Abstract

A near-infrared plasmonic refractive index (RI) sensor with figure of merit (FOM) as high as 124.6 is proposed and investigated numerically. The RI sensing is realized by employing the linear relation between resonant wavelength and RI of the material under detecting. Based on the fillet cavity coupled with two metal-insulator-metal waveguides, transmission efficiency (T) and optical resolution (FWHM) of the RI sensor are both improved to a great extent with T = 95% and FWHM = 12nm, keeping acceptable wavelength sensitivity of 1496nm/RIU within the near-infrared region. In addition, a sensitivity as high as 3476nm/RIU is obtained by optimizing the shape and size of fillet cavity. In general, the high FOM, transmittance and sensitivity achieved by our design may get further applications in biomedical science and nanophotonic circuits.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Boosting figures of merit of cavity plasmon resonance based refractive index sensing in dielectric-metal core-shell resonators

Zhiqin Li, Ren Sun, Chi Zhang, Mingjie Wan, Ping Gu, Qi Shen, Zhuo Chen, and Zhenling Wang
Opt. Express 24(17) 19895-19904 (2016)

Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring

Mohammad Reza Rakhshani, Alireza Tavousi, and Mohammad Ali Mansouri-Birjandi
Appl. Opt. 57(27) 7798-7804 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (CRC, 2008).
  2. J. Park, K. Y. Kim, I. M. Lee, H. Na, S. Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18(2), 598–623 (2010).
    [Crossref] [PubMed]
  3. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010).
    [Crossref] [PubMed]
  4. P. Chen, R. Liang, Q. Huang, Z. Yu, and X. Xu, “Plasmonic filters and optical directional couplers based on wide Metal-Insulator-Metal structure,” Opt. Express 19(8), 7633–7639 (2011).
    [Crossref] [PubMed]
  5. K. Wen, Y. Hu, L. Chen, J. Zhou, L. Lei, and Z. Guo, “Design of an optical power and wavelength splitter based on subwavelength waveguides,” J. Lightwave Technol. 32(17), 3020–3026 (2014).
    [Crossref]
  6. Y. Liu and J. Kim, “Plasmonic modulation and switching via combined utilization of Young interference and metal-insulator-metal waveguide coupling,” J. Opt. Soc. Am. B 28(11), 2712–2717 (2011).
    [Crossref]
  7. R. Zafar and M. Salim, “Enhanced figure of merit in fano resonance-based plasmonic refractive index sensor,” IEEE Sens. J. 15(11), 6313–6317 (2015).
    [Crossref]
  8. J. Tao, Q. Wang, and X. Huang, “All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics 6(4), 753–759 (2011).
    [Crossref]
  9. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
    [PubMed]
  10. W. Wei, X. Zhang, and X. Ren, “Plasmonic circular resonators for refractive index sensors and filters,” Nanoscale Res. Lett. 10(1), 211 (2015).
    [Crossref] [PubMed]
  11. T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
    [Crossref] [PubMed]
  12. A. Dolatabady, N. Granpayeh, and V. F. Nezhad, “A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonator,” Opt. Commun. 300(14), 265–268 (2013).
    [Crossref]
  13. B. Yun, G. Hu, and Y. Cui, “Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity,” Plasmonics 8(2), 267–275 (2013).
    [Crossref]
  14. X. Peng, H. Li, C. Wu, G. Cao, and Z. Liu, “Research on transmission characteristics of aperture-coupled square-ring resonator based filter,” Opt. Commun. 294(5), 368–371 (2013).
    [Crossref]
  15. Z. Zhang, H. Wang, and Z. Zhang, “Fano resonance in a gear-shaped nanocavity of the metal–insulator–metal waveguide,” Plasmonics 8(2), 797–801 (2013).
    [Crossref]
  16. Y. Xie, Y. Huang, W. Zhao, W. Xu, and C. He, “A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
    [Crossref]
  17. S. Zhou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: a review,” IEEE Sens. J. 15(2), 646–650 (2015).
    [Crossref]
  18. A. Setayesh, S. R. Mirnaziry, and M. S. Abrishamian, “Numerical investigation of tunable band-pass\ band-stop plasmonic filters with hollow-core circular ring resonator,” J. Opt. Soc. Korea 15(1), 82–89 (2011).
    [Crossref]
  19. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009).
    [Crossref] [PubMed]
  20. B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal–insulator–metal waveguide,” J. Phys. D Appl. Phys. 43(38), 385102 (2010).
    [Crossref]
  21. P. K. Wei, Y. C. Huang, C. C. Chieng, F. G. Tseng, and W. Fann, “Off-angle illumination induced surface plasmon coupling in subwavelength metallic slits,” Opt. Express 13(26), 10784–10794 (2005).
    [Crossref] [PubMed]
  22. Y. Binfeng, H. Guohua, Z. Ruohu, and C. Yiping, “Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating,” Opt. Express 22(23), 28662–28670 (2014).
    [Crossref] [PubMed]
  23. Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
    [Crossref]
  24. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17(9), 7533–7539 (2009).
    [Crossref] [PubMed]
  25. R. Yang and Z. Lu, “Subwavelength plasmonic waveguides and plasmonic materials,” Int. J. Opt. 2012, 258013 (2012).
    [Crossref]
  26. R. Zafar and M. Salim, “Enhanced figure of merit in fano resonance-based plasmonic refractive index sensor,” IEEE Sens. J. 15(11), 6313–6317 (2015).
    [Crossref]
  27. X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on Semiconductor-Insulator-Metal strip waveguides,” Opt. Express 18(18), 18945–18959 (2010).
    [Crossref] [PubMed]

2015 (5)

R. Zafar and M. Salim, “Enhanced figure of merit in fano resonance-based plasmonic refractive index sensor,” IEEE Sens. J. 15(11), 6313–6317 (2015).
[Crossref]

W. Wei, X. Zhang, and X. Ren, “Plasmonic circular resonators for refractive index sensors and filters,” Nanoscale Res. Lett. 10(1), 211 (2015).
[Crossref] [PubMed]

Y. Xie, Y. Huang, W. Zhao, W. Xu, and C. He, “A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

S. Zhou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: a review,” IEEE Sens. J. 15(2), 646–650 (2015).
[Crossref]

R. Zafar and M. Salim, “Enhanced figure of merit in fano resonance-based plasmonic refractive index sensor,” IEEE Sens. J. 15(11), 6313–6317 (2015).
[Crossref]

2014 (3)

2013 (5)

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

A. Dolatabady, N. Granpayeh, and V. F. Nezhad, “A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonator,” Opt. Commun. 300(14), 265–268 (2013).
[Crossref]

B. Yun, G. Hu, and Y. Cui, “Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity,” Plasmonics 8(2), 267–275 (2013).
[Crossref]

X. Peng, H. Li, C. Wu, G. Cao, and Z. Liu, “Research on transmission characteristics of aperture-coupled square-ring resonator based filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

Z. Zhang, H. Wang, and Z. Zhang, “Fano resonance in a gear-shaped nanocavity of the metal–insulator–metal waveguide,” Plasmonics 8(2), 797–801 (2013).
[Crossref]

2012 (1)

R. Yang and Z. Lu, “Subwavelength plasmonic waveguides and plasmonic materials,” Int. J. Opt. 2012, 258013 (2012).
[Crossref]

2011 (4)

2010 (4)

2009 (2)

2007 (1)

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[Crossref]

2005 (1)

Abrishamian, M. S.

Binfeng, Y.

Cao, G.

X. Peng, H. Li, C. Wu, G. Cao, and Z. Liu, “Research on transmission characteristics of aperture-coupled square-ring resonator based filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

Chen, L.

Chen, P.

Chieng, C. C.

Cui, Y.

B. Yun, G. Hu, and Y. Cui, “Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity,” Plasmonics 8(2), 267–275 (2013).
[Crossref]

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal–insulator–metal waveguide,” J. Phys. D Appl. Phys. 43(38), 385102 (2010).
[Crossref]

Dolatabady, A.

A. Dolatabady, N. Granpayeh, and V. F. Nezhad, “A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonator,” Opt. Commun. 300(14), 265–268 (2013).
[Crossref]

Duley, W. W.

Fann, W.

Gong, Y.

Granpayeh, N.

A. Dolatabady, N. Granpayeh, and V. F. Nezhad, “A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonator,” Opt. Commun. 300(14), 265–268 (2013).
[Crossref]

Guo, Z.

Guohua, H.

He, C.

Y. Xie, Y. Huang, W. Zhao, W. Xu, and C. He, “A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

Hu, A.

Hu, G.

B. Yun, G. Hu, and Y. Cui, “Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity,” Plasmonics 8(2), 267–275 (2013).
[Crossref]

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal–insulator–metal waveguide,” J. Phys. D Appl. Phys. 43(38), 385102 (2010).
[Crossref]

Hu, M.

S. Zhou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: a review,” IEEE Sens. J. 15(2), 646–650 (2015).
[Crossref]

Hu, Y.

Huang, Q.

Huang, X.

J. Tao, Q. Wang, and X. Huang, “All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics 6(4), 753–759 (2011).
[Crossref]

Huang, X. G.

Huang, Y.

Y. Xie, Y. Huang, W. Zhao, W. Xu, and C. He, “A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

Huang, Y. C.

Jiang, R.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Jin, C.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Jin, X. P.

Kim, J.

Kim, K. Y.

Kurokawa, Y.

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[Crossref]

Lee, B.

Lee, I. M.

Lee, S. Y.

Lei, L.

Li, H.

X. Peng, H. Li, C. Wu, G. Cao, and Z. Liu, “Research on transmission characteristics of aperture-coupled square-ring resonator based filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

Liang, R.

S. Zhou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: a review,” IEEE Sens. J. 15(2), 646–650 (2015).
[Crossref]

P. Chen, R. Liang, Q. Huang, Z. Yu, and X. Xu, “Plasmonic filters and optical directional couplers based on wide Metal-Insulator-Metal structure,” Opt. Express 19(8), 7633–7639 (2011).
[Crossref] [PubMed]

Lin, X. S.

Liu, M.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Liu, T.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Liu, X.

Liu, Y.

Liu, Z.

X. Peng, H. Li, C. Wu, G. Cao, and Z. Liu, “Research on transmission characteristics of aperture-coupled square-ring resonator based filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

Lu, H.

Lu, Z.

R. Yang and Z. Lu, “Subwavelength plasmonic waveguides and plasmonic materials,” Int. J. Opt. 2012, 258013 (2012).
[Crossref]

Mao, D.

Mirnaziry, S. R.

Miyazaki, H. T.

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[Crossref]

Na, H.

Nezhad, V. F.

A. Dolatabady, N. Granpayeh, and V. F. Nezhad, “A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonator,” Opt. Commun. 300(14), 265–268 (2013).
[Crossref]

Park, J.

Peng, X.

X. Peng, H. Li, C. Wu, G. Cao, and Z. Liu, “Research on transmission characteristics of aperture-coupled square-ring resonator based filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

Peng, Y.

Ren, X.

W. Wei, X. Zhang, and X. Ren, “Plasmonic circular resonators for refractive index sensors and filters,” Nanoscale Res. Lett. 10(1), 211 (2015).
[Crossref] [PubMed]

Ruohu, Z.

Salim, M.

R. Zafar and M. Salim, “Enhanced figure of merit in fano resonance-based plasmonic refractive index sensor,” IEEE Sens. J. 15(11), 6313–6317 (2015).
[Crossref]

R. Zafar and M. Salim, “Enhanced figure of merit in fano resonance-based plasmonic refractive index sensor,” IEEE Sens. J. 15(11), 6313–6317 (2015).
[Crossref]

Setayesh, A.

Shen, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Shu, C.

Tao, J.

J. Tao, Q. Wang, and X. Huang, “All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics 6(4), 753–759 (2011).
[Crossref]

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17(9), 7533–7539 (2009).
[Crossref] [PubMed]

Tao, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Tseng, F. G.

Wang, F.

S. Zhou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: a review,” IEEE Sens. J. 15(2), 646–650 (2015).
[Crossref]

Wang, H.

Z. Zhang, H. Wang, and Z. Zhang, “Fano resonance in a gear-shaped nanocavity of the metal–insulator–metal waveguide,” Plasmonics 8(2), 797–801 (2013).
[Crossref]

Wang, H. Z.

Wang, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Wang, L.

Wang, Q.

J. Tao, Q. Wang, and X. Huang, “All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics 6(4), 753–759 (2011).
[Crossref]

Wang, T. B.

Wang, X.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Wei, P. K.

Wei, W.

W. Wei, X. Zhang, and X. Ren, “Plasmonic circular resonators for refractive index sensors and filters,” Nanoscale Res. Lett. 10(1), 211 (2015).
[Crossref] [PubMed]

Wen, J. Z.

Wen, K.

Wen, X. W.

Wu, C.

X. Peng, H. Li, C. Wu, G. Cao, and Z. Liu, “Research on transmission characteristics of aperture-coupled square-ring resonator based filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

Wu, T.

Xiao, G.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Xiao, L.

S. Zhou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: a review,” IEEE Sens. J. 15(2), 646–650 (2015).
[Crossref]

Xie, Y.

Y. Xie, Y. Huang, W. Zhao, W. Xu, and C. He, “A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

Xu, W.

Y. Xie, Y. Huang, W. Zhao, W. Xu, and C. He, “A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

Xu, X.

Xue, X. J.

Yang, R.

R. Yang and Z. Lu, “Subwavelength plasmonic waveguides and plasmonic materials,” Int. J. Opt. 2012, 258013 (2012).
[Crossref]

Ye, H.

Yin, C. P.

Yiping, C.

Yu, Z.

Yun, B.

B. Yun, G. Hu, and Y. Cui, “Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity,” Plasmonics 8(2), 267–275 (2013).
[Crossref]

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal–insulator–metal waveguide,” J. Phys. D Appl. Phys. 43(38), 385102 (2010).
[Crossref]

Zafar, R.

R. Zafar and M. Salim, “Enhanced figure of merit in fano resonance-based plasmonic refractive index sensor,” IEEE Sens. J. 15(11), 6313–6317 (2015).
[Crossref]

R. Zafar and M. Salim, “Enhanced figure of merit in fano resonance-based plasmonic refractive index sensor,” IEEE Sens. J. 15(11), 6313–6317 (2015).
[Crossref]

Zhang, Q.

Zhang, T.

Zhang, X.

W. Wei, X. Zhang, and X. Ren, “Plasmonic circular resonators for refractive index sensors and filters,” Nanoscale Res. Lett. 10(1), 211 (2015).
[Crossref] [PubMed]

Zhang, X. Y.

Zhang, Z.

Z. Zhang, H. Wang, and Z. Zhang, “Fano resonance in a gear-shaped nanocavity of the metal–insulator–metal waveguide,” Plasmonics 8(2), 797–801 (2013).
[Crossref]

Z. Zhang, H. Wang, and Z. Zhang, “Fano resonance in a gear-shaped nanocavity of the metal–insulator–metal waveguide,” Plasmonics 8(2), 797–801 (2013).
[Crossref]

Zhao, W.

Y. Xie, Y. Huang, W. Zhao, W. Xu, and C. He, “A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

Zhou, J.

K. Wen, Y. Hu, L. Chen, J. Zhou, L. Lei, and Z. Guo, “Design of an optical power and wavelength splitter based on subwavelength waveguides,” J. Lightwave Technol. 32(17), 3020–3026 (2014).
[Crossref]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Zhou, S.

S. Zhou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: a review,” IEEE Sens. J. 15(2), 646–650 (2015).
[Crossref]

Zhou, Y.

Zhou, Z. K.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Zhu, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

IEEE Photonics J. (1)

Y. Xie, Y. Huang, W. Zhao, W. Xu, and C. He, “A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity,” IEEE Photonics J. 7(2), 1–12 (2015).
[Crossref]

IEEE Sens. J. (3)

S. Zhou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: a review,” IEEE Sens. J. 15(2), 646–650 (2015).
[Crossref]

R. Zafar and M. Salim, “Enhanced figure of merit in fano resonance-based plasmonic refractive index sensor,” IEEE Sens. J. 15(11), 6313–6317 (2015).
[Crossref]

R. Zafar and M. Salim, “Enhanced figure of merit in fano resonance-based plasmonic refractive index sensor,” IEEE Sens. J. 15(11), 6313–6317 (2015).
[Crossref]

Int. J. Opt. (1)

R. Yang and Z. Lu, “Subwavelength plasmonic waveguides and plasmonic materials,” Int. J. Opt. 2012, 258013 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Korea (1)

J. Phys. D Appl. Phys. (1)

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal–insulator–metal waveguide,” J. Phys. D Appl. Phys. 43(38), 385102 (2010).
[Crossref]

Nanoscale Res. Lett. (1)

W. Wei, X. Zhang, and X. Ren, “Plasmonic circular resonators for refractive index sensors and filters,” Nanoscale Res. Lett. 10(1), 211 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(4), 2381 (2013).
[PubMed]

Opt. Commun. (2)

A. Dolatabady, N. Granpayeh, and V. F. Nezhad, “A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonator,” Opt. Commun. 300(14), 265–268 (2013).
[Crossref]

X. Peng, H. Li, C. Wu, G. Cao, and Z. Liu, “Research on transmission characteristics of aperture-coupled square-ring resonator based filter,” Opt. Commun. 294(5), 368–371 (2013).
[Crossref]

Opt. Express (9)

P. K. Wei, Y. C. Huang, C. C. Chieng, F. G. Tseng, and W. Fann, “Off-angle illumination induced surface plasmon coupling in subwavelength metallic slits,” Opt. Express 13(26), 10784–10794 (2005).
[Crossref] [PubMed]

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express 17(9), 7533–7539 (2009).
[Crossref] [PubMed]

T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009).
[Crossref] [PubMed]

J. Park, K. Y. Kim, I. M. Lee, H. Na, S. Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18(2), 598–623 (2010).
[Crossref] [PubMed]

H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18(17), 17922–17927 (2010).
[Crossref] [PubMed]

X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on Semiconductor-Insulator-Metal strip waveguides,” Opt. Express 18(18), 18945–18959 (2010).
[Crossref] [PubMed]

P. Chen, R. Liang, Q. Huang, Z. Yu, and X. Xu, “Plasmonic filters and optical directional couplers based on wide Metal-Insulator-Metal structure,” Opt. Express 19(8), 7633–7639 (2011).
[Crossref] [PubMed]

T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
[Crossref] [PubMed]

Y. Binfeng, H. Guohua, Z. Ruohu, and C. Yiping, “Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating,” Opt. Express 22(23), 28662–28670 (2014).
[Crossref] [PubMed]

Phys. Rev. B (1)

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[Crossref]

Plasmonics (3)

Z. Zhang, H. Wang, and Z. Zhang, “Fano resonance in a gear-shaped nanocavity of the metal–insulator–metal waveguide,” Plasmonics 8(2), 797–801 (2013).
[Crossref]

B. Yun, G. Hu, and Y. Cui, “Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity,” Plasmonics 8(2), 267–275 (2013).
[Crossref]

J. Tao, Q. Wang, and X. Huang, “All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics 6(4), 753–759 (2011).
[Crossref]

Other (1)

S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (CRC, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The two-dimensional schematic view of the plasmonic refractive index sensor based on a fillet cavity coupled with two MIM waveguides symmetrically with d = 30nm, w = 50nm, and a = b = 350nm.
Fig. 2
Fig. 2 (a) The neff-n0 relation between effective index of MIM waveguide and refractive index of material filled in cavity under different incident wavelengths. (b) The real part and imaginary part of neff vary with near-infrared wavelength ranging from 750nm to 2500nm.
Fig. 3
Fig. 3 The first-order resonant peak profile with (a) different coupling distance d between waveguides and cavity (b) three kinds of dielectric materials filled in wg1 and wg2 without cavity based on the silver-silicon-silver waveguides.
Fig. 4
Fig. 4 (a) The transmission spectrum within NIR (750nm-2500nm) of the plasmonic RI sensor based on silver-silicon-silver waveguides coupled with a fillet cavity with d = 30nm. The normalized SPP mode distributions of (b) non-resonant mode at 1100nm (c) first-order resonant mode at 1498nm (d) second-order resonant mode at 716nm, respectively.
Fig. 5
Fig. 5 (a) The transmission spectrum of the plasmonic RI sensor under different refractive index n0 which changes from 1.0 to 1.5. (b) The linear relation between refractive index n0 of material under detecting and resonant peak value λm (mode1 and mode2).
Fig. 6
Fig. 6 The two-dimensional schematic view of the optimized plasmonic RI sensor based on a semi-fillet cavity coupled with two silver-silicon-silver waveguides symmetrically with d = 30nm, w = 50nm, and a = b = 350nm (The modified part is encircled by golden dashed line).
Fig. 7
Fig. 7 (a) The transmission spectrum of plasmonic RI sensor based on silver-silicon-silver waveguides coupled with a semi-fillet cavity under different n0 which changes from 1.0 to 1.5. (b) The linear relation between refractive index n0 and resonant peak value λm.
Fig. 8
Fig. 8 (a) The comparison diagram about linear relation between refractive index n0 and peak value λm concluded from the RI sensors with fillet cavity and semi-fillet cavity, respectively. (b) The peak value λm varies linearly with increasing edge length a (b = a) of the semi-fillet cavity.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε d k y 2 + ε m k y 1 coth(i k y 1 w/2)=0
k y 1 2 = ε d k 0 2 β 2
k y 2 2 = ε m k 0 2 β 2
ΔΦ= k spp (ω)s=2mπ
λ m = n eff s m

Metrics