Abstract

We present a new platform based on suspended III-V semiconductor nanopillars for direct integration of optoelectronic devices on a silicon substrate. Nanopillars grown in core-shell mode with InGaAs/InP quantum wells can support long-wavelength Fabry-Pérot resonances at room temperature with this novel configuration. Experimental results are demonstrated at a silicon-transparent wavelength of 1460 nm, facilitating integration with silicon platform.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths

Fanglu Lu, Indrasen Bhattacharya, Hao Sun, Thai-Truong D. Tran, Kar Wei Ng, Gilliard N. Malheiros-Silveira, and Connie Chang-Hasnain
Optica 4(7) 717-723 (2017)

InGaAs/InP multi-quantum-well nanowires with a lower optical leakage loss on v-groove-patterned SOI substrates

Yajie Li, Mengqi Wang, Xuliang Zhou, Pengfei Wang, Wenyu Yang, Fangyuan Meng, Guangzhen Luo, Hongyan Yu, Jiaoqing Pan, and Wei Wang
Opt. Express 27(2) 494-503 (2019)

Room-temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands

Yu Han, Wai Kit Ng, Chao Ma, Qiang Li, Si Zhu, Christopher C. S. Chan, Kar Wei Ng, Stephen Lennon, Robert A. Taylor, Kam Sing Wong, and Kei May Lau
Optica 5(8) 918-923 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
    [PubMed]
  2. G. N. Malheiros-Silveira, F. Lu, I. Bhattacharya, T.-T. D. Tran, H. Sun, and C. J. Chang-Hasnain, “Integration of III-V Nanopillar Resonator to In-Plane Silicon Waveguides,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STh1L.5.
    [Crossref]
  3. H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
    [Crossref] [PubMed]
  4. K. Tomioka, M. Yoshimura, and T. Fukui, “A III-V nanowire channel on silicon for high-performance vertical transistors,” Nature 488(7410), 189–192 (2012).
    [Crossref] [PubMed]
  5. M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
    [Crossref] [PubMed]
  6. J. Svensson, A. W. Dey, D. Jacobsson, and L.-E. Wernersson, “III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si,” Nano Lett. 15(12), 7898–7904 (2015).
    [Crossref] [PubMed]
  7. A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
    [Crossref] [PubMed]
  8. C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
    [Crossref] [PubMed]
  9. I. Bhattacharya, S. Deshpande, G. N. Malheiros-Silveira, and C. J. Chang-Hasnain, “Efficient Electroluminescence from III/V Quantum-Well-in-Nanopillar Light Emitting Diodes Directly Grown on Silicon,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper SM4R.6.
    [Crossref]
  10. W. S. Ko, I. Bhattacharya, T. D. Tran, K. W. Ng, S. Adair Gerke, and C. Chang-Hasnain, “Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon,” Sci. Rep. 6, 33368 (2016).
    [Crossref] [PubMed]
  11. R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74(11), 1522 (1999).
    [Crossref]
  12. Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
    [Crossref]
  13. Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
    [Crossref]
  14. Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of Microcavity Modes and Waveguides in InP Nanowires Fabricated by Selective-Area Metalorganic Vapor-Phase Epitaxy,” Nano Lett. 7(12), 3598–3602 (2007).
    [Crossref]
  15. S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
    [Crossref]
  16. F. Lu, T.-T. D. Tran, K. W. Ng, Z. Gong, and C. J. Chang-Hasnain, “Long-wavelength InGaAs/InP quantum-well-on-nanopillar laser grown on silicon,” in Compound Semiconductor Week (2016), paper Tu4O5.3.
  17. R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
    [Crossref]
  18. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
    [Crossref] [PubMed]
  19. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (John Wiley & Sons, Inc., 1991).
  20. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
    [Crossref]
  21. D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
    [Crossref] [PubMed]
  22. D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
    [Crossref] [PubMed]

2016 (2)

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

W. S. Ko, I. Bhattacharya, T. D. Tran, K. W. Ng, S. Adair Gerke, and C. Chang-Hasnain, “Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

2015 (3)

J. Svensson, A. W. Dey, D. Jacobsson, and L.-E. Wernersson, “III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si,” Nano Lett. 15(12), 7898–7904 (2015).
[Crossref] [PubMed]

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

2014 (3)

S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
[Crossref]

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

2013 (1)

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

2012 (2)

K. Tomioka, M. Yoshimura, and T. Fukui, “A III-V nanowire channel on silicon for high-performance vertical transistors,” Nature 488(7410), 189–192 (2012).
[Crossref] [PubMed]

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

2011 (1)

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

2010 (1)

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

2008 (1)

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

2007 (1)

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of Microcavity Modes and Waveguides in InP Nanowires Fabricated by Selective-Area Metalorganic Vapor-Phase Epitaxy,” Nano Lett. 7(12), 3598–3602 (2007).
[Crossref]

2003 (1)

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

2002 (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

1999 (1)

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74(11), 1522 (1999).
[Crossref]

Absil, P.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Abstreiter, G.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Adair Gerke, S.

W. S. Ko, I. Bhattacharya, T. D. Tran, K. W. Ng, S. Adair Gerke, and C. Chang-Hasnain, “Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

Agarwal, R.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Anderson, P. D.

S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
[Crossref]

Arab, S.

S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
[Crossref]

Bhattacharya, I.

W. S. Ko, I. Bhattacharya, T. D. Tran, K. W. Ng, S. Adair Gerke, and C. Chang-Hasnain, “Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

Borg, M.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Brenneis, A.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Breslin, C.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Bruley, J.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Calleja, M.

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

Chang-Hasnain, C.

W. S. Ko, I. Bhattacharya, T. D. Tran, K. W. Ng, S. Adair Gerke, and C. Chang-Hasnain, “Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Chen, R.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Chuang, L. C.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Cronin, S. B.

S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
[Crossref]

D’Urso, B.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74(11), 1522 (1999).
[Crossref]

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Dapkus, P. D.

S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
[Crossref]

Das Kanungo, P.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Deotare, P.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Dey, A. W.

J. Svensson, A. W. Dey, D. Jacobsson, and L.-E. Wernersson, “III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si,” Nano Lett. 15(12), 7898–7904 (2015).
[Crossref] [PubMed]

Ding, Y.

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of Microcavity Modes and Waveguides in InP Nanowires Fabricated by Selective-Area Metalorganic Vapor-Phase Epitaxy,” Nano Lett. 7(12), 3598–3602 (2007).
[Crossref]

Döblinger, M.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Duan, X.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Dupuis, R.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Farrell, A. C.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Fernández-Regúlez, M.

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

Finley, J. J.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Fukui, T.

K. Tomioka, M. Yoshimura, and T. Fukui, “A III-V nanowire channel on silicon for high-performance vertical transistors,” Nature 488(7410), 189–192 (2012).
[Crossref] [PubMed]

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of Microcavity Modes and Waveguides in InP Nanowires Fabricated by Selective-Area Metalorganic Vapor-Phase Epitaxy,” Nano Lett. 7(12), 3598–3602 (2007).
[Crossref]

Gignac, L.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Gil-Santos, E.

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

Guo, W.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Hara, S.

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of Microcavity Modes and Waveguides in InP Nanowires Fabricated by Selective-Area Metalorganic Vapor-Phase Epitaxy,” Nano Lett. 7(12), 3598–3602 (2007).
[Crossref]

Hertenberger, S.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Hessman, D.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Holleitner, A. W.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Hua, B.

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of Microcavity Modes and Waveguides in InP Nanowires Fabricated by Selective-Area Metalorganic Vapor-Phase Epitaxy,” Nano Lett. 7(12), 3598–3602 (2007).
[Crossref]

Huang, Y.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Huffaker, D. L.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Jacobsson, D.

J. Svensson, A. W. Dey, D. Jacobsson, and L.-E. Wernersson, “III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si,” Nano Lett. 15(12), 7898–7904 (2015).
[Crossref] [PubMed]

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Khan, M.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Kim, H.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Ko, W. S.

W. S. Ko, I. Bhattacharya, T. D. Tran, K. W. Ng, S. Adair Gerke, and C. Chang-Hasnain, “Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Koblmüller, G.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Larsson, C.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Lee, R. K.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74(11), 1522 (1999).
[Crossref]

Lee, W.-J.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Li, K.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

Lieber, C. M.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Llorens, J. M.

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

Loncar, M.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Lu, F.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Malvar, O.

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

Mårtensson, T.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Merckling, C.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Morkötter, S.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Moselund, K. E.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Motohisa, J.

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of Microcavity Modes and Waveguides in InP Nanowires Fabricated by Selective-Area Metalorganic Vapor-Phase Epitaxy,” Nano Lett. 7(12), 3598–3602 (2007).
[Crossref]

Ng, K. W.

W. S. Ko, I. Bhattacharya, T. D. Tran, K. W. Ng, S. Adair Gerke, and C. Chang-Hasnain, “Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Ohlsson, J.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Overbeck, J.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Painter, O. J.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74(11), 1522 (1999).
[Crossref]

Pantouvaki, M.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Parekh, D.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

Pini, V.

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

Povinelli, M. L.

S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
[Crossref]

Ramos, D.

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

Rask, M.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Riel, H.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Ryou, J.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Samuelson, L.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

San Paulo, A.

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

San Paulo, Á.

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

Scherer, A.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74(11), 1522 (1999).
[Crossref]

Schmid, H.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Sedgwick, F. G.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Senanayake, P.

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Signorello, G.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Svensson, C. P. T.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Svensson, J.

J. Svensson, A. W. Dey, D. Jacobsson, and L.-E. Wernersson, “III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si,” Nano Lett. 15(12), 7898–7904 (2015).
[Crossref] [PubMed]

Tamayo, J.

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

Tian, B.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Tomioka, K.

K. Tomioka, M. Yoshimura, and T. Fukui, “A III-V nanowire channel on silicon for high-performance vertical transistors,” Nature 488(7410), 189–192 (2012).
[Crossref] [PubMed]

Trägårdh, J.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Tran, T. D.

W. S. Ko, I. Bhattacharya, T. D. Tran, K. W. Ng, S. Adair Gerke, and C. Chang-Hasnain, “Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

Tran, T.-T. D.

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Treu, J.

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Van Campenhout, J.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Van Thourhout, D.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Wang, Z.

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

Werner, P.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Wernersson, L.-E.

J. Svensson, A. W. Dey, D. Jacobsson, and L.-E. Wernersson, “III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si,” Nano Lett. 15(12), 7898–7904 (2015).
[Crossref] [PubMed]

Yao, M.

S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
[Crossref]

Yariv, A.

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74(11), 1522 (1999).
[Crossref]

Yoshimura, M.

K. Tomioka, M. Yoshimura, and T. Fukui, “A III-V nanowire channel on silicon for high-performance vertical transistors,” Nature 488(7410), 189–192 (2012).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Zhou, C.

S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
[Crossref]

ACS Nano (1)

A. Brenneis, J. Overbeck, J. Treu, S. Hertenberger, S. Morkötter, M. Döblinger, J. J. Finley, G. Abstreiter, G. Koblmüller, and A. W. Holleitner, “Photocurrents in a Single InAs Nanowire/Silicon Heterojunction,” ACS Nano 9(10), 9849–9858 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Appl. Phys. Lett. (2)

R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths,” Appl. Phys. Lett. 74(11), 1522 (1999).
[Crossref]

Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010).
[Crossref]

Nano Lett. (5)

Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, “Observation of Microcavity Modes and Waveguides in InP Nanowires Fabricated by Selective-Area Metalorganic Vapor-Phase Epitaxy,” Nano Lett. 7(12), 3598–3602 (2007).
[Crossref]

D. Ramos, E. Gil-Santos, V. Pini, J. M. Llorens, M. Fernández-Regúlez, Á. San Paulo, M. Calleja, and J. Tamayo, “Optomechanics with silicon nanowires by harnessing confined electromagnetic modes,” Nano Lett. 12(2), 932–937 (2012).
[Crossref] [PubMed]

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

J. Svensson, A. W. Dey, D. Jacobsson, and L.-E. Wernersson, “III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si,” Nano Lett. 15(12), 7898–7904 (2015).
[Crossref] [PubMed]

H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Nano Res. (1)

S. Arab, P. D. Anderson, M. Yao, C. Zhou, P. D. Dapkus, M. L. Povinelli, and S. B. Cronin, “Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation,” Nano Res. 7(8), 1146–1153 (2014).
[Crossref]

Nanotechnology (1)

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

R. Chen, K. W. Ng, W. S. Ko, D. Parekh, F. Lu, T.-T. D. Tran, K. Li, and C. Chang-Hasnain, “Nanophotonic integrated circuits from nanoresonators grown on silicon,” Nat. Commun. 5, 4325 (2014).
[PubMed]

Nat. Photonics (2)

Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room-temperature InP distributed feedback laser array directly grown on silicon,” Nat. Photonics 9(12), 837–842 (2015).
[Crossref]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5(3), 170–175 (2011).
[Crossref]

Nature (2)

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

K. Tomioka, M. Yoshimura, and T. Fukui, “A III-V nanowire channel on silicon for high-performance vertical transistors,” Nature 488(7410), 189–192 (2012).
[Crossref] [PubMed]

Sci. Rep. (2)

D. Ramos, E. Gil-Santos, O. Malvar, J. M. Llorens, V. Pini, A. San Paulo, M. Calleja, and J. Tamayo, “Silicon nanowires: where mechanics and optics meet at the nanoscale,” Sci. Rep. 3, 3445 (2013).
[Crossref] [PubMed]

W. S. Ko, I. Bhattacharya, T. D. Tran, K. W. Ng, S. Adair Gerke, and C. Chang-Hasnain, “Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon,” Sci. Rep. 6, 33368 (2016).
[Crossref] [PubMed]

Other (4)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (John Wiley & Sons, Inc., 1991).

F. Lu, T.-T. D. Tran, K. W. Ng, Z. Gong, and C. J. Chang-Hasnain, “Long-wavelength InGaAs/InP quantum-well-on-nanopillar laser grown on silicon,” in Compound Semiconductor Week (2016), paper Tu4O5.3.

G. N. Malheiros-Silveira, F. Lu, I. Bhattacharya, T.-T. D. Tran, H. Sun, and C. J. Chang-Hasnain, “Integration of III-V Nanopillar Resonator to In-Plane Silicon Waveguides,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STh1L.5.
[Crossref]

I. Bhattacharya, S. Deshpande, G. N. Malheiros-Silveira, and C. J. Chang-Hasnain, “Efficient Electroluminescence from III/V Quantum-Well-in-Nanopillar Light Emitting Diodes Directly Grown on Silicon,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper SM4R.6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Generic scheme of the proposed platform.
Fig. 2
Fig. 2 (a) SEM image from nanopillars grown on top of <111> Si substrate. Inset at top-right depicts the core-shell configuration. (b) PL dependence from input power at 5 K.
Fig. 3
Fig. 3 (a) Sketch from a nanopillar suspended by a SiO2 membrane, and isolated from the Si substrate. SEM image of 60° of tilted view from suspended structures assuming geometries of trampoline (b) and bridge (c).
Fig. 4
Fig. 4 Optical characterization of the proposed suspended structures. (a) Power sweeping during PL measurements at room temperature (295 K) and under CW 980 nm of laser pump. (b) PL measurements at 5 K under CW 660nm of laser pump. (c) Calculated group refractive index. (d). TRPL from a InP nanopillar before and after etching Si by using SF6 plus O2 RIE plasma.
Fig. 5
Fig. 5 (a) µ-PL spectra measured at 5 K from the three single nanopillars with different lengths at pump power of 500 μW. (b). Inverse length of the nanopillars versus mode spacing variation shows a linear dependence.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ= λ 2 2L[ nλ( dn dλ ) ]

Metrics