Abstract

Here we present a new generic opto-bio-sensing platform combining immobilised aptamers on an infrared plasmonic sensing device generated by nano-structured thin film that demonstrates amongst the highest index spectral sensitivities of any optical fibre sensor yielding on average 3.4 × 104 nm/RIU in the aqueous index regime (with a figure of merit of 330) This offers a single stage, solution phase, atto-molar detection capability, whilst delivering real-time data for kinetic studies in water-based chemistry. The sensing platform is based upon optical fibre and has the potential to be multiplexed and used in remote sensing applications. As an example of the highly versatile capabilities of aptamer based detection using our platform, purified thrombin is detected down to 50 attomolar concentration using a volume of 1mm3 of solution without the use of any form of enhancement technique. Moreover, the device can detect nanomolar levels of thrombin in a flow cell, in the presence of 4.5% w/v albumin solution. These results are important, covering all concentrations in the human thrombin generation curve, including the problematic initial phase. Finally, selectivity is confirmed using complementary and non-complementary DNA sequences that yield performances similar to those obtained with thrombin.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

9 January 2017: A correction was made to the funding section.


OSA Recommended Articles
Development of a highly specific amine-terminated aptamer functionalized surface plasmon resonance biosensor for blood protein detection

Rui Zheng, Byung-Wook Park, Dong-Shik Kim, and Brent D. Cameron
Biomed. Opt. Express 2(9) 2731-2740 (2011)

Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection

Sabrina Jahns, Marion Bräu, Björn-Ole Meyer, Torben Karrock, Sören B. Gutekunst, Lars Blohm, Christine Selhuber-Unkel, Raymund Buhmann, Yousef Nazirizadeh, and Martina Gerken
Biomed. Opt. Express 6(10) 3724-3736 (2015)

Nanoparticle functionalised small-core suspended-core fibre – a novel platform for efficient sensing

Brenda Doherty, Andrea Csáki, Matthias Thiele, Matthias Zeisberger, Anka Schwuchow, Jens Kobelke, Wolfgang Fritzsche, and Markus A. Schmidt
Biomed. Opt. Express 8(2) 790-799 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Ellington and J. W. Szostak, “In vitro Selection of RNA Molecules that Bind Specific Ligands,” Nature 346(6287), 818–822 (1990).
    [Crossref] [PubMed]
  2. G. Szakács, J. K. Paterson, J. A. Ludwig, C. Booth-Genthe, and M. M. Gottesman, “Targeting multidrug resistance in cancer,” Nat. Rev. Drug Discov. 5(3), 219–234 (2006).
    [Crossref] [PubMed]
  3. R. Stoltenburg, C. Reinemann, and B. Strehlitz, “SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands,” Biomol. Eng. 24(4), 381–403 (2007).
    [Crossref] [PubMed]
  4. S. D. Jayasena, “Aptamers: an Emerging Class of Molecules that Rival Antibodies in Diagnostics,” Clin. Chem. 45(9), 1628–1650 (1999).
    [PubMed]
  5. X. Ni, M. Castanares, A. Mukherjee, and S. E. Lupold, “Nucleic acid aptamers: clinical applications and promising new horizons,” Curr. Med. Chem. 18(27), 4206–4214 (2011).
    [Crossref] [PubMed]
  6. J. Zhou and J. J. Rossi, “Cell-Specific Aptamer-Mediated Targeted Drug Delivery,” Oligonucleotides 21(1), 1–10 (2011).
    [Crossref] [PubMed]
  7. J. T. B. Crawley, S. Zanardelli, C. K. N. Chion, and D. A. Lane, “The central role of thrombin in hemostasis,” J. Thromb. Haemost. 5(1Suppl 1), 95–101 (2007).
    [Crossref] [PubMed]
  8. R. F. Macaya, P. Schultze, F. W. Smith, J. A. Roe, and J. Feigon, “Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution,” Proc. Natl. Acad. Sci. U.S.A. 90(8), 3745–3749 (1993).
    [Crossref] [PubMed]
  9. S. R. Garden, G. J. Doellgast, K. S. Killham, and N. J. Strachan, “A fluorescent coagulation assay for thrombin using a fibre optic evanescent wave sensor,” Biosens. Bioelectron. 19(7), 737–740 (2004).
    [Crossref] [PubMed]
  10. A. Leung, P. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
    [Crossref]
  11. T Allsop, R. Neal, S. Rehman, C. Zhang, D. J. Webb, D. Mapps and I. Bennion, “Surface Plasmon Resonance Generation Utilising Gratings for Biochemical Sensing,” OFS-18 Cancun Mexico. WA4, (2006).
    [Crossref]
  12. T. M. Battaglia, J.-F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
    [Crossref] [PubMed]
  13. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. Luong, “Properties and sensing characteristics of surface-plasmon resonance in infrared light,” J. Opt. Soc. Am. A 20(8), 1644–1650 (2003).
    [Crossref] [PubMed]
  14. M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroký, “Surface plasmon resonance sensor based on a single-mode polarisation-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
    [Crossref]
  15. R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
    [Crossref]
  16. A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
    [Crossref] [PubMed]
  17. J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface Plasmon Resonance Imaging Measurements of Ultrathin Organic Films,” Annu. Rev. Phys. Chem. 51(1), 41–63 (2000).
    [Crossref] [PubMed]
  18. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
    [Crossref] [PubMed]
  19. L. M. Zanoli, R. D’Agata, and G. Spoto, “Functionalized gold nanoparticles for ultrasensitive DNA detection,” Anal. Bioanal. Chem. 402(5), 1759–1771 (2012).
    [Crossref] [PubMed]
  20. S. Tombelli, M. Minunni, and M. Mascini, “A surface plasmon resonance biosensor for the determination of the affinity of drugs for nucleic acids,” Anal. Lett. 35(4), 599–613 (2002).
    [Crossref]
  21. E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of Aptamers as Sensors,” Ann. Rev. Anal. Chem. 2(1), 241–264 (2009).
    [Crossref]
  22. G. Spoto and M. Minunni, “Surface Plasmon Resonance Imaging: What Next?” J. Phys. Chem. Lett. 3(18), 2682–2691 (2012).
    [Crossref] [PubMed]
  23. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
    [Crossref] [PubMed]
  24. T. Allsop, R. Neal, C. Mou, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “Exploitation of multilayer coatings for infrared surface plasmon resonance fiber sensors,” Appl. Opt. 48(2), 276–286 (2009).
    [Crossref] [PubMed]
  25. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
    [Crossref]
  26. M. J. Kwon, J. Lee, A. W. Wark, and H. J. Lee, “Nanoparticle-enhanced surface plasmon resonance detection of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes,” Anal. Chem. 84(3), 1702–1707 (2012).
    [Crossref] [PubMed]
  27. T. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D. J. Webb, P. F. Culverhouse, J. L. Sullivan, and I. Bennion, “Formation and characterisation of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fibre,” Quantum Electron. 48(3), 394–405 (2012).
    [Crossref]
  28. A. M. Bronstein and R. Kimmel, Numerical Geometry of Non-Rigid Shapes (Springer Science & Business Media, 2008).
  29. C. K. Ho, A. Robinson, D. R. Miller, and M. J. Davis, “Overview of Sensors and Needs for Environmental Monitoring,” Sensors (Basel) 5(1), 4–37 (2005).
    [Crossref]
  30. R. D’Agata and G. Spoto, “Surface plasmon resonance imaging for nucleic acid detection,” Anal. Bioanal. Chem. 405(2-3), 573–584 (2013).
    [Crossref] [PubMed]
  31. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  32. A. Kolomenski, A. Kolomenskii, J. Noel, S. Peng, and H. Schuessler, “Propagation length of surface plasmons in a metal film with roughness,” Appl. Opt. 48(30), 5683–5691 (2009).
    [Crossref] [PubMed]
  33. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” JOSAB 26(5), 1032–1041 (2009).
    [Crossref]
  34. T. Allsop, R. Neal, C. Mou, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “Exploitation of multilayer coatings for infrared surface plasmon resonance fiber sensors,” Appl. Opt. 48(2), 276–286 (2009).
    [Crossref] [PubMed]
  35. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
    [Crossref]
  36. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
    [Crossref] [PubMed]
  37. A. D. Attie and R. T. Raines, “Analysis of Receptor-Ligand Interactions,” J. Chem. Educ. 72(2), 119–123 (1995).
    [Crossref]
  38. B. Alexander, D. J. Browse, S. J. Reading, and I. S. Benjamin, “A simple and accurate mathematical method for calculation of the EC50.,” J. Pharmacol. Toxicol. Methods 41(2-3), 55–58 (1999).
    [Crossref] [PubMed]
  39. J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  40. T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004).
    [Crossref] [PubMed]
  41. M. L. Ermini, S. Mariani, S. Scarano, and M. Minunni, “Direct detection of genomic DNA by surface plasmon resonance imaging: an optimized approach,” Biosens. Bioelectron. 40(1), 193–199 (2013).
    [Crossref] [PubMed]
  42. J. Go and M. A. Alam, “Statistical interpretation of “femtomolar” detection,” Appl. Phys. Lett. 95(3), 033110 (2009).
    [Crossref] [PubMed]
  43. P. R. Nair and M. A. Alam, “Performance limits of nanobiosensors,” Appl. Phys. Lett. 88(23), 233120 (2006).
    [Crossref]
  44. P. E. Sheehan and L. J. Whitman, “Detection Limits for Nanoscale Biosensors,” Nano Lett. 5(4), 803–807 (2005).
    [Crossref] [PubMed]
  45. A. Hassibi, H. Vikalo, and A. Hajimiri, “On noise processes and limits of performance in biosensors,” J. Appl. Phys. 102(1), 014909 (2007).
    [Crossref]
  46. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  47. A. Pinto, M. C. Bermudo Redondo, V. C. Ozalp, and C. K. O’Sullivan, “Real-time apta-PCR for 20 000-fold improvement in detection limit,” Mol. Biosyst. 5(5), 548–553 (2009).
    [Crossref] [PubMed]
  48. B. Strehlitz, N. Nikolaus, and R. Stoltenburg, “Protein Detection with Aptamer Biosensors,” Sensors (Basel) 8(7), 4296–4307 (2008).
    [Crossref] [PubMed]
  49. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
    [Crossref] [PubMed]
  50. L. Gaspari, F. Paris, P. Philibert, F. Audran, M. Orsini, N. Servant, L. Maïmoun, N. Kalfa, and C. Sultan, “‘Idiopathic’ partial androgen insensitivity syndrome in 28 newborn and infant males: impact of prenatal exposure to environmental endocrine disruptor chemicals?” Eur. J. Endocrinol. 165(4), 579–587 (2011).
    [Crossref] [PubMed]
  51. M. Ninivaggi, R. Apitz-Castro, Y. Dargaud, B. de Laat, H. C. Hemker, and T. Lindhout, “Whole-Blood Thrombin Generation Monitored with a Calibrated Automated Thrombogram-Based Assay,” Clin. Chem. 58(8), 1252–1259 (2012).
    [Crossref] [PubMed]
  52. J. J. van Veen, A. Gatt, and M. Makris, “Thrombin generation testing in routine clinical practice: are we there yet?” Br. J. Haematol. 142(6), 889–903 (2008).
    [Crossref] [PubMed]
  53. H. C. Hemker, R. Al Dieri, E. De Smedt, and S. Béguin, “Thrombin generation, a function test of the haemostatic-thrombotic system,” Thromb. Haemost. 96(5), 553–561 (2006).
    [PubMed]
  54. Z. Fang, L. Soleymani, G. Pampalakis, M. Yoshimoto, J. A. Squire, E. H. Sargent, and S. O. Kelley, “Direct Profiling of Cancer Biomarkers in Tumor Tissue Using a Multiplexed Nanostructured Microelectrode Integrated Circuit,” ACS Nano 3(10), 3207–3213 (2009).
    [Crossref] [PubMed]
  55. http://www.rockefeller.edu/spectroscopy/instruments_spr
  56. S. Centi, G. Messina, S. Tombelli, I. Palchetti, and M. Mascini, “Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads,” Biosens. Bioelectron. 23(11), 1602–1609 (2008).
    [Crossref] [PubMed]
  57. W. Potze, E. M. Alkozai, J. Adelmeijer, R. J. Porte, and T. Lisman, “Hypercoagulability following major partial liver resection - detected by thrombomodulin-modified thrombin generation testing,” Aliment. Pharmacol. Ther. 41(2), 189–198 (2015).
    [Crossref] [PubMed]

2015 (1)

W. Potze, E. M. Alkozai, J. Adelmeijer, R. J. Porte, and T. Lisman, “Hypercoagulability following major partial liver resection - detected by thrombomodulin-modified thrombin generation testing,” Aliment. Pharmacol. Ther. 41(2), 189–198 (2015).
[Crossref] [PubMed]

2013 (2)

M. L. Ermini, S. Mariani, S. Scarano, and M. Minunni, “Direct detection of genomic DNA by surface plasmon resonance imaging: an optimized approach,” Biosens. Bioelectron. 40(1), 193–199 (2013).
[Crossref] [PubMed]

R. D’Agata and G. Spoto, “Surface plasmon resonance imaging for nucleic acid detection,” Anal. Bioanal. Chem. 405(2-3), 573–584 (2013).
[Crossref] [PubMed]

2012 (5)

L. M. Zanoli, R. D’Agata, and G. Spoto, “Functionalized gold nanoparticles for ultrasensitive DNA detection,” Anal. Bioanal. Chem. 402(5), 1759–1771 (2012).
[Crossref] [PubMed]

G. Spoto and M. Minunni, “Surface Plasmon Resonance Imaging: What Next?” J. Phys. Chem. Lett. 3(18), 2682–2691 (2012).
[Crossref] [PubMed]

M. J. Kwon, J. Lee, A. W. Wark, and H. J. Lee, “Nanoparticle-enhanced surface plasmon resonance detection of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes,” Anal. Chem. 84(3), 1702–1707 (2012).
[Crossref] [PubMed]

T. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D. J. Webb, P. F. Culverhouse, J. L. Sullivan, and I. Bennion, “Formation and characterisation of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fibre,” Quantum Electron. 48(3), 394–405 (2012).
[Crossref]

M. Ninivaggi, R. Apitz-Castro, Y. Dargaud, B. de Laat, H. C. Hemker, and T. Lindhout, “Whole-Blood Thrombin Generation Monitored with a Calibrated Automated Thrombogram-Based Assay,” Clin. Chem. 58(8), 1252–1259 (2012).
[Crossref] [PubMed]

2011 (4)

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

L. Gaspari, F. Paris, P. Philibert, F. Audran, M. Orsini, N. Servant, L. Maïmoun, N. Kalfa, and C. Sultan, “‘Idiopathic’ partial androgen insensitivity syndrome in 28 newborn and infant males: impact of prenatal exposure to environmental endocrine disruptor chemicals?” Eur. J. Endocrinol. 165(4), 579–587 (2011).
[Crossref] [PubMed]

X. Ni, M. Castanares, A. Mukherjee, and S. E. Lupold, “Nucleic acid aptamers: clinical applications and promising new horizons,” Curr. Med. Chem. 18(27), 4206–4214 (2011).
[Crossref] [PubMed]

J. Zhou and J. J. Rossi, “Cell-Specific Aptamer-Mediated Targeted Drug Delivery,” Oligonucleotides 21(1), 1–10 (2011).
[Crossref] [PubMed]

2009 (10)

T. Allsop, R. Neal, C. Mou, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “Exploitation of multilayer coatings for infrared surface plasmon resonance fiber sensors,” Appl. Opt. 48(2), 276–286 (2009).
[Crossref] [PubMed]

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of Aptamers as Sensors,” Ann. Rev. Anal. Chem. 2(1), 241–264 (2009).
[Crossref]

A. Kolomenski, A. Kolomenskii, J. Noel, S. Peng, and H. Schuessler, “Propagation length of surface plasmons in a metal film with roughness,” Appl. Opt. 48(30), 5683–5691 (2009).
[Crossref] [PubMed]

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” JOSAB 26(5), 1032–1041 (2009).
[Crossref]

T. Allsop, R. Neal, C. Mou, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “Exploitation of multilayer coatings for infrared surface plasmon resonance fiber sensors,” Appl. Opt. 48(2), 276–286 (2009).
[Crossref] [PubMed]

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

A. Pinto, M. C. Bermudo Redondo, V. C. Ozalp, and C. K. O’Sullivan, “Real-time apta-PCR for 20 000-fold improvement in detection limit,” Mol. Biosyst. 5(5), 548–553 (2009).
[Crossref] [PubMed]

Z. Fang, L. Soleymani, G. Pampalakis, M. Yoshimoto, J. A. Squire, E. H. Sargent, and S. O. Kelley, “Direct Profiling of Cancer Biomarkers in Tumor Tissue Using a Multiplexed Nanostructured Microelectrode Integrated Circuit,” ACS Nano 3(10), 3207–3213 (2009).
[Crossref] [PubMed]

J. Go and M. A. Alam, “Statistical interpretation of “femtomolar” detection,” Appl. Phys. Lett. 95(3), 033110 (2009).
[Crossref] [PubMed]

2008 (5)

J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

S. Centi, G. Messina, S. Tombelli, I. Palchetti, and M. Mascini, “Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads,” Biosens. Bioelectron. 23(11), 1602–1609 (2008).
[Crossref] [PubMed]

J. J. van Veen, A. Gatt, and M. Makris, “Thrombin generation testing in routine clinical practice: are we there yet?” Br. J. Haematol. 142(6), 889–903 (2008).
[Crossref] [PubMed]

B. Strehlitz, N. Nikolaus, and R. Stoltenburg, “Protein Detection with Aptamer Biosensors,” Sensors (Basel) 8(7), 4296–4307 (2008).
[Crossref] [PubMed]

2007 (7)

A. Hassibi, H. Vikalo, and A. Hajimiri, “On noise processes and limits of performance in biosensors,” J. Appl. Phys. 102(1), 014909 (2007).
[Crossref]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[Crossref] [PubMed]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[Crossref] [PubMed]

J. T. B. Crawley, S. Zanardelli, C. K. N. Chion, and D. A. Lane, “The central role of thrombin in hemostasis,” J. Thromb. Haemost. 5(1Suppl 1), 95–101 (2007).
[Crossref] [PubMed]

R. Stoltenburg, C. Reinemann, and B. Strehlitz, “SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands,” Biomol. Eng. 24(4), 381–403 (2007).
[Crossref] [PubMed]

A. Leung, P. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[Crossref]

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
[Crossref]

2006 (3)

G. Szakács, J. K. Paterson, J. A. Ludwig, C. Booth-Genthe, and M. M. Gottesman, “Targeting multidrug resistance in cancer,” Nat. Rev. Drug Discov. 5(3), 219–234 (2006).
[Crossref] [PubMed]

P. R. Nair and M. A. Alam, “Performance limits of nanobiosensors,” Appl. Phys. Lett. 88(23), 233120 (2006).
[Crossref]

H. C. Hemker, R. Al Dieri, E. De Smedt, and S. Béguin, “Thrombin generation, a function test of the haemostatic-thrombotic system,” Thromb. Haemost. 96(5), 553–561 (2006).
[PubMed]

2005 (3)

P. E. Sheehan and L. J. Whitman, “Detection Limits for Nanoscale Biosensors,” Nano Lett. 5(4), 803–807 (2005).
[Crossref] [PubMed]

T. M. Battaglia, J.-F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[Crossref] [PubMed]

C. K. Ho, A. Robinson, D. R. Miller, and M. J. Davis, “Overview of Sensors and Needs for Environmental Monitoring,” Sensors (Basel) 5(1), 4–37 (2005).
[Crossref]

2004 (4)

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
[Crossref] [PubMed]

S. R. Garden, G. J. Doellgast, K. S. Killham, and N. J. Strachan, “A fluorescent coagulation assay for thrombin using a fibre optic evanescent wave sensor,” Biosens. Bioelectron. 19(7), 737–740 (2004).
[Crossref] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref] [PubMed]

T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004).
[Crossref] [PubMed]

2003 (2)

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. Luong, “Properties and sensing characteristics of surface-plasmon resonance in infrared light,” J. Opt. Soc. Am. A 20(8), 1644–1650 (2003).
[Crossref] [PubMed]

M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroký, “Surface plasmon resonance sensor based on a single-mode polarisation-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

2002 (1)

S. Tombelli, M. Minunni, and M. Mascini, “A surface plasmon resonance biosensor for the determination of the affinity of drugs for nucleic acids,” Anal. Lett. 35(4), 599–613 (2002).
[Crossref]

2000 (1)

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface Plasmon Resonance Imaging Measurements of Ultrathin Organic Films,” Annu. Rev. Phys. Chem. 51(1), 41–63 (2000).
[Crossref] [PubMed]

1999 (2)

S. D. Jayasena, “Aptamers: an Emerging Class of Molecules that Rival Antibodies in Diagnostics,” Clin. Chem. 45(9), 1628–1650 (1999).
[PubMed]

B. Alexander, D. J. Browse, S. J. Reading, and I. S. Benjamin, “A simple and accurate mathematical method for calculation of the EC50.,” J. Pharmacol. Toxicol. Methods 41(2-3), 55–58 (1999).
[Crossref] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1995 (1)

A. D. Attie and R. T. Raines, “Analysis of Receptor-Ligand Interactions,” J. Chem. Educ. 72(2), 119–123 (1995).
[Crossref]

1993 (1)

R. F. Macaya, P. Schultze, F. W. Smith, J. A. Roe, and J. Feigon, “Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution,” Proc. Natl. Acad. Sci. U.S.A. 90(8), 3745–3749 (1993).
[Crossref] [PubMed]

1990 (1)

A. D. Ellington and J. W. Szostak, “In vitro Selection of RNA Molecules that Bind Specific Ligands,” Nature 346(6287), 818–822 (1990).
[Crossref] [PubMed]

Adelmeijer, J.

W. Potze, E. M. Alkozai, J. Adelmeijer, R. J. Porte, and T. Lisman, “Hypercoagulability following major partial liver resection - detected by thrombomodulin-modified thrombin generation testing,” Aliment. Pharmacol. Ther. 41(2), 189–198 (2015).
[Crossref] [PubMed]

Agarwal, A.

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” JOSAB 26(5), 1032–1041 (2009).
[Crossref]

Al Dieri, R.

H. C. Hemker, R. Al Dieri, E. De Smedt, and S. Béguin, “Thrombin generation, a function test of the haemostatic-thrombotic system,” Thromb. Haemost. 96(5), 553–561 (2006).
[PubMed]

Alam, M. A.

J. Go and M. A. Alam, “Statistical interpretation of “femtomolar” detection,” Appl. Phys. Lett. 95(3), 033110 (2009).
[Crossref] [PubMed]

P. R. Nair and M. A. Alam, “Performance limits of nanobiosensors,” Appl. Phys. Lett. 88(23), 233120 (2006).
[Crossref]

Alexander, B.

B. Alexander, D. J. Browse, S. J. Reading, and I. S. Benjamin, “A simple and accurate mathematical method for calculation of the EC50.,” J. Pharmacol. Toxicol. Methods 41(2-3), 55–58 (1999).
[Crossref] [PubMed]

Alkozai, E. M.

W. Potze, E. M. Alkozai, J. Adelmeijer, R. J. Porte, and T. Lisman, “Hypercoagulability following major partial liver resection - detected by thrombomodulin-modified thrombin generation testing,” Aliment. Pharmacol. Ther. 41(2), 189–198 (2015).
[Crossref] [PubMed]

Allsop, T.

Angnes, L.

T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004).
[Crossref] [PubMed]

Apitz-Castro, R.

M. Ninivaggi, R. Apitz-Castro, Y. Dargaud, B. de Laat, H. C. Hemker, and T. Lindhout, “Whole-Blood Thrombin Generation Monitored with a Calibrated Automated Thrombogram-Based Assay,” Clin. Chem. 58(8), 1252–1259 (2012).
[Crossref] [PubMed]

Attie, A. D.

A. D. Attie and R. T. Raines, “Analysis of Receptor-Ligand Interactions,” J. Chem. Educ. 72(2), 119–123 (1995).
[Crossref]

Audran, F.

L. Gaspari, F. Paris, P. Philibert, F. Audran, M. Orsini, N. Servant, L. Maïmoun, N. Kalfa, and C. Sultan, “‘Idiopathic’ partial androgen insensitivity syndrome in 28 newborn and infant males: impact of prenatal exposure to environmental endocrine disruptor chemicals?” Eur. J. Endocrinol. 165(4), 579–587 (2011).
[Crossref] [PubMed]

Baptista, M. S.

T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004).
[Crossref] [PubMed]

Battaglia, T. M.

T. M. Battaglia, J.-F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[Crossref] [PubMed]

Beaudoin, S. P.

T. M. Battaglia, J.-F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[Crossref] [PubMed]

Béguin, S.

H. C. Hemker, R. Al Dieri, E. De Smedt, and S. Béguin, “Thrombin generation, a function test of the haemostatic-thrombotic system,” Thromb. Haemost. 96(5), 553–561 (2006).
[PubMed]

Benjamin, I. S.

B. Alexander, D. J. Browse, S. J. Reading, and I. S. Benjamin, “A simple and accurate mathematical method for calculation of the EC50.,” J. Pharmacol. Toxicol. Methods 41(2-3), 55–58 (1999).
[Crossref] [PubMed]

Bennion, I.

Bermudo Redondo, M. C.

A. Pinto, M. C. Bermudo Redondo, V. C. Ozalp, and C. K. O’Sullivan, “Real-time apta-PCR for 20 000-fold improvement in detection limit,” Mol. Biosyst. 5(5), 548–553 (2009).
[Crossref] [PubMed]

Booksh, K. S.

T. M. Battaglia, J.-F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[Crossref] [PubMed]

Booth-Genthe, C.

G. Szakács, J. K. Paterson, J. A. Ludwig, C. Booth-Genthe, and M. M. Gottesman, “Targeting multidrug resistance in cancer,” Nat. Rev. Drug Discov. 5(3), 219–234 (2006).
[Crossref] [PubMed]

Brockman, J. M.

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface Plasmon Resonance Imaging Measurements of Ultrathin Organic Films,” Annu. Rev. Phys. Chem. 51(1), 41–63 (2000).
[Crossref] [PubMed]

Brolo, A. G.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref] [PubMed]

Brown, P.

Browse, D. J.

B. Alexander, D. J. Browse, S. J. Reading, and I. S. Benjamin, “A simple and accurate mathematical method for calculation of the EC50.,” J. Pharmacol. Toxicol. Methods 41(2-3), 55–58 (1999).
[Crossref] [PubMed]

Castanares, M.

X. Ni, M. Castanares, A. Mukherjee, and S. E. Lupold, “Nucleic acid aptamers: clinical applications and promising new horizons,” Curr. Med. Chem. 18(27), 4206–4214 (2011).
[Crossref] [PubMed]

Centi, S.

S. Centi, G. Messina, S. Tombelli, I. Palchetti, and M. Mascini, “Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads,” Biosens. Bioelectron. 23(11), 1602–1609 (2008).
[Crossref] [PubMed]

Chion, C. K. N.

J. T. B. Crawley, S. Zanardelli, C. K. N. Chion, and D. A. Lane, “The central role of thrombin in hemostasis,” J. Thromb. Haemost. 5(1Suppl 1), 95–101 (2007).
[Crossref] [PubMed]

Cho, E. J.

E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of Aptamers as Sensors,” Ann. Rev. Anal. Chem. 2(1), 241–264 (2009).
[Crossref]

Corn, R. M.

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface Plasmon Resonance Imaging Measurements of Ultrathin Organic Films,” Annu. Rev. Phys. Chem. 51(1), 41–63 (2000).
[Crossref] [PubMed]

Crawley, J. T. B.

J. T. B. Crawley, S. Zanardelli, C. K. N. Chion, and D. A. Lane, “The central role of thrombin in hemostasis,” J. Thromb. Haemost. 5(1Suppl 1), 95–101 (2007).
[Crossref] [PubMed]

Ctyroký, J.

M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroký, “Surface plasmon resonance sensor based on a single-mode polarisation-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Culverhouse, P. F.

T. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D. J. Webb, P. F. Culverhouse, J. L. Sullivan, and I. Bennion, “Formation and characterisation of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fibre,” Quantum Electron. 48(3), 394–405 (2012).
[Crossref]

D’Agata, R.

R. D’Agata and G. Spoto, “Surface plasmon resonance imaging for nucleic acid detection,” Anal. Bioanal. Chem. 405(2-3), 573–584 (2013).
[Crossref] [PubMed]

L. M. Zanoli, R. D’Agata, and G. Spoto, “Functionalized gold nanoparticles for ultrasensitive DNA detection,” Anal. Bioanal. Chem. 402(5), 1759–1771 (2012).
[Crossref] [PubMed]

Dargaud, Y.

M. Ninivaggi, R. Apitz-Castro, Y. Dargaud, B. de Laat, H. C. Hemker, and T. Lindhout, “Whole-Blood Thrombin Generation Monitored with a Calibrated Automated Thrombogram-Based Assay,” Clin. Chem. 58(8), 1252–1259 (2012).
[Crossref] [PubMed]

Davis, M. J.

C. K. Ho, A. Robinson, D. R. Miller, and M. J. Davis, “Overview of Sensors and Needs for Environmental Monitoring,” Sensors (Basel) 5(1), 4–37 (2005).
[Crossref]

de Laat, B.

M. Ninivaggi, R. Apitz-Castro, Y. Dargaud, B. de Laat, H. C. Hemker, and T. Lindhout, “Whole-Blood Thrombin Generation Monitored with a Calibrated Automated Thrombogram-Based Assay,” Clin. Chem. 58(8), 1252–1259 (2012).
[Crossref] [PubMed]

De Smedt, E.

H. C. Hemker, R. Al Dieri, E. De Smedt, and S. Béguin, “Thrombin generation, a function test of the haemostatic-thrombotic system,” Thromb. Haemost. 96(5), 553–561 (2006).
[PubMed]

Doellgast, G. J.

S. R. Garden, G. J. Doellgast, K. S. Killham, and N. J. Strachan, “A fluorescent coagulation assay for thrombin using a fibre optic evanescent wave sensor,” Biosens. Bioelectron. 19(7), 737–740 (2004).
[Crossref] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Ellington, A. D.

E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of Aptamers as Sensors,” Ann. Rev. Anal. Chem. 2(1), 241–264 (2009).
[Crossref]

A. D. Ellington and J. W. Szostak, “In vitro Selection of RNA Molecules that Bind Specific Ligands,” Nature 346(6287), 818–822 (1990).
[Crossref] [PubMed]

Ermini, M. L.

M. L. Ermini, S. Mariani, S. Scarano, and M. Minunni, “Direct detection of genomic DNA by surface plasmon resonance imaging: an optimized approach,” Biosens. Bioelectron. 40(1), 193–199 (2013).
[Crossref] [PubMed]

Fan, X.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, L. Soleymani, G. Pampalakis, M. Yoshimoto, J. A. Squire, E. H. Sargent, and S. O. Kelley, “Direct Profiling of Cancer Biomarkers in Tumor Tissue Using a Multiplexed Nanostructured Microelectrode Integrated Circuit,” ACS Nano 3(10), 3207–3213 (2009).
[Crossref] [PubMed]

Feigon, J.

R. F. Macaya, P. Schultze, F. W. Smith, J. A. Roe, and J. Feigon, “Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution,” Proc. Natl. Acad. Sci. U.S.A. 90(8), 3745–3749 (1993).
[Crossref] [PubMed]

Foster, K. N.

T. M. Battaglia, J.-F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[Crossref] [PubMed]

Garden, S. R.

S. R. Garden, G. J. Doellgast, K. S. Killham, and N. J. Strachan, “A fluorescent coagulation assay for thrombin using a fibre optic evanescent wave sensor,” Biosens. Bioelectron. 19(7), 737–740 (2004).
[Crossref] [PubMed]

Gaspari, L.

L. Gaspari, F. Paris, P. Philibert, F. Audran, M. Orsini, N. Servant, L. Maïmoun, N. Kalfa, and C. Sultan, “‘Idiopathic’ partial androgen insensitivity syndrome in 28 newborn and infant males: impact of prenatal exposure to environmental endocrine disruptor chemicals?” Eur. J. Endocrinol. 165(4), 579–587 (2011).
[Crossref] [PubMed]

Gatt, A.

J. J. van Veen, A. Gatt, and M. Makris, “Thrombin generation testing in routine clinical practice: are we there yet?” Br. J. Haematol. 142(6), 889–903 (2008).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Go, J.

J. Go and M. A. Alam, “Statistical interpretation of “femtomolar” detection,” Appl. Phys. Lett. 95(3), 033110 (2009).
[Crossref] [PubMed]

Gordon, R.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref] [PubMed]

Gottesman, M. M.

G. Szakács, J. K. Paterson, J. A. Ludwig, C. Booth-Genthe, and M. M. Gottesman, “Targeting multidrug resistance in cancer,” Nat. Rev. Drug Discov. 5(3), 219–234 (2006).
[Crossref] [PubMed]

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
[Crossref] [PubMed]

Hajimiri, A.

A. Hassibi, H. Vikalo, and A. Hajimiri, “On noise processes and limits of performance in biosensors,” J. Appl. Phys. 102(1), 014909 (2007).
[Crossref]

Hassibi, A.

A. Hassibi, H. Vikalo, and A. Hajimiri, “On noise processes and limits of performance in biosensors,” J. Appl. Phys. 102(1), 014909 (2007).
[Crossref]

Hemker, H. C.

M. Ninivaggi, R. Apitz-Castro, Y. Dargaud, B. de Laat, H. C. Hemker, and T. Lindhout, “Whole-Blood Thrombin Generation Monitored with a Calibrated Automated Thrombogram-Based Assay,” Clin. Chem. 58(8), 1252–1259 (2012).
[Crossref] [PubMed]

H. C. Hemker, R. Al Dieri, E. De Smedt, and S. Béguin, “Thrombin generation, a function test of the haemostatic-thrombotic system,” Thromb. Haemost. 96(5), 553–561 (2006).
[PubMed]

Ho, C. K.

C. K. Ho, A. Robinson, D. R. Miller, and M. J. Davis, “Overview of Sensors and Needs for Environmental Monitoring,” Sensors (Basel) 5(1), 4–37 (2005).
[Crossref]

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[Crossref] [PubMed]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[Crossref] [PubMed]

Holloway, G. A.

T. M. Battaglia, J.-F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[Crossref] [PubMed]

Homola, J.

J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
[Crossref]

M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroký, “Surface plasmon resonance sensor based on a single-mode polarisation-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Hu, J.

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” JOSAB 26(5), 1032–1041 (2009).
[Crossref]

Jayasena, S. D.

S. D. Jayasena, “Aptamers: an Emerging Class of Molecules that Rival Antibodies in Diagnostics,” Clin. Chem. 45(9), 1628–1650 (1999).
[PubMed]

Kabashin, A. V.

Kalfa, N.

L. Gaspari, F. Paris, P. Philibert, F. Audran, M. Orsini, N. Servant, L. Maïmoun, N. Kalfa, and C. Sultan, “‘Idiopathic’ partial androgen insensitivity syndrome in 28 newborn and infant males: impact of prenatal exposure to environmental endocrine disruptor chemicals?” Eur. J. Endocrinol. 165(4), 579–587 (2011).
[Crossref] [PubMed]

Kalli, K.

Kavanagh, K. L.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref] [PubMed]

Kelley, S. O.

Z. Fang, L. Soleymani, G. Pampalakis, M. Yoshimoto, J. A. Squire, E. H. Sargent, and S. O. Kelley, “Direct Profiling of Cancer Biomarkers in Tumor Tissue Using a Multiplexed Nanostructured Microelectrode Integrated Circuit,” ACS Nano 3(10), 3207–3213 (2009).
[Crossref] [PubMed]

Killham, K. S.

S. R. Garden, G. J. Doellgast, K. S. Killham, and N. J. Strachan, “A fluorescent coagulation assay for thrombin using a fibre optic evanescent wave sensor,” Biosens. Bioelectron. 19(7), 737–740 (2004).
[Crossref] [PubMed]

Kimerling, L. C.

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” JOSAB 26(5), 1032–1041 (2009).
[Crossref]

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[Crossref] [PubMed]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[Crossref] [PubMed]

Kolomenski, A.

Kolomenskii, A.

Kwon, M. J.

M. J. Kwon, J. Lee, A. W. Wark, and H. J. Lee, “Nanoparticle-enhanced surface plasmon resonance detection of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes,” Anal. Chem. 84(3), 1702–1707 (2012).
[Crossref] [PubMed]

Lane, D. A.

J. T. B. Crawley, S. Zanardelli, C. K. N. Chion, and D. A. Lane, “The central role of thrombin in hemostasis,” J. Thromb. Haemost. 5(1Suppl 1), 95–101 (2007).
[Crossref] [PubMed]

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref] [PubMed]

Lee, B.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Lee, H. J.

M. J. Kwon, J. Lee, A. W. Wark, and H. J. Lee, “Nanoparticle-enhanced surface plasmon resonance detection of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes,” Anal. Chem. 84(3), 1702–1707 (2012).
[Crossref] [PubMed]

Lee, J.

M. J. Kwon, J. Lee, A. W. Wark, and H. J. Lee, “Nanoparticle-enhanced surface plasmon resonance detection of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes,” Anal. Chem. 84(3), 1702–1707 (2012).
[Crossref] [PubMed]

Lee, J.-W.

E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of Aptamers as Sensors,” Ann. Rev. Anal. Chem. 2(1), 241–264 (2009).
[Crossref]

Leung, A.

A. Leung, P. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Lindhout, T.

M. Ninivaggi, R. Apitz-Castro, Y. Dargaud, B. de Laat, H. C. Hemker, and T. Lindhout, “Whole-Blood Thrombin Generation Monitored with a Calibrated Automated Thrombogram-Based Assay,” Clin. Chem. 58(8), 1252–1259 (2012).
[Crossref] [PubMed]

Lisman, T.

W. Potze, E. M. Alkozai, J. Adelmeijer, R. J. Porte, and T. Lisman, “Hypercoagulability following major partial liver resection - detected by thrombomodulin-modified thrombin generation testing,” Aliment. Pharmacol. Ther. 41(2), 189–198 (2015).
[Crossref] [PubMed]

Ludwig, J. A.

G. Szakács, J. K. Paterson, J. A. Ludwig, C. Booth-Genthe, and M. M. Gottesman, “Targeting multidrug resistance in cancer,” Nat. Rev. Drug Discov. 5(3), 219–234 (2006).
[Crossref] [PubMed]

Luong, J. H.

Lupold, S. E.

X. Ni, M. Castanares, A. Mukherjee, and S. E. Lupold, “Nucleic acid aptamers: clinical applications and promising new horizons,” Curr. Med. Chem. 18(27), 4206–4214 (2011).
[Crossref] [PubMed]

Macaya, R. F.

R. F. Macaya, P. Schultze, F. W. Smith, J. A. Roe, and J. Feigon, “Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution,” Proc. Natl. Acad. Sci. U.S.A. 90(8), 3745–3749 (1993).
[Crossref] [PubMed]

Maïmoun, L.

L. Gaspari, F. Paris, P. Philibert, F. Audran, M. Orsini, N. Servant, L. Maïmoun, N. Kalfa, and C. Sultan, “‘Idiopathic’ partial androgen insensitivity syndrome in 28 newborn and infant males: impact of prenatal exposure to environmental endocrine disruptor chemicals?” Eur. J. Endocrinol. 165(4), 579–587 (2011).
[Crossref] [PubMed]

Makris, M.

J. J. van Veen, A. Gatt, and M. Makris, “Thrombin generation testing in routine clinical practice: are we there yet?” Br. J. Haematol. 142(6), 889–903 (2008).
[Crossref] [PubMed]

Maníková, Z.

M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroký, “Surface plasmon resonance sensor based on a single-mode polarisation-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Mapps, D.

Mariani, S.

M. L. Ermini, S. Mariani, S. Scarano, and M. Minunni, “Direct detection of genomic DNA by surface plasmon resonance imaging: an optimized approach,” Biosens. Bioelectron. 40(1), 193–199 (2013).
[Crossref] [PubMed]

Mascini, M.

S. Centi, G. Messina, S. Tombelli, I. Palchetti, and M. Mascini, “Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads,” Biosens. Bioelectron. 23(11), 1602–1609 (2008).
[Crossref] [PubMed]

S. Tombelli, M. Minunni, and M. Mascini, “A surface plasmon resonance biosensor for the determination of the affinity of drugs for nucleic acids,” Anal. Lett. 35(4), 599–613 (2002).
[Crossref]

Masson, J.-F.

T. M. Battaglia, J.-F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[Crossref] [PubMed]

Messina, G.

S. Centi, G. Messina, S. Tombelli, I. Palchetti, and M. Mascini, “Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads,” Biosens. Bioelectron. 23(11), 1602–1609 (2008).
[Crossref] [PubMed]

Meunier, M.

Miller, D. R.

C. K. Ho, A. Robinson, D. R. Miller, and M. J. Davis, “Overview of Sensors and Needs for Environmental Monitoring,” Sensors (Basel) 5(1), 4–37 (2005).
[Crossref]

Minunni, M.

M. L. Ermini, S. Mariani, S. Scarano, and M. Minunni, “Direct detection of genomic DNA by surface plasmon resonance imaging: an optimized approach,” Biosens. Bioelectron. 40(1), 193–199 (2013).
[Crossref] [PubMed]

G. Spoto and M. Minunni, “Surface Plasmon Resonance Imaging: What Next?” J. Phys. Chem. Lett. 3(18), 2682–2691 (2012).
[Crossref] [PubMed]

S. Tombelli, M. Minunni, and M. Mascini, “A surface plasmon resonance biosensor for the determination of the affinity of drugs for nucleic acids,” Anal. Lett. 35(4), 599–613 (2002).
[Crossref]

Mou, C.

Mukherjee, A.

X. Ni, M. Castanares, A. Mukherjee, and S. E. Lupold, “Nucleic acid aptamers: clinical applications and promising new horizons,” Curr. Med. Chem. 18(27), 4206–4214 (2011).
[Crossref] [PubMed]

Mutharasan, R.

A. Leung, P. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[Crossref]

Nair, P. R.

P. R. Nair and M. A. Alam, “Performance limits of nanobiosensors,” Appl. Phys. Lett. 88(23), 233120 (2006).
[Crossref]

Neal, R.

Nelson, B. P.

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface Plasmon Resonance Imaging Measurements of Ultrathin Organic Films,” Annu. Rev. Phys. Chem. 51(1), 41–63 (2000).
[Crossref] [PubMed]

Ni, X.

X. Ni, M. Castanares, A. Mukherjee, and S. E. Lupold, “Nucleic acid aptamers: clinical applications and promising new horizons,” Curr. Med. Chem. 18(27), 4206–4214 (2011).
[Crossref] [PubMed]

Nikolaus, N.

B. Strehlitz, N. Nikolaus, and R. Stoltenburg, “Protein Detection with Aptamer Biosensors,” Sensors (Basel) 8(7), 4296–4307 (2008).
[Crossref] [PubMed]

Ninivaggi, M.

M. Ninivaggi, R. Apitz-Castro, Y. Dargaud, B. de Laat, H. C. Hemker, and T. Lindhout, “Whole-Blood Thrombin Generation Monitored with a Calibrated Automated Thrombogram-Based Assay,” Clin. Chem. 58(8), 1252–1259 (2012).
[Crossref] [PubMed]

Noel, J.

O’Sullivan, C. K.

A. Pinto, M. C. Bermudo Redondo, V. C. Ozalp, and C. K. O’Sullivan, “Real-time apta-PCR for 20 000-fold improvement in detection limit,” Mol. Biosyst. 5(5), 548–553 (2009).
[Crossref] [PubMed]

Orsini, M.

L. Gaspari, F. Paris, P. Philibert, F. Audran, M. Orsini, N. Servant, L. Maïmoun, N. Kalfa, and C. Sultan, “‘Idiopathic’ partial androgen insensitivity syndrome in 28 newborn and infant males: impact of prenatal exposure to environmental endocrine disruptor chemicals?” Eur. J. Endocrinol. 165(4), 579–587 (2011).
[Crossref] [PubMed]

Ozalp, V. C.

A. Pinto, M. C. Bermudo Redondo, V. C. Ozalp, and C. K. O’Sullivan, “Real-time apta-PCR for 20 000-fold improvement in detection limit,” Mol. Biosyst. 5(5), 548–553 (2009).
[Crossref] [PubMed]

Palchetti, I.

S. Centi, G. Messina, S. Tombelli, I. Palchetti, and M. Mascini, “Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads,” Biosens. Bioelectron. 23(11), 1602–1609 (2008).
[Crossref] [PubMed]

Pampalakis, G.

Z. Fang, L. Soleymani, G. Pampalakis, M. Yoshimoto, J. A. Squire, E. H. Sargent, and S. O. Kelley, “Direct Profiling of Cancer Biomarkers in Tumor Tissue Using a Multiplexed Nanostructured Microelectrode Integrated Circuit,” ACS Nano 3(10), 3207–3213 (2009).
[Crossref] [PubMed]

Paris, F.

L. Gaspari, F. Paris, P. Philibert, F. Audran, M. Orsini, N. Servant, L. Maïmoun, N. Kalfa, and C. Sultan, “‘Idiopathic’ partial androgen insensitivity syndrome in 28 newborn and infant males: impact of prenatal exposure to environmental endocrine disruptor chemicals?” Eur. J. Endocrinol. 165(4), 579–587 (2011).
[Crossref] [PubMed]

Park, J.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Paterson, J. K.

G. Szakács, J. K. Paterson, J. A. Ludwig, C. Booth-Genthe, and M. M. Gottesman, “Targeting multidrug resistance in cancer,” Nat. Rev. Drug Discov. 5(3), 219–234 (2006).
[Crossref] [PubMed]

Patskovsky, S.

Peng, S.

Philibert, P.

L. Gaspari, F. Paris, P. Philibert, F. Audran, M. Orsini, N. Servant, L. Maïmoun, N. Kalfa, and C. Sultan, “‘Idiopathic’ partial androgen insensitivity syndrome in 28 newborn and infant males: impact of prenatal exposure to environmental endocrine disruptor chemicals?” Eur. J. Endocrinol. 165(4), 579–587 (2011).
[Crossref] [PubMed]

Piliarik, M.

M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroký, “Surface plasmon resonance sensor based on a single-mode polarisation-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

Pinto, A.

A. Pinto, M. C. Bermudo Redondo, V. C. Ozalp, and C. K. O’Sullivan, “Real-time apta-PCR for 20 000-fold improvement in detection limit,” Mol. Biosyst. 5(5), 548–553 (2009).
[Crossref] [PubMed]

Porte, R. J.

W. Potze, E. M. Alkozai, J. Adelmeijer, R. J. Porte, and T. Lisman, “Hypercoagulability following major partial liver resection - detected by thrombomodulin-modified thrombin generation testing,” Aliment. Pharmacol. Ther. 41(2), 189–198 (2015).
[Crossref] [PubMed]

Potze, W.

W. Potze, E. M. Alkozai, J. Adelmeijer, R. J. Porte, and T. Lisman, “Hypercoagulability following major partial liver resection - detected by thrombomodulin-modified thrombin generation testing,” Aliment. Pharmacol. Ther. 41(2), 189–198 (2015).
[Crossref] [PubMed]

Raines, R. T.

A. D. Attie and R. T. Raines, “Analysis of Receptor-Ligand Interactions,” J. Chem. Educ. 72(2), 119–123 (1995).
[Crossref]

Reading, S. J.

B. Alexander, D. J. Browse, S. J. Reading, and I. S. Benjamin, “A simple and accurate mathematical method for calculation of the EC50.,” J. Pharmacol. Toxicol. Methods 41(2-3), 55–58 (1999).
[Crossref] [PubMed]

Rehman, S.

Reinemann, C.

R. Stoltenburg, C. Reinemann, and B. Strehlitz, “SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands,” Biomol. Eng. 24(4), 381–403 (2007).
[Crossref] [PubMed]

Robinson, A.

C. K. Ho, A. Robinson, D. R. Miller, and M. J. Davis, “Overview of Sensors and Needs for Environmental Monitoring,” Sensors (Basel) 5(1), 4–37 (2005).
[Crossref]

Roe, J. A.

R. F. Macaya, P. Schultze, F. W. Smith, J. A. Roe, and J. Feigon, “Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution,” Proc. Natl. Acad. Sci. U.S.A. 90(8), 3745–3749 (1993).
[Crossref] [PubMed]

Rogers, J.

T. M. Battaglia, J.-F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[Crossref] [PubMed]

Roh, S.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Rossi, J. J.

J. Zhou and J. J. Rossi, “Cell-Specific Aptamer-Mediated Targeted Drug Delivery,” Oligonucleotides 21(1), 1–10 (2011).
[Crossref] [PubMed]

Saied, S.

Sargent, E. H.

Z. Fang, L. Soleymani, G. Pampalakis, M. Yoshimoto, J. A. Squire, E. H. Sargent, and S. O. Kelley, “Direct Profiling of Cancer Biomarkers in Tumor Tissue Using a Multiplexed Nanostructured Microelectrode Integrated Circuit,” ACS Nano 3(10), 3207–3213 (2009).
[Crossref] [PubMed]

Scarano, S.

M. L. Ermini, S. Mariani, S. Scarano, and M. Minunni, “Direct detection of genomic DNA by surface plasmon resonance imaging: an optimized approach,” Biosens. Bioelectron. 40(1), 193–199 (2013).
[Crossref] [PubMed]

Schuessler, H.

Schultze, P.

R. F. Macaya, P. Schultze, F. W. Smith, J. A. Roe, and J. Feigon, “Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution,” Proc. Natl. Acad. Sci. U.S.A. 90(8), 3745–3749 (1993).
[Crossref] [PubMed]

Servant, N.

L. Gaspari, F. Paris, P. Philibert, F. Audran, M. Orsini, N. Servant, L. Maïmoun, N. Kalfa, and C. Sultan, “‘Idiopathic’ partial androgen insensitivity syndrome in 28 newborn and infant males: impact of prenatal exposure to environmental endocrine disruptor chemicals?” Eur. J. Endocrinol. 165(4), 579–587 (2011).
[Crossref] [PubMed]

Shankar, P.

A. Leung, P. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[Crossref]

Sheehan, P. E.

P. E. Sheehan and L. J. Whitman, “Detection Limits for Nanoscale Biosensors,” Nano Lett. 5(4), 803–807 (2005).
[Crossref] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Sierks, M. R.

T. M. Battaglia, J.-F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[Crossref] [PubMed]

Slavík, R.

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
[Crossref]

Smith, F. W.

R. F. Macaya, P. Schultze, F. W. Smith, J. A. Roe, and J. Feigon, “Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution,” Proc. Natl. Acad. Sci. U.S.A. 90(8), 3745–3749 (1993).
[Crossref] [PubMed]

Soleymani, L.

Z. Fang, L. Soleymani, G. Pampalakis, M. Yoshimoto, J. A. Squire, E. H. Sargent, and S. O. Kelley, “Direct Profiling of Cancer Biomarkers in Tumor Tissue Using a Multiplexed Nanostructured Microelectrode Integrated Circuit,” ACS Nano 3(10), 3207–3213 (2009).
[Crossref] [PubMed]

Spoto, G.

R. D’Agata and G. Spoto, “Surface plasmon resonance imaging for nucleic acid detection,” Anal. Bioanal. Chem. 405(2-3), 573–584 (2013).
[Crossref] [PubMed]

G. Spoto and M. Minunni, “Surface Plasmon Resonance Imaging: What Next?” J. Phys. Chem. Lett. 3(18), 2682–2691 (2012).
[Crossref] [PubMed]

L. M. Zanoli, R. D’Agata, and G. Spoto, “Functionalized gold nanoparticles for ultrasensitive DNA detection,” Anal. Bioanal. Chem. 402(5), 1759–1771 (2012).
[Crossref] [PubMed]

Squire, J. A.

Z. Fang, L. Soleymani, G. Pampalakis, M. Yoshimoto, J. A. Squire, E. H. Sargent, and S. O. Kelley, “Direct Profiling of Cancer Biomarkers in Tumor Tissue Using a Multiplexed Nanostructured Microelectrode Integrated Circuit,” ACS Nano 3(10), 3207–3213 (2009).
[Crossref] [PubMed]

Stoltenburg, R.

B. Strehlitz, N. Nikolaus, and R. Stoltenburg, “Protein Detection with Aptamer Biosensors,” Sensors (Basel) 8(7), 4296–4307 (2008).
[Crossref] [PubMed]

R. Stoltenburg, C. Reinemann, and B. Strehlitz, “SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands,” Biomol. Eng. 24(4), 381–403 (2007).
[Crossref] [PubMed]

Strachan, N. J.

S. R. Garden, G. J. Doellgast, K. S. Killham, and N. J. Strachan, “A fluorescent coagulation assay for thrombin using a fibre optic evanescent wave sensor,” Biosens. Bioelectron. 19(7), 737–740 (2004).
[Crossref] [PubMed]

Strehlitz, B.

B. Strehlitz, N. Nikolaus, and R. Stoltenburg, “Protein Detection with Aptamer Biosensors,” Sensors (Basel) 8(7), 4296–4307 (2008).
[Crossref] [PubMed]

R. Stoltenburg, C. Reinemann, and B. Strehlitz, “SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands,” Biomol. Eng. 24(4), 381–403 (2007).
[Crossref] [PubMed]

Sullivan, J.

Sullivan, J. L.

T. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D. J. Webb, P. F. Culverhouse, J. L. Sullivan, and I. Bennion, “Formation and characterisation of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fibre,” Quantum Electron. 48(3), 394–405 (2012).
[Crossref]

Sultan, C.

L. Gaspari, F. Paris, P. Philibert, F. Audran, M. Orsini, N. Servant, L. Maïmoun, N. Kalfa, and C. Sultan, “‘Idiopathic’ partial androgen insensitivity syndrome in 28 newborn and infant males: impact of prenatal exposure to environmental endocrine disruptor chemicals?” Eur. J. Endocrinol. 165(4), 579–587 (2011).
[Crossref] [PubMed]

Sun, X.

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” JOSAB 26(5), 1032–1041 (2009).
[Crossref]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Szakács, G.

G. Szakács, J. K. Paterson, J. A. Ludwig, C. Booth-Genthe, and M. M. Gottesman, “Targeting multidrug resistance in cancer,” Nat. Rev. Drug Discov. 5(3), 219–234 (2006).
[Crossref] [PubMed]

Szostak, J. W.

A. D. Ellington and J. W. Szostak, “In vitro Selection of RNA Molecules that Bind Specific Ligands,” Nature 346(6287), 818–822 (1990).
[Crossref] [PubMed]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[Crossref] [PubMed]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[Crossref] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tombelli, S.

S. Centi, G. Messina, S. Tombelli, I. Palchetti, and M. Mascini, “Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads,” Biosens. Bioelectron. 23(11), 1602–1609 (2008).
[Crossref] [PubMed]

S. Tombelli, M. Minunni, and M. Mascini, “A surface plasmon resonance biosensor for the determination of the affinity of drugs for nucleic acids,” Anal. Lett. 35(4), 599–613 (2002).
[Crossref]

Tumolo, T.

T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004).
[Crossref] [PubMed]

Van Duyne, R. P.

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
[Crossref] [PubMed]

van Veen, J. J.

J. J. van Veen, A. Gatt, and M. Makris, “Thrombin generation testing in routine clinical practice: are we there yet?” Br. J. Haematol. 142(6), 889–903 (2008).
[Crossref] [PubMed]

Vikalo, H.

A. Hassibi, H. Vikalo, and A. Hajimiri, “On noise processes and limits of performance in biosensors,” J. Appl. Phys. 102(1), 014909 (2007).
[Crossref]

Wark, A. W.

M. J. Kwon, J. Lee, A. W. Wark, and H. J. Lee, “Nanoparticle-enhanced surface plasmon resonance detection of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes,” Anal. Chem. 84(3), 1702–1707 (2012).
[Crossref] [PubMed]

Webb, D. J.

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Whitman, L. J.

P. E. Sheehan and L. J. Whitman, “Detection Limits for Nanoscale Biosensors,” Nano Lett. 5(4), 803–807 (2005).
[Crossref] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Yoshimoto, M.

Z. Fang, L. Soleymani, G. Pampalakis, M. Yoshimoto, J. A. Squire, E. H. Sargent, and S. O. Kelley, “Direct Profiling of Cancer Biomarkers in Tumor Tissue Using a Multiplexed Nanostructured Microelectrode Integrated Circuit,” ACS Nano 3(10), 3207–3213 (2009).
[Crossref] [PubMed]

Zanardelli, S.

J. T. B. Crawley, S. Zanardelli, C. K. N. Chion, and D. A. Lane, “The central role of thrombin in hemostasis,” J. Thromb. Haemost. 5(1Suppl 1), 95–101 (2007).
[Crossref] [PubMed]

Zanoli, L. M.

L. M. Zanoli, R. D’Agata, and G. Spoto, “Functionalized gold nanoparticles for ultrasensitive DNA detection,” Anal. Bioanal. Chem. 402(5), 1759–1771 (2012).
[Crossref] [PubMed]

Zhou, J.

J. Zhou and J. J. Rossi, “Cell-Specific Aptamer-Mediated Targeted Drug Delivery,” Oligonucleotides 21(1), 1–10 (2011).
[Crossref] [PubMed]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

ACS Nano (1)

Z. Fang, L. Soleymani, G. Pampalakis, M. Yoshimoto, J. A. Squire, E. H. Sargent, and S. O. Kelley, “Direct Profiling of Cancer Biomarkers in Tumor Tissue Using a Multiplexed Nanostructured Microelectrode Integrated Circuit,” ACS Nano 3(10), 3207–3213 (2009).
[Crossref] [PubMed]

Aliment. Pharmacol. Ther. (1)

W. Potze, E. M. Alkozai, J. Adelmeijer, R. J. Porte, and T. Lisman, “Hypercoagulability following major partial liver resection - detected by thrombomodulin-modified thrombin generation testing,” Aliment. Pharmacol. Ther. 41(2), 189–198 (2015).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (3)

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 379(7-8), 920–930 (2004).
[Crossref] [PubMed]

L. M. Zanoli, R. D’Agata, and G. Spoto, “Functionalized gold nanoparticles for ultrasensitive DNA detection,” Anal. Bioanal. Chem. 402(5), 1759–1771 (2012).
[Crossref] [PubMed]

R. D’Agata and G. Spoto, “Surface plasmon resonance imaging for nucleic acid detection,” Anal. Bioanal. Chem. 405(2-3), 573–584 (2013).
[Crossref] [PubMed]

Anal. Biochem. (1)

T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004).
[Crossref] [PubMed]

Anal. Chem. (2)

M. J. Kwon, J. Lee, A. W. Wark, and H. J. Lee, “Nanoparticle-enhanced surface plasmon resonance detection of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes,” Anal. Chem. 84(3), 1702–1707 (2012).
[Crossref] [PubMed]

T. M. Battaglia, J.-F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Anal. Lett. (1)

S. Tombelli, M. Minunni, and M. Mascini, “A surface plasmon resonance biosensor for the determination of the affinity of drugs for nucleic acids,” Anal. Lett. 35(4), 599–613 (2002).
[Crossref]

Ann. Rev. Anal. Chem. (1)

E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of Aptamers as Sensors,” Ann. Rev. Anal. Chem. 2(1), 241–264 (2009).
[Crossref]

Annu. Rev. Phys. Chem. (1)

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface Plasmon Resonance Imaging Measurements of Ultrathin Organic Films,” Annu. Rev. Phys. Chem. 51(1), 41–63 (2000).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

J. Go and M. A. Alam, “Statistical interpretation of “femtomolar” detection,” Appl. Phys. Lett. 95(3), 033110 (2009).
[Crossref] [PubMed]

P. R. Nair and M. A. Alam, “Performance limits of nanobiosensors,” Appl. Phys. Lett. 88(23), 233120 (2006).
[Crossref]

Biomol. Eng. (1)

R. Stoltenburg, C. Reinemann, and B. Strehlitz, “SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands,” Biomol. Eng. 24(4), 381–403 (2007).
[Crossref] [PubMed]

Biosens. Bioelectron. (5)

S. R. Garden, G. J. Doellgast, K. S. Killham, and N. J. Strachan, “A fluorescent coagulation assay for thrombin using a fibre optic evanescent wave sensor,” Biosens. Bioelectron. 19(7), 737–740 (2004).
[Crossref] [PubMed]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[Crossref] [PubMed]

M. L. Ermini, S. Mariani, S. Scarano, and M. Minunni, “Direct detection of genomic DNA by surface plasmon resonance imaging: an optimized approach,” Biosens. Bioelectron. 40(1), 193–199 (2013).
[Crossref] [PubMed]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[Crossref] [PubMed]

S. Centi, G. Messina, S. Tombelli, I. Palchetti, and M. Mascini, “Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads,” Biosens. Bioelectron. 23(11), 1602–1609 (2008).
[Crossref] [PubMed]

Br. J. Haematol. (1)

J. J. van Veen, A. Gatt, and M. Makris, “Thrombin generation testing in routine clinical practice: are we there yet?” Br. J. Haematol. 142(6), 889–903 (2008).
[Crossref] [PubMed]

Chem. Rev. (1)

J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Clin. Chem. (2)

M. Ninivaggi, R. Apitz-Castro, Y. Dargaud, B. de Laat, H. C. Hemker, and T. Lindhout, “Whole-Blood Thrombin Generation Monitored with a Calibrated Automated Thrombogram-Based Assay,” Clin. Chem. 58(8), 1252–1259 (2012).
[Crossref] [PubMed]

S. D. Jayasena, “Aptamers: an Emerging Class of Molecules that Rival Antibodies in Diagnostics,” Clin. Chem. 45(9), 1628–1650 (1999).
[PubMed]

Curr. Med. Chem. (1)

X. Ni, M. Castanares, A. Mukherjee, and S. E. Lupold, “Nucleic acid aptamers: clinical applications and promising new horizons,” Curr. Med. Chem. 18(27), 4206–4214 (2011).
[Crossref] [PubMed]

Eur. J. Endocrinol. (1)

L. Gaspari, F. Paris, P. Philibert, F. Audran, M. Orsini, N. Servant, L. Maïmoun, N. Kalfa, and C. Sultan, “‘Idiopathic’ partial androgen insensitivity syndrome in 28 newborn and infant males: impact of prenatal exposure to environmental endocrine disruptor chemicals?” Eur. J. Endocrinol. 165(4), 579–587 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (1)

A. Hassibi, H. Vikalo, and A. Hajimiri, “On noise processes and limits of performance in biosensors,” J. Appl. Phys. 102(1), 014909 (2007).
[Crossref]

J. Chem. Educ. (1)

A. D. Attie and R. T. Raines, “Analysis of Receptor-Ligand Interactions,” J. Chem. Educ. 72(2), 119–123 (1995).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Pharmacol. Toxicol. Methods (1)

B. Alexander, D. J. Browse, S. J. Reading, and I. S. Benjamin, “A simple and accurate mathematical method for calculation of the EC50.,” J. Pharmacol. Toxicol. Methods 41(2-3), 55–58 (1999).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (1)

G. Spoto and M. Minunni, “Surface Plasmon Resonance Imaging: What Next?” J. Phys. Chem. Lett. 3(18), 2682–2691 (2012).
[Crossref] [PubMed]

J. Thromb. Haemost. (1)

J. T. B. Crawley, S. Zanardelli, C. K. N. Chion, and D. A. Lane, “The central role of thrombin in hemostasis,” J. Thromb. Haemost. 5(1Suppl 1), 95–101 (2007).
[Crossref] [PubMed]

JOSAB (1)

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” JOSAB 26(5), 1032–1041 (2009).
[Crossref]

Langmuir (1)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[Crossref] [PubMed]

Mol. Biosyst. (1)

A. Pinto, M. C. Bermudo Redondo, V. C. Ozalp, and C. K. O’Sullivan, “Real-time apta-PCR for 20 000-fold improvement in detection limit,” Mol. Biosyst. 5(5), 548–553 (2009).
[Crossref] [PubMed]

Nano Lett. (1)

P. E. Sheehan and L. J. Whitman, “Detection Limits for Nanoscale Biosensors,” Nano Lett. 5(4), 803–807 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Nat. Rev. Drug Discov. (1)

G. Szakács, J. K. Paterson, J. A. Ludwig, C. Booth-Genthe, and M. M. Gottesman, “Targeting multidrug resistance in cancer,” Nat. Rev. Drug Discov. 5(3), 219–234 (2006).
[Crossref] [PubMed]

Nature (2)

A. D. Ellington and J. W. Szostak, “In vitro Selection of RNA Molecules that Bind Specific Ligands,” Nature 346(6287), 818–822 (1990).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Oligonucleotides (1)

J. Zhou and J. J. Rossi, “Cell-Specific Aptamer-Mediated Targeted Drug Delivery,” Oligonucleotides 21(1), 1–10 (2011).
[Crossref] [PubMed]

Opt. Fiber Technol. (2)

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. F. Macaya, P. Schultze, F. W. Smith, J. A. Roe, and J. Feigon, “Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution,” Proc. Natl. Acad. Sci. U.S.A. 90(8), 3745–3749 (1993).
[Crossref] [PubMed]

Quantum Electron. (1)

T. Allsop, R. Neal, C. Mou, K. Kalli, S. Saied, S. Rehman, D. J. Webb, P. F. Culverhouse, J. L. Sullivan, and I. Bennion, “Formation and characterisation of ultra-sensitive surface plasmon resonance sensor based upon a nano-scale corrugated multi-layered coated D-shaped optical fibre,” Quantum Electron. 48(3), 394–405 (2012).
[Crossref]

Sens. Actuators B Chem. (3)

A. Leung, P. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[Crossref]

M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroký, “Surface plasmon resonance sensor based on a single-mode polarisation-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[Crossref]

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
[Crossref]

Sensors (Basel) (2)

C. K. Ho, A. Robinson, D. R. Miller, and M. J. Davis, “Overview of Sensors and Needs for Environmental Monitoring,” Sensors (Basel) 5(1), 4–37 (2005).
[Crossref]

B. Strehlitz, N. Nikolaus, and R. Stoltenburg, “Protein Detection with Aptamer Biosensors,” Sensors (Basel) 8(7), 4296–4307 (2008).
[Crossref] [PubMed]

Thromb. Haemost. (1)

H. C. Hemker, R. Al Dieri, E. De Smedt, and S. Béguin, “Thrombin generation, a function test of the haemostatic-thrombotic system,” Thromb. Haemost. 96(5), 553–561 (2006).
[PubMed]

Other (3)

http://www.rockefeller.edu/spectroscopy/instruments_spr

A. M. Bronstein and R. Kimmel, Numerical Geometry of Non-Rigid Shapes (Springer Science & Business Media, 2008).

T Allsop, R. Neal, S. Rehman, C. Zhang, D. J. Webb, D. Mapps and I. Bennion, “Surface Plasmon Resonance Generation Utilising Gratings for Biochemical Sensing,” OFS-18 Cancun Mexico. WA4, (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic representation of the multi-layered and nanoscale structured coating that supports the localised surface plasmons (b) Representation of the structured thin film coating created after the various stages of processing. (c) An example of an AFM image of the sensing region on the flat of the D-shaped fibre showing the surface corrugation after UV processing and a pristine surface. (d) An example of AFM image showing the fine structure within several nano-antennas. (e) Typical experimental data of the height variation across several nano-antennas. (f) A typical FFT of the cross-section along the nano-antenna array that is along the optical fibre axis and perpendicular to a single nano-antenna.
Fig. 2
Fig. 2 Scheme used for the characterisation of the devices and the detection of the thrombin in ultra-low concentration solutions, (a) schematic of experimental apparatus used for fixed volumes of thrombin solutions and equipment to optimise the polarisation of the illuminating light to obtain a LSP resonance with maximum optical strength in the transmission spectra, (b) image of the sample cell used for constant solution flow experiments.
Fig. 3
Fig. 3 The spectral characterisation of the bare D-shaped fibre before coating and UV processing (a) the response of transmission spectra with increasing refractive index. (b) The average optical attenuation losses over the spectral range of 1250nm to 1690nm. (c) The variation of the average optical attenuation losses as a function of azimuthal polarisation measured from an initial, arbitrary polarisation state.
Fig. 4
Fig. 4 The polarisation dependence of the optical sensing platform (Au-SiO2-Ge/fibre) before aptamer immobilisation: (a) an example of the spectral dependence upon polarisation (b) The Stokes parameters of the illuminating light of resonances across the spectral range of interest (c) the typical azimuthal polarisation dependence of a localised surface plasmon in air.
Fig. 5
Fig. 5 (a) The spectral transmission characteristics of the device (Au-SiO2-Ge/fibre) as a function of the index of the surrounding medium and (b) the spectral wavelength shift vs index. (c) The optical strength as a function of surrounding refractive index before aptamer immobilisation. (d) The transmission spectrum of the device after immobilisation of the thrombin aptamer when submerged in a buffer solution.
Fig. 6
Fig. 6 Performance of the Au-SiO2-Ge/fibre coated aptamer device in the detection of thrombin. Parts (a) & (b) show wavelength shift and optical strength at the central wavelength responses respectively, in a fixed volume of static buffer, as a function of time, in response to thrombin concentrations over three orders of magnitude (1 nM → 1 µM) where thrombin was introduced at approximately 800 seconds. Parts (c) and (d) show similar results for two concentrations of thrombin in a flow cell with constant flow rate of 5 μl/min, using a Tris Buffer solution with a thrombin concentration of 100 nM () and 100 pM (), with injections of buffer / buffer/thrombin mix as indicated.
Fig. 7
Fig. 7 Spectral sensitivity of aptamer-coated, static, multilayered SPR fibre devices (Au-SiO2-Ge/fibre). (a) Change in optical coupling strength as a function of thrombin concentration. (b) Magnitude of wavelength change as a function of thrombin concentration. In parts a & b, ●, ▲, and ■ represent measurements made with three different devices. (c) Wavelength change and (d) Change in optical strength as a function of time after submersion in a static cell containing 50 aM thrombin (e) Estimation of the settling/incubation times of the binding reaction as a function of thrombin concentration.
Fig. 8
Fig. 8 The concentration-response curves of a (Au-SiO2-Ge/fibre) device based upon (a) wavelength shift and (b) optical strength change.
Fig. 9
Fig. 9 The spectral response of an SPR (Au-SiO2-Ge/fibre) device with an immobilised thrombin aptamer on its surface in the sample flow cell format, with a constant flow rate of 5μl/min. Wavelength shift (a) and change in the optical strength (b) as a function of time. The sensor was initially washed with a 4.5% (w/v) BSA in Tris-HCl pH 7.4, then regenerated with 4 M NaCl, followed by second BSA wash. Thrombin (10 nM) in a 4.5% (w/v) BSA in Tris-HCl pH 7.4 was introduced at 1800 s, which was followed by another regeneration in 4 M NaCl and a final BSA wash.
Fig. 10
Fig. 10 Detection of hybridization between the DNA probe and both complementary and non-complementary single-stranded DNA sequences. The flow rate was 5 µl/min. The cell was first washed with buffer (300 mM NaCl, 20 mM Na2HPO4, 0.1 mM EDTA, 0.05% TWEEN® 20, pH 7.4). Non-complementary DNA was then introduced in the same buffer solution, followed by another buffer wash and then introduction of 100 pM complementary DNA, again in the same buffer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β = k ( ε m n s 2 ε m + n s 2 )

Metrics