis of the optimum optical incident angle for an imaging acousto-optic tunable filter,” Opt. Express 15(19), 11883–11888 (2007).
    [Crossref] [PubMed]
  18. A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43(11), 4489–4495 (1972).
    [Crossref]
  19. N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4(10), 3736–3745 (1971).
    [Crossref]
  20. B. Xue, K. Xu, and H. Yamamoto, “Discussion to the equivalent point realized by the two polarized beams in AOTF system,” Opt. Express 4(3), 139–146 (1999).
    [Crossref] [PubMed]
  21. L. J. Denes, M. S. Gottieb, and B. Kaminsky, “Acousto-optic tunable filters in imaging,” Opt. Eng. 37(4), 1262–1267 (1998).
    [Crossref]
  22. D. R. Suhre and J. G. Theodore, “White-light imaging by use of a multiple passband acousto-optic tunable filter,” Appl. Opt. 35(22), 4494–4501 (1996).
    [Crossref] [PubMed]
  23. V. Pozhar and A. Machihin, “Image aberrations caused by light diffraction via ultrasonic waves in uniaxial crystals,” Appl. Opt. 51(19), 4513–4519 (2012).
    [Crossref] [PubMed]
  24. A. S. Machikhin and V. E. Pozhar, “Spatial and spectral image distortions caused by diffraction of an ordinary polarised light beam by an ultrasonic wave,” Quantum Electron. 45(2), 161–165 (2015).
    [Crossref]

2016 (1)

2015 (2)

A. Machikhin and V. Pozhar, “Double-AOTF-based aberration-free spectral imaging endoscopic system for biomedical applications,” J. Innov. Opt. Health Sci. 8(3), 1541009 (2015).

A. S. Machikhin and V. E. Pozhar, “Spatial and spectral image distortions caused by diffraction of an ordinary polarised light beam by an ultrasonic wave,” Quantum Electron. 45(2), 161–165 (2015).
[Crossref]

2012 (1)

2009 (1)

2008 (2)

2007 (1)

2005 (4)

N. Gupta and V. Voloshinov, “Hyperspectral imaging performance of a TeO2 acousto-optic tunable filter in the ultraviolet region,” Opt. Lett. 30(9), 985–987 (2005).
[Crossref] [PubMed]

V. I. Pustovoit, V. E. Pozhar, M. M. Mazur, V. N. Shorin, I. B. Kutuza, and A. V. Perchik, “Double-AOTF spectral imaging system,” Proc. SPIE 5953, 200–203 (2005).

D. V. Bogomolov and V. B. Voloshinov, “Analysis of quality of images obtained by acousto-optic filtering,” Proc. SPIE 5828, 105–116 (2005).
[Crossref]

Z. Yaqoob and N. A. Riza, “Bulk acousto-optic wavelength agile filter module for a wavelength-multiplexed optical scanner,” Appl. Opt. 44(13), 2592–2599 (2005).
[Crossref] [PubMed]

2004 (3)

1999 (2)

V. Voloshinov and N. Gupta, “Acousto-optic imaging in the middle infrared region of spectrum,” Proc. SPIE 3900, 62–73 (1999).
[Crossref]

B. Xue, K. Xu, and H. Yamamoto, “Discussion to the equivalent point realized by the two polarized beams in AOTF system,” Opt. Express 4(3), 139–146 (1999).
[Crossref] [PubMed]

1998 (1)

L. J. Denes, M. S. Gottieb, and B. Kaminsky, “Acousto-optic tunable filters in imaging,” Opt. Eng. 37(4), 1262–1267 (1998).
[Crossref]

1996 (1)

1974 (1)

I. C. Chang, “Noncollinear Acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25(7), 370–372 (1974).
[Crossref]

1972 (1)

A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43(11), 4489–4495 (1972).
[Crossref]

1971 (1)

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4(10), 3736–3745 (1971).
[Crossref]

Ahn, J.

Benaissa, H.

Bogomolov, D. V.

D. V. Bogomolov and V. B. Voloshinov, “Analysis of quality of images obtained by acousto-optic filtering,” Proc. SPIE 5828, 105–116 (2005).
[Crossref]

Bonner, W. A.

A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43(11), 4489–4495 (1972).
[Crossref]

Chang, I. C.

I. C. Chang, “Noncollinear Acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25(7), 370–372 (1974).
[Crossref]

Denes, L. J.

L. J. Denes, M. S. Gottieb, and B. Kaminsky, “Acousto-optic tunable filters in imaging,” Opt. Eng. 37(4), 1262–1267 (1998).
[Crossref]

Dupont, S.

Gottieb, M. S.

L. J. Denes, M. S. Gottieb, and B. Kaminsky, “Acousto-optic tunable filters in imaging,” Opt. Eng. 37(4), 1262–1267 (1998).
[Crossref]

Gupta, N.

Kaminsky, B.

L. J. Denes, M. S. Gottieb, and B. Kaminsky, “Acousto-optic tunable filters in imaging,” Opt. Eng. 37(4), 1262–1267 (1998).
[Crossref]

Kastelik, J. C.

Khokhlov, D. D.

Kim, D.

Kim, S.

Kutuza, I. B.

V. I. Pustovoit, V. E. Pozhar, M. M. Mazur, V. N. Shorin, I. B. Kutuza, and A. V. Perchik, “Double-AOTF spectral imaging system,” Proc. SPIE 5953, 200–203 (2005).

Machihin, A.

Machikhin, A.

A. Machikhin and V. Pozhar, “Double-AOTF-based aberration-free spectral imaging endoscopic system for biomedical applications,” J. Innov. Opt. Health Sci. 8(3), 1541009 (2015).

Machikhin, A. S.

A. S. Machikhin, P. V. Zinin, A. V. Shurygin, and D. D. Khokhlov, “Imaging system based on a tandem acousto-optical tunable filter for in situ measurements of the high temperature distribution,” Opt. Lett. 41(5), 901–904 (2016).
[Crossref] [PubMed]

A. S. Machikhin and V. E. Pozhar, “Spatial and spectral image distortions caused by diffraction of an ordinary polarised light beam by an ultrasonic wave,” Quantum Electron. 45(2), 161–165 (2015).
[Crossref]

Mazur, M. M.

V. I. Pustovoit, V. E. Pozhar, M. M. Mazur, V. N. Shorin, I. B. Kutuza, and A. V. Perchik, “Double-AOTF spectral imaging system,” Proc. SPIE 5953, 200–203 (2005).

Perchik, A. V.

V. I. Pustovoit, V. E. Pozhar, M. M. Mazur, V. N. Shorin, I. B. Kutuza, and A. V. Perchik, “Double-AOTF spectral imaging system,” Proc. SPIE 5953, 200–203 (2005).

Pommeray, M.

Pozhar, V.

A. Machikhin and V. Pozhar, “Double-AOTF-based aberration-free spectral imaging endoscopic system for biomedical applications,” J. Innov. Opt. Health Sci. 8(3), 1541009 (2015).

V. Pozhar and A. Machihin, “Image aberrations caused by light diffraction via ultrasonic waves in uniaxial crystals,” Appl. Opt. 51(19), 4513–4519 (2012).
[Crossref] [PubMed]

Pozhar, V. E.

A. S. Machikhin and V. E. Pozhar, “Spatial and spectral image distortions caused by diffraction of an ordinary polarised light beam by an ultrasonic wave,” Quantum Electron. 45(2), 161–165 (2015).
[Crossref]

V. I. Pustovoit, V. E. Pozhar, M. M. Mazur, V. N. Shorin, I. B. Kutuza, and A. V. Perchik, “Double-AOTF spectral imaging system,” Proc. SPIE 5953, 200–203 (2005).

Pustovoit, V. I.

V. I. Pustovoit, V. E. Pozhar, M. M. Mazur, V. N. Shorin, I. B. Kutuza, and A. V. Perchik, “Double-AOTF spectral imaging system,” Proc. SPIE 5953, 200–203 (2005).

Riza, N. A.

Shorin, V. N.

V. I. Pustovoit, V. E. Pozhar, M. M. Mazur, V. N. Shorin, I. B. Kutuza, and A. V. Perchik, “Double-AOTF spectral imaging system,” Proc. SPIE 5953, 200–203 (2005).

Shurygin, A. V.

Suhre, D. R.

Theodore, J. G.

Uchida, N.

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4(10), 3736–3745 (1971).
[Crossref]

Voloshinov, V.

Voloshinov, V. B.

D. V. Bogomolov and V. B. Voloshinov, “Analysis of quality of images obtained by acousto-optic filtering,” Proc. SPIE 5828, 105–116 (2005).
[Crossref]

Wang, H.

Warner, A. W.

A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43(11), 4489–4495 (1972).
[Crossref]

White, D. L.

A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43(11), 4489–4495 (1972).
[Crossref]

Xu, K.

Xue, B.

Yamamoto, H.

Yang, Y.

Yaqoob, Z.

You, J. W.

Zhang, C.

Zhang, Z.

Zinin, P. V.

Appl. Opt. (6)

Appl. Phys. Lett. (1)

I. C. Chang, “Noncollinear Acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25(7), 370–372 (1974).
[Crossref]

J. Appl. Phys. (1)

A. W. Warner, D. L. White, and W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43(11), 4489–4495 (1972).
[Crossref]

J. Innov. Opt. Health Sci. (1)

A. Machikhin and V. Pozhar, “Double-AOTF-based aberration-free spectral imaging endoscopic system for biomedical applications,” J. Innov. Opt. Health Sci. 8(3), 1541009 (2015).

Opt. Eng. (1)

L. J. Denes, M. S. Gottieb, and B. Kaminsky, “Acousto-optic tunable filters in imaging,” Opt. Eng. 37(4), 1262–1267 (1998).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (1)

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4(10), 3736–3745 (1971).
[Crossref]

Proc. SPIE (4)

V. Voloshinov and N. Gupta, “Acousto-optic imaging in the middle infrared region of spectrum,” Proc. SPIE 3900, 62–73 (1999).
[Crossref]

N. Gupta, “A no-moving-parts UV/visible hyperspectral imager,” Proc. SPIE 5268, 89–95 (2004).
[Crossref]

D. V. Bogomolov and V. B. Voloshinov, “Analysis of quality of images obtained by acousto-optic filtering,” Proc. SPIE 5828, 105–116 (2005).
[Crossref]

V. I. Pustovoit, V. E. Pozhar, M. M. Mazur, V. N. Shorin, I. B. Kutuza, and A. V. Perchik, “Double-AOTF spectral imaging system,” Proc. SPIE 5953, 200–203 (2005).

Quantum Electron. (1)

A. S. Machikhin and V. E. Pozhar, “Spatial and spectral image distortions caused by diffraction of an ordinary polarised light beam by an ultrasonic wave,” Quantum Electron. 45(2), 161–165 (2015).
[Crossref]

Other (2)

J. Xu and R. Stroud, Acousto-Optic Devices (Wiley, 1992).

A. Goutzoulis and D. Pape, Designing and Fabrication of Acousto-Optic Devices (Marcel Dekker Inc., 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Wave vector diagrams of the bifrequency interaction. (b) The calculated and measured tuning curves of ultrasonic frequency versus incident light wavelength for AOTF1 and AOTF2.
Fig. 2
Fig. 2 Principle scheme of experimental system.
Fig. 3
Fig. 3 The theoretical calculation and experimental results of double-filtering for the peak diffraction efficiency η01 = η02 = 88% at the central wavelength of λ0 = 651.62 nm. (a) The theoretical calculation of double-filtering that the central wavelength intervals are 0.4 nm, 0.8 nm, 1.2 nm and 1.6 nm. (b) The measuring results for the central wavelength λ01> λ02. (c) The measuring results for the central wavelength λ01< λ02.
Fig. 4
Fig. 4 Calculation and measurement results of the center wavelength interval versus spectral resolution and diffraction efficiency at λ0 = 651.62 nm.
Fig. 5
Fig. 5 Suppression effect of the sidelobes at center wavelength of λ0 = 651.62 nm.
Fig. 6
Fig. 6 The transmitted spectrum for didymium glass was measured in the range 500-770 nm. (a) The incident beam passed the didymium glass was obtained by spectrograph (spectral resolution is 0.02nm). (b) The incident beam passed the didymium glass and AOTF1 was obtained by spectrograph. (c) The incident beam passed the didymium glass, AOTF1 and AOTF2 was obtained by spectrograph. The sampling step and center wavelength interval are 0.26 nm and 0.5 nm, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f aeo = V a λ 0 [ n ie 2 + n do 2 2 n ie n do cos( θ do θ ie ) ] 1 2 ,
f aoe = V a λ 0 [ n io 2 + n de 2 2 n io n de cos( θ de θ io ) ] 1 2 ,
η 12 = η 1 η 2 = η 01 η 02 [ sin c 2 ( ΔkL 2π ) ] 2 ,
Δλ= 1.8π λ 0 2 bL sin 2 θ i ,

Metrics