Abstract

An optically efficient liquid-crystal display (LCD) structure using a patterned quantum dot (QD) film and a short-pass filter (SPF) was proposed and fabricated. The patterned QD film contributed to the generation of 95% in the area ratio (or 90% in the coverage ratio) of the Rec. 2020 color gamut. This was achieved by avoiding the problem of interaction between white backlight and broad transmittance spectra of color filters (CFs) as seen in a conventional LCD with a mixed QD film as a reference. The patterned QD film can maintain the narrow bandwidth of the green and the red QD colors before passing through the CFs. Additionally, the optical intensities of the red, green, and blue spectra were enhanced to 1.63, 1.72, and 2.16 times the reference LCD values, respectively. This was a result of separated emission of the red and green patterned QD film and reflection of the red and green light to the forward direction by the SPF.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Realizing Rec. 2020 color gamut with quantum dot displays

Ruidong Zhu, Zhenyue Luo, Haiwei Chen, Yajie Dong, and Shin-Tson Wu
Opt. Express 23(18) 23680-23693 (2015)

Wide color gamut LCD with a quantum dot backlight

Zhenyue Luo, Yuan Chen, and Shin-Tson Wu
Opt. Express 21(22) 26269-26284 (2013)

Analysis of wide color gamut of green/red bilayered freestanding phosphor film-capped white LEDs for LCD backlight

Ji Hye Oh, Heejoon Kang, Minji Ko, and Young Rag Do
Opt. Express 23(15) A791-A804 (2015)

References

  • View by:
  • |
  • |
  • |

  1. ITU-R Recommendation BT.2020, “Parameter values for ultra-high definition television systems for production and international programme exchange,” 2012.
  2. K. Kakinuma, “Technology of wide color gamut backlight with light-emitting diode for liquid crystal display television,” Jpn. J. Appl. Phys. 45(5B), 4330–4334 (2006).
    [Crossref]
  3. R. J. Xie, N. Hirosaki, and T. Takeda, “Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodes,” Appl. Phys. Express 2(2), 022401 (2009).
    [Crossref]
  4. J. H. Oh, H. Kang, M. Ko, and Y. R. Do, “Analysis of wide color gamut of green/red bilayered freestanding phosphor film-capped white LEDs for LCD backlight,” Opt. Express 23(15), A791–A804 (2015).
    [Crossref] [PubMed]
  5. L. Wang, X. Wang, T. Kohsei, K. Yoshimura, M. Izumi, N. Hirosaki, and R. J. Xie, “Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays,” Opt. Express 23(22), 28707–28717 (2015).
    [Crossref] [PubMed]
  6. N. Moriya, M. Sugawara, R. Harada, T. Kageyama, and K. Matsushima, “New color filter for light-emitting diode back light,” Jpn. J. Appl. Phys. 42(1), 1637–1641 (2003).
    [Crossref]
  7. H. Zhan, Z. Xu, C. Tian, Y. Wang, M. Chen, W. Kim, Z. Bu, X. Shao, and S. Lee, “Achieving standard wide color gamut by tuning led backlight and color filter spectrum in LCD,” J. Soc. Inf. Disp. 22(11), 545–551 (2014).
    [Crossref]
  8. K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
    [Crossref]
  9. K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49(25), F79–F98 (2010).
    [Crossref] [PubMed]
  10. H. Chen, R. Zhu, G. Tan, M. C. Li, S. L. Lee, and S. T. Wu, “Enlarging the color gamut of liquid crystal displays with a functional reflective polarizer,” Opt. Express 25(1), 102–111 (2017).
    [Crossref] [PubMed]
  11. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119(30), 7019–7029 (1997).
    [Crossref]
  12. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
    [Crossref]
  13. R. Xie, D. Battaglia, and X. Peng, “Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared,” J. Am. Chem. Soc. 129(50), 15432–15433 (2007).
    [Crossref] [PubMed]
  14. S. Coe-Sullivan, “Optoelectronics: Quantum dot developments,” Nat. Photonics 3(6), 315–316 (2009).
    [Crossref]
  15. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
    [Crossref] [PubMed]
  16. S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale 5(12), 5205–5214 (2013).
    [Crossref] [PubMed]
  17. J. H. Oh, H. Kang, M. Ko, and Y. R. Do, “Analysis of wide color gamut of green/red bilayered freestanding phosphor film-capped white LEDs for LCD backlight,” Opt. Express 23(15), A791–A804 (2015).
    [Crossref] [PubMed]
  18. S. Coe-Sullivan, W. Liu, P. Allen, and J. S. Steckel, “Quantum dots for LED downconversion in display applications,” ECS J. Solid State Sci. Technol. 2(2), R3026–R3030 (2013).
    [Crossref]
  19. J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: The ultimate down‐conversion material for LCD displays,” J. Soc. Inf. Disp. 23(7), 294–305 (2015).
    [Crossref]
  20. J. Chen, V. Hardev, J. Hartlove, J. Hofler, and E. Lee, “66.1: Distinguised Paper: A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film,” Dig. Tech. Pap. 43(1), 895–896 (2012).
    [Crossref]
  21. Z. Luo, D. Xu, and S. T. Wu, “Emerging quantum-dots-enhanced LCDs,” J. Soc. Inf. Disp. 10(7), 526–539 (2014).
  22. J. Thielen, D. Lamb, A. Lemon, J. Tibbits, J. V. Derlofske, and E. Nelson, “27-2: Invited Paper: Correlation of accelerated aging to in-device lifetime of quantum dot enhancement film,” Dig. Tech. Pap. 47(1), 336–339 (2016).
    [Crossref]
  23. H. J. Kim, M. H. Shin, H. G. Hong, B. S. Song, S. K. Kim, W. H. Koo, J. G. Yoon, S. Y. Yoon, and Y. J. Kim, “Enhancement of optical efficiency in white OLED display using the patterned photoresist film dispersed with quantum dot nanocrystals,” J. Disp. Technol. 12(6), 526–531 (2016).
    [Crossref]
  24. H. J. Kim, M. H. Shin, and Y. J. Kim, “Optical efficiency enhancement in white organic light-emitting diode display with high color gamut using patterned quantum dot film and long pass filter,” Jpn. J. Appl. Phys. 55(8), 08RF01 (2016).
  25. H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “E. lliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Appl. Phys. Lett. 74(7), 1036–1038 (1999).
    [Crossref]
  26. R. Butté, E. Feltin, J. Dorsaz, G. Christmann, J. F. Carlin, N. Grandjean, and M. Ilegems, “Recent progress in the growth of highly reflective nitride-based distributed Bragg reflectors and their use in microcavities,” Jpn. J. Appl. Phys. 44(1010R), 7207–7216 (2005).
    [Crossref]
  27. Z. Luo, Y. Chen, and S. T. Wu, “Wide color gamut LCD with a quantum dot backlight,” Opt. Express 21(22), 26269–26284 (2013).
    [Crossref] [PubMed]
  28. R. Zhu, Z. Luo, H. Chen, Y. Dong, and S. T. Wu, “Realizing Rec. 2020 color gamut with quantum dot displays,” Opt. Express 23(18), 23680–23693 (2015).
    [Crossref] [PubMed]
  29. J. Ma, X. Ye, and B. Jin, “Structure and application of polarizer film for thin-film-transistor liquid crystal displays,” Displays 32(2), 49–57 (2011).
    [Crossref]
  30. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
    [Crossref]
  31. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14(6), 2323–2334 (2006).
    [Crossref] [PubMed]
  32. J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
    [Crossref]
  33. Z. Y. Yang and Y. F. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Opt. Express 15(15), 9510–9519 (2007).
    [Crossref] [PubMed]
  34. G. Mélen, W. Rosenfeld, and H. Weinfurter, “Impact of the slit geometry on the performance of wire-grid polarisers,” Opt. Express 23(25), 32171–32178 (2015).
    [Crossref] [PubMed]
  35. B. C. Kim, Y. J. Lim, J. H. Song, J. H. Lee, K. U. Jeong, J. H. Lee, G. D. Lee, and S. H. Lee, “Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display,” Opt. Express 22(S7Suppl 7), A1725–A1730 (2014).
    [Crossref] [PubMed]
  36. H. Chen, J. He, and S. T. Wu, “Recent advances on quantum-dot-enhanced liquid-crystal displays,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1–11 (2017).
    [Crossref]

2017 (2)

H. Chen, R. Zhu, G. Tan, M. C. Li, S. L. Lee, and S. T. Wu, “Enlarging the color gamut of liquid crystal displays with a functional reflective polarizer,” Opt. Express 25(1), 102–111 (2017).
[Crossref] [PubMed]

H. Chen, J. He, and S. T. Wu, “Recent advances on quantum-dot-enhanced liquid-crystal displays,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1–11 (2017).
[Crossref]

2016 (3)

J. Thielen, D. Lamb, A. Lemon, J. Tibbits, J. V. Derlofske, and E. Nelson, “27-2: Invited Paper: Correlation of accelerated aging to in-device lifetime of quantum dot enhancement film,” Dig. Tech. Pap. 47(1), 336–339 (2016).
[Crossref]

H. J. Kim, M. H. Shin, H. G. Hong, B. S. Song, S. K. Kim, W. H. Koo, J. G. Yoon, S. Y. Yoon, and Y. J. Kim, “Enhancement of optical efficiency in white OLED display using the patterned photoresist film dispersed with quantum dot nanocrystals,” J. Disp. Technol. 12(6), 526–531 (2016).
[Crossref]

H. J. Kim, M. H. Shin, and Y. J. Kim, “Optical efficiency enhancement in white organic light-emitting diode display with high color gamut using patterned quantum dot film and long pass filter,” Jpn. J. Appl. Phys. 55(8), 08RF01 (2016).

2015 (6)

2014 (3)

H. Zhan, Z. Xu, C. Tian, Y. Wang, M. Chen, W. Kim, Z. Bu, X. Shao, and S. Lee, “Achieving standard wide color gamut by tuning led backlight and color filter spectrum in LCD,” J. Soc. Inf. Disp. 22(11), 545–551 (2014).
[Crossref]

B. C. Kim, Y. J. Lim, J. H. Song, J. H. Lee, K. U. Jeong, J. H. Lee, G. D. Lee, and S. H. Lee, “Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display,” Opt. Express 22(S7Suppl 7), A1725–A1730 (2014).
[Crossref] [PubMed]

Z. Luo, D. Xu, and S. T. Wu, “Emerging quantum-dots-enhanced LCDs,” J. Soc. Inf. Disp. 10(7), 526–539 (2014).

2013 (3)

Z. Luo, Y. Chen, and S. T. Wu, “Wide color gamut LCD with a quantum dot backlight,” Opt. Express 21(22), 26269–26284 (2013).
[Crossref] [PubMed]

S. Coe-Sullivan, W. Liu, P. Allen, and J. S. Steckel, “Quantum dots for LED downconversion in display applications,” ECS J. Solid State Sci. Technol. 2(2), R3026–R3030 (2013).
[Crossref]

S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale 5(12), 5205–5214 (2013).
[Crossref] [PubMed]

2012 (1)

J. Chen, V. Hardev, J. Hartlove, J. Hofler, and E. Lee, “66.1: Distinguised Paper: A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film,” Dig. Tech. Pap. 43(1), 895–896 (2012).
[Crossref]

2011 (1)

J. Ma, X. Ye, and B. Jin, “Structure and application of polarizer film for thin-film-transistor liquid crystal displays,” Displays 32(2), 49–57 (2011).
[Crossref]

2010 (3)

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49(25), F79–F98 (2010).
[Crossref] [PubMed]

2009 (2)

R. J. Xie, N. Hirosaki, and T. Takeda, “Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodes,” Appl. Phys. Express 2(2), 022401 (2009).
[Crossref]

S. Coe-Sullivan, “Optoelectronics: Quantum dot developments,” Nat. Photonics 3(6), 315–316 (2009).
[Crossref]

2007 (3)

R. Xie, D. Battaglia, and X. Peng, “Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared,” J. Am. Chem. Soc. 129(50), 15432–15433 (2007).
[Crossref] [PubMed]

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

Z. Y. Yang and Y. F. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Opt. Express 15(15), 9510–9519 (2007).
[Crossref] [PubMed]

2006 (2)

Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14(6), 2323–2334 (2006).
[Crossref] [PubMed]

K. Kakinuma, “Technology of wide color gamut backlight with light-emitting diode for liquid crystal display television,” Jpn. J. Appl. Phys. 45(5B), 4330–4334 (2006).
[Crossref]

2005 (2)

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

R. Butté, E. Feltin, J. Dorsaz, G. Christmann, J. F. Carlin, N. Grandjean, and M. Ilegems, “Recent progress in the growth of highly reflective nitride-based distributed Bragg reflectors and their use in microcavities,” Jpn. J. Appl. Phys. 44(1010R), 7207–7216 (2005).
[Crossref]

2003 (1)

N. Moriya, M. Sugawara, R. Harada, T. Kageyama, and K. Matsushima, “New color filter for light-emitting diode back light,” Jpn. J. Appl. Phys. 42(1), 1637–1641 (2003).
[Crossref]

1999 (1)

H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “E. lliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Appl. Phys. Lett. 74(7), 1036–1038 (1999).
[Crossref]

1997 (2)

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119(30), 7019–7029 (1997).
[Crossref]

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Ahn, S. W.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Alivisatos, A. P.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119(30), 7019–7029 (1997).
[Crossref]

Allen, P.

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: The ultimate down‐conversion material for LCD displays,” J. Soc. Inf. Disp. 23(7), 294–305 (2015).
[Crossref]

S. Coe-Sullivan, W. Liu, P. Allen, and J. S. Steckel, “Quantum dots for LED downconversion in display applications,” ECS J. Solid State Sci. Technol. 2(2), R3026–R3030 (2013).
[Crossref]

Battaglia, D.

R. Xie, D. Battaglia, and X. Peng, “Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared,” J. Am. Chem. Soc. 129(50), 15432–15433 (2007).
[Crossref] [PubMed]

Bawendi, M. G.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Breen, C.

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: The ultimate down‐conversion material for LCD displays,” J. Soc. Inf. Disp. 23(7), 294–305 (2015).
[Crossref]

Bu, Z.

H. Zhan, Z. Xu, C. Tian, Y. Wang, M. Chen, W. Kim, Z. Bu, X. Shao, and S. Lee, “Achieving standard wide color gamut by tuning led backlight and color filter spectrum in LCD,” J. Soc. Inf. Disp. 22(11), 545–551 (2014).
[Crossref]

Butté, R.

R. Butté, E. Feltin, J. Dorsaz, G. Christmann, J. F. Carlin, N. Grandjean, and M. Ilegems, “Recent progress in the growth of highly reflective nitride-based distributed Bragg reflectors and their use in microcavities,” Jpn. J. Appl. Phys. 44(1010R), 7207–7216 (2005).
[Crossref]

Carlin, J. F.

R. Butté, E. Feltin, J. Dorsaz, G. Christmann, J. F. Carlin, N. Grandjean, and M. Ilegems, “Recent progress in the growth of highly reflective nitride-based distributed Bragg reflectors and their use in microcavities,” Jpn. J. Appl. Phys. 44(1010R), 7207–7216 (2005).
[Crossref]

Chellappan, K. V.

Chen, H.

Chen, J.

J. Chen, V. Hardev, J. Hartlove, J. Hofler, and E. Lee, “66.1: Distinguised Paper: A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film,” Dig. Tech. Pap. 43(1), 895–896 (2012).
[Crossref]

Chen, M.

H. Zhan, Z. Xu, C. Tian, Y. Wang, M. Chen, W. Kim, Z. Bu, X. Shao, and S. Lee, “Achieving standard wide color gamut by tuning led backlight and color filter spectrum in LCD,” J. Soc. Inf. Disp. 22(11), 545–551 (2014).
[Crossref]

Chen, Y.

Christmann, G.

R. Butté, E. Feltin, J. Dorsaz, G. Christmann, J. F. Carlin, N. Grandjean, and M. Ilegems, “Recent progress in the growth of highly reflective nitride-based distributed Bragg reflectors and their use in microcavities,” Jpn. J. Appl. Phys. 44(1010R), 7207–7216 (2005).
[Crossref]

Coe-Sullivan, S.

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: The ultimate down‐conversion material for LCD displays,” J. Soc. Inf. Disp. 23(7), 294–305 (2015).
[Crossref]

S. Coe-Sullivan, W. Liu, P. Allen, and J. S. Steckel, “Quantum dots for LED downconversion in display applications,” ECS J. Solid State Sci. Technol. 2(2), R3026–R3030 (2013).
[Crossref]

S. Coe-Sullivan, “Optoelectronics: Quantum dot developments,” Nat. Photonics 3(6), 315–316 (2009).
[Crossref]

Dabbousi, B. O.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

David, C.

Deng, X.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

Derlofske, J. V.

J. Thielen, D. Lamb, A. Lemon, J. Tibbits, J. V. Derlofske, and E. Nelson, “27-2: Invited Paper: Correlation of accelerated aging to in-device lifetime of quantum dot enhancement film,” Dig. Tech. Pap. 47(1), 336–339 (2016).
[Crossref]

Do, Y. R.

Dong, Y.

Doppalapudi, D.

H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “E. lliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Appl. Phys. Lett. 74(7), 1036–1038 (1999).
[Crossref]

Dorsaz, J.

R. Butté, E. Feltin, J. Dorsaz, G. Christmann, J. F. Carlin, N. Grandjean, and M. Ilegems, “Recent progress in the growth of highly reflective nitride-based distributed Bragg reflectors and their use in microcavities,” Jpn. J. Appl. Phys. 44(1010R), 7207–7216 (2005).
[Crossref]

Ekinci, Y.

Erden, E.

Feltin, E.

R. Butté, E. Feltin, J. Dorsaz, G. Christmann, J. F. Carlin, N. Grandjean, and M. Ilegems, “Recent progress in the growth of highly reflective nitride-based distributed Bragg reflectors and their use in microcavities,” Jpn. J. Appl. Phys. 44(1010R), 7207–7216 (2005).
[Crossref]

Grandjean, N.

R. Butté, E. Feltin, J. Dorsaz, G. Christmann, J. F. Carlin, N. Grandjean, and M. Ilegems, “Recent progress in the growth of highly reflective nitride-based distributed Bragg reflectors and their use in microcavities,” Jpn. J. Appl. Phys. 44(1010R), 7207–7216 (2005).
[Crossref]

Hamilton, C.

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: The ultimate down‐conversion material for LCD displays,” J. Soc. Inf. Disp. 23(7), 294–305 (2015).
[Crossref]

Harada, R.

N. Moriya, M. Sugawara, R. Harada, T. Kageyama, and K. Matsushima, “New color filter for light-emitting diode back light,” Jpn. J. Appl. Phys. 42(1), 1637–1641 (2003).
[Crossref]

Hardev, V.

J. Chen, V. Hardev, J. Hartlove, J. Hofler, and E. Lee, “66.1: Distinguised Paper: A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film,” Dig. Tech. Pap. 43(1), 895–896 (2012).
[Crossref]

Hartlove, J.

J. Chen, V. Hardev, J. Hartlove, J. Hofler, and E. Lee, “66.1: Distinguised Paper: A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film,” Dig. Tech. Pap. 43(1), 895–896 (2012).
[Crossref]

He, J.

H. Chen, J. He, and S. T. Wu, “Recent advances on quantum-dot-enhanced liquid-crystal displays,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1–11 (2017).
[Crossref]

Heine, J. R.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Hirosaki, N.

L. Wang, X. Wang, T. Kohsei, K. Yoshimura, M. Izumi, N. Hirosaki, and R. J. Xie, “Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays,” Opt. Express 23(22), 28707–28717 (2015).
[Crossref] [PubMed]

R. J. Xie, N. Hirosaki, and T. Takeda, “Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodes,” Appl. Phys. Express 2(2), 022401 (2009).
[Crossref]

Ho, J.

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: The ultimate down‐conversion material for LCD displays,” J. Soc. Inf. Disp. 23(7), 294–305 (2015).
[Crossref]

Hofler, J.

J. Chen, V. Hardev, J. Hartlove, J. Hofler, and E. Lee, “66.1: Distinguised Paper: A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film,” Dig. Tech. Pap. 43(1), 895–896 (2012).
[Crossref]

Hong, H. G.

H. J. Kim, M. H. Shin, H. G. Hong, B. S. Song, S. K. Kim, W. H. Koo, J. G. Yoon, S. Y. Yoon, and Y. J. Kim, “Enhancement of optical efficiency in white OLED display using the patterned photoresist film dispersed with quantum dot nanocrystals,” J. Disp. Technol. 12(6), 526–531 (2016).
[Crossref]

Ilegems, M.

R. Butté, E. Feltin, J. Dorsaz, G. Christmann, J. F. Carlin, N. Grandjean, and M. Ilegems, “Recent progress in the growth of highly reflective nitride-based distributed Bragg reflectors and their use in microcavities,” Jpn. J. Appl. Phys. 44(1010R), 7207–7216 (2005).
[Crossref]

Iliopoulos, E.

H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “E. lliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Appl. Phys. Lett. 74(7), 1036–1038 (1999).
[Crossref]

Im, S. H.

S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale 5(12), 5205–5214 (2013).
[Crossref] [PubMed]

Izumi, M.

Jang, E.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Jang, H.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Jensen, K. F.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Jeong, K. U.

Jin, B.

J. Ma, X. Ye, and B. Jin, “Structure and application of polarizer film for thin-film-transistor liquid crystal displays,” Displays 32(2), 49–57 (2011).
[Crossref]

Jun, S.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Kadavanich, A. V.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119(30), 7019–7029 (1997).
[Crossref]

Kageyama, T.

N. Moriya, M. Sugawara, R. Harada, T. Kageyama, and K. Matsushima, “New color filter for light-emitting diode back light,” Jpn. J. Appl. Phys. 42(1), 1637–1641 (2003).
[Crossref]

Kakinuma, K.

K. Kakinuma, “Technology of wide color gamut backlight with light-emitting diode for liquid crystal display television,” Jpn. J. Appl. Phys. 45(5B), 4330–4334 (2006).
[Crossref]

Kang, H.

Kim, B.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Kim, B. C.

Kim, H. J.

H. J. Kim, M. H. Shin, and Y. J. Kim, “Optical efficiency enhancement in white organic light-emitting diode display with high color gamut using patterned quantum dot film and long pass filter,” Jpn. J. Appl. Phys. 55(8), 08RF01 (2016).

H. J. Kim, M. H. Shin, H. G. Hong, B. S. Song, S. K. Kim, W. H. Koo, J. G. Yoon, S. Y. Yoon, and Y. J. Kim, “Enhancement of optical efficiency in white OLED display using the patterned photoresist film dispersed with quantum dot nanocrystals,” J. Disp. Technol. 12(6), 526–531 (2016).
[Crossref]

Kim, J. S.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Kim, S.

S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale 5(12), 5205–5214 (2013).
[Crossref] [PubMed]

Kim, S. H.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Kim, S. K.

H. J. Kim, M. H. Shin, H. G. Hong, B. S. Song, S. K. Kim, W. H. Koo, J. G. Yoon, S. Y. Yoon, and Y. J. Kim, “Enhancement of optical efficiency in white OLED display using the patterned photoresist film dispersed with quantum dot nanocrystals,” J. Disp. Technol. 12(6), 526–531 (2016).
[Crossref]

Kim, S. W.

S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale 5(12), 5205–5214 (2013).
[Crossref] [PubMed]

Kim, W.

H. Zhan, Z. Xu, C. Tian, Y. Wang, M. Chen, W. Kim, Z. Bu, X. Shao, and S. Lee, “Achieving standard wide color gamut by tuning led backlight and color filter spectrum in LCD,” J. Soc. Inf. Disp. 22(11), 545–551 (2014).
[Crossref]

Kim, Y.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Kim, Y. J.

H. J. Kim, M. H. Shin, and Y. J. Kim, “Optical efficiency enhancement in white organic light-emitting diode display with high color gamut using patterned quantum dot film and long pass filter,” Jpn. J. Appl. Phys. 55(8), 08RF01 (2016).

H. J. Kim, M. H. Shin, H. G. Hong, B. S. Song, S. K. Kim, W. H. Koo, J. G. Yoon, S. Y. Yoon, and Y. J. Kim, “Enhancement of optical efficiency in white OLED display using the patterned photoresist film dispersed with quantum dot nanocrystals,” J. Disp. Technol. 12(6), 526–531 (2016).
[Crossref]

Ko, M.

Kohsei, T.

Koo, W. H.

H. J. Kim, M. H. Shin, H. G. Hong, B. S. Song, S. K. Kim, W. H. Koo, J. G. Yoon, S. Y. Yoon, and Y. J. Kim, “Enhancement of optical efficiency in white OLED display using the patterned photoresist film dispersed with quantum dot nanocrystals,” J. Disp. Technol. 12(6), 526–531 (2016).
[Crossref]

Lamb, D.

J. Thielen, D. Lamb, A. Lemon, J. Tibbits, J. V. Derlofske, and E. Nelson, “27-2: Invited Paper: Correlation of accelerated aging to in-device lifetime of quantum dot enhancement film,” Dig. Tech. Pap. 47(1), 336–339 (2016).
[Crossref]

Lee, E.

J. Chen, V. Hardev, J. Hartlove, J. Hofler, and E. Lee, “66.1: Distinguised Paper: A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film,” Dig. Tech. Pap. 43(1), 895–896 (2012).
[Crossref]

Lee, G. D.

Lee, J. H.

Lee, K. D.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Lee, S.

H. Zhan, Z. Xu, C. Tian, Y. Wang, M. Chen, W. Kim, Z. Bu, X. Shao, and S. Lee, “Achieving standard wide color gamut by tuning led backlight and color filter spectrum in LCD,” J. Soc. Inf. Disp. 22(11), 545–551 (2014).
[Crossref]

Lee, S. H.

B. C. Kim, Y. J. Lim, J. H. Song, J. H. Lee, K. U. Jeong, J. H. Lee, G. D. Lee, and S. H. Lee, “Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display,” Opt. Express 22(S7Suppl 7), A1725–A1730 (2014).
[Crossref] [PubMed]

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Lee, S. L.

Lemon, A.

J. Thielen, D. Lamb, A. Lemon, J. Tibbits, J. V. Derlofske, and E. Nelson, “27-2: Invited Paper: Correlation of accelerated aging to in-device lifetime of quantum dot enhancement film,” Dig. Tech. Pap. 47(1), 336–339 (2016).
[Crossref]

Li, M. C.

Lim, J.

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Lim, Y. J.

Liu, W.

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: The ultimate down‐conversion material for LCD displays,” J. Soc. Inf. Disp. 23(7), 294–305 (2015).
[Crossref]

S. Coe-Sullivan, W. Liu, P. Allen, and J. S. Steckel, “Quantum dots for LED downconversion in display applications,” ECS J. Solid State Sci. Technol. 2(2), R3026–R3030 (2013).
[Crossref]

Liu, X.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

Lu, Y. F.

Luo, Z.

Ma, J.

J. Ma, X. Ye, and B. Jin, “Structure and application of polarizer film for thin-film-transistor liquid crystal displays,” Displays 32(2), 49–57 (2011).
[Crossref]

Masaoka, K.

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

Matsushima, K.

N. Moriya, M. Sugawara, R. Harada, T. Kageyama, and K. Matsushima, “New color filter for light-emitting diode back light,” Jpn. J. Appl. Phys. 42(1), 1637–1641 (2003).
[Crossref]

Mattoussi, H.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Mélen, G.

Mikulec, F. V.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Moriya, N.

N. Moriya, M. Sugawara, R. Harada, T. Kageyama, and K. Matsushima, “New color filter for light-emitting diode back light,” Jpn. J. Appl. Phys. 42(1), 1637–1641 (2003).
[Crossref]

Moustakas, T. D.

H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “E. lliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Appl. Phys. Lett. 74(7), 1036–1038 (1999).
[Crossref]

Nakasu, E.

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

Nelson, E.

J. Thielen, D. Lamb, A. Lemon, J. Tibbits, J. V. Derlofske, and E. Nelson, “27-2: Invited Paper: Correlation of accelerated aging to in-device lifetime of quantum dot enhancement film,” Dig. Tech. Pap. 47(1), 336–339 (2016).
[Crossref]

Ng, H. M.

H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “E. lliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Appl. Phys. Lett. 74(7), 1036–1038 (1999).
[Crossref]

Nishida, Y.

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

Ober, R.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Oh, J. H.

Park, J. D.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Peng, X.

R. Xie, D. Battaglia, and X. Peng, “Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared,” J. Am. Chem. Soc. 129(50), 15432–15433 (2007).
[Crossref] [PubMed]

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119(30), 7019–7029 (1997).
[Crossref]

Rodriguez-Viejo, J.

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

Rosenfeld, W.

Schlamp, M. C.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119(30), 7019–7029 (1997).
[Crossref]

Sciortino, P.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

Shao, X.

H. Zhan, Z. Xu, C. Tian, Y. Wang, M. Chen, W. Kim, Z. Bu, X. Shao, and S. Lee, “Achieving standard wide color gamut by tuning led backlight and color filter spectrum in LCD,” J. Soc. Inf. Disp. 22(11), 545–551 (2014).
[Crossref]

Shin, M. H.

H. J. Kim, M. H. Shin, and Y. J. Kim, “Optical efficiency enhancement in white organic light-emitting diode display with high color gamut using patterned quantum dot film and long pass filter,” Jpn. J. Appl. Phys. 55(8), 08RF01 (2016).

H. J. Kim, M. H. Shin, H. G. Hong, B. S. Song, S. K. Kim, W. H. Koo, J. G. Yoon, S. Y. Yoon, and Y. J. Kim, “Enhancement of optical efficiency in white OLED display using the patterned photoresist film dispersed with quantum dot nanocrystals,” J. Disp. Technol. 12(6), 526–531 (2016).
[Crossref]

Sigg, H.

Solak, H. H.

Song, B. S.

H. J. Kim, M. H. Shin, H. G. Hong, B. S. Song, S. K. Kim, W. H. Koo, J. G. Yoon, S. Y. Yoon, and Y. J. Kim, “Enhancement of optical efficiency in white OLED display using the patterned photoresist film dispersed with quantum dot nanocrystals,” J. Disp. Technol. 12(6), 526–531 (2016).
[Crossref]

Song, J. H.

Steckel, J. S.

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: The ultimate down‐conversion material for LCD displays,” J. Soc. Inf. Disp. 23(7), 294–305 (2015).
[Crossref]

S. Coe-Sullivan, W. Liu, P. Allen, and J. S. Steckel, “Quantum dots for LED downconversion in display applications,” ECS J. Solid State Sci. Technol. 2(2), R3026–R3030 (2013).
[Crossref]

Sugawara, M.

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

N. Moriya, M. Sugawara, R. Harada, T. Kageyama, and K. Matsushima, “New color filter for light-emitting diode back light,” Jpn. J. Appl. Phys. 42(1), 1637–1641 (2003).
[Crossref]

Takeda, T.

R. J. Xie, N. Hirosaki, and T. Takeda, “Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodes,” Appl. Phys. Express 2(2), 022401 (2009).
[Crossref]

Tan, G.

Thielen, J.

J. Thielen, D. Lamb, A. Lemon, J. Tibbits, J. V. Derlofske, and E. Nelson, “27-2: Invited Paper: Correlation of accelerated aging to in-device lifetime of quantum dot enhancement film,” Dig. Tech. Pap. 47(1), 336–339 (2016).
[Crossref]

Tian, C.

H. Zhan, Z. Xu, C. Tian, Y. Wang, M. Chen, W. Kim, Z. Bu, X. Shao, and S. Lee, “Achieving standard wide color gamut by tuning led backlight and color filter spectrum in LCD,” J. Soc. Inf. Disp. 22(11), 545–551 (2014).
[Crossref]

Tibbits, J.

J. Thielen, D. Lamb, A. Lemon, J. Tibbits, J. V. Derlofske, and E. Nelson, “27-2: Invited Paper: Correlation of accelerated aging to in-device lifetime of quantum dot enhancement film,” Dig. Tech. Pap. 47(1), 336–339 (2016).
[Crossref]

Urey, H.

Walters, F.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

Wang, J. J.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

Wang, L.

Wang, X.

Wang, Y.

H. Zhan, Z. Xu, C. Tian, Y. Wang, M. Chen, W. Kim, Z. Bu, X. Shao, and S. Lee, “Achieving standard wide color gamut by tuning led backlight and color filter spectrum in LCD,” J. Soc. Inf. Disp. 22(11), 545–551 (2014).
[Crossref]

Weinfurter, H.

Wu, S. T.

Xi, J.

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: The ultimate down‐conversion material for LCD displays,” J. Soc. Inf. Disp. 23(7), 294–305 (2015).
[Crossref]

Xie, R.

R. Xie, D. Battaglia, and X. Peng, “Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared,” J. Am. Chem. Soc. 129(50), 15432–15433 (2007).
[Crossref] [PubMed]

Xie, R. J.

L. Wang, X. Wang, T. Kohsei, K. Yoshimura, M. Izumi, N. Hirosaki, and R. J. Xie, “Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays,” Opt. Express 23(22), 28707–28717 (2015).
[Crossref] [PubMed]

R. J. Xie, N. Hirosaki, and T. Takeda, “Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodes,” Appl. Phys. Express 2(2), 022401 (2009).
[Crossref]

Xu, D.

Z. Luo, D. Xu, and S. T. Wu, “Emerging quantum-dots-enhanced LCDs,” J. Soc. Inf. Disp. 10(7), 526–539 (2014).

Xu, Z.

H. Zhan, Z. Xu, C. Tian, Y. Wang, M. Chen, W. Kim, Z. Bu, X. Shao, and S. Lee, “Achieving standard wide color gamut by tuning led backlight and color filter spectrum in LCD,” J. Soc. Inf. Disp. 22(11), 545–551 (2014).
[Crossref]

Yang, Z. Y.

Ye, X.

J. Ma, X. Ye, and B. Jin, “Structure and application of polarizer film for thin-film-transistor liquid crystal displays,” Displays 32(2), 49–57 (2011).
[Crossref]

Yoon, J. G.

H. J. Kim, M. H. Shin, H. G. Hong, B. S. Song, S. K. Kim, W. H. Koo, J. G. Yoon, S. Y. Yoon, and Y. J. Kim, “Enhancement of optical efficiency in white OLED display using the patterned photoresist film dispersed with quantum dot nanocrystals,” J. Disp. Technol. 12(6), 526–531 (2016).
[Crossref]

Yoon, P. W.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Yoon, S. Y.

H. J. Kim, M. H. Shin, H. G. Hong, B. S. Song, S. K. Kim, W. H. Koo, J. G. Yoon, S. Y. Yoon, and Y. J. Kim, “Enhancement of optical efficiency in white OLED display using the patterned photoresist film dispersed with quantum dot nanocrystals,” J. Disp. Technol. 12(6), 526–531 (2016).
[Crossref]

Yoshimura, K.

Zhan, H.

H. Zhan, Z. Xu, C. Tian, Y. Wang, M. Chen, W. Kim, Z. Bu, X. Shao, and S. Lee, “Achieving standard wide color gamut by tuning led backlight and color filter spectrum in LCD,” J. Soc. Inf. Disp. 22(11), 545–551 (2014).
[Crossref]

Zhu, R.

Adv. Mater. (1)

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076–3080 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Express (1)

R. J. Xie, N. Hirosaki, and T. Takeda, “Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodes,” Appl. Phys. Express 2(2), 022401 (2009).
[Crossref]

Appl. Phys. Lett. (2)

H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “E. lliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Appl. Phys. Lett. 74(7), 1036–1038 (1999).
[Crossref]

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

Dig. Tech. Pap. (2)

J. Chen, V. Hardev, J. Hartlove, J. Hofler, and E. Lee, “66.1: Distinguised Paper: A high-efficiency wide-color-gamut solid-state backlight system for LCDs using quantum dot enhancement film,” Dig. Tech. Pap. 43(1), 895–896 (2012).
[Crossref]

J. Thielen, D. Lamb, A. Lemon, J. Tibbits, J. V. Derlofske, and E. Nelson, “27-2: Invited Paper: Correlation of accelerated aging to in-device lifetime of quantum dot enhancement film,” Dig. Tech. Pap. 47(1), 336–339 (2016).
[Crossref]

Displays (1)

J. Ma, X. Ye, and B. Jin, “Structure and application of polarizer film for thin-film-transistor liquid crystal displays,” Displays 32(2), 49–57 (2011).
[Crossref]

ECS J. Solid State Sci. Technol. (1)

S. Coe-Sullivan, W. Liu, P. Allen, and J. S. Steckel, “Quantum dots for LED downconversion in display applications,” ECS J. Solid State Sci. Technol. 2(2), R3026–R3030 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Chen, J. He, and S. T. Wu, “Recent advances on quantum-dot-enhanced liquid-crystal displays,” IEEE J. Sel. Top. Quantum Electron. 23(5), 1–11 (2017).
[Crossref]

IEEE Trans. Broadcast (1)

K. Masaoka, Y. Nishida, M. Sugawara, and E. Nakasu, “Design of primaries for a wide-gamut television colorimetry,” IEEE Trans. Broadcast 56(4), 452–457 (2010).
[Crossref]

J. Am. Chem. Soc. (2)

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc. 119(30), 7019–7029 (1997).
[Crossref]

R. Xie, D. Battaglia, and X. Peng, “Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared,” J. Am. Chem. Soc. 129(50), 15432–15433 (2007).
[Crossref] [PubMed]

J. Disp. Technol. (1)

H. J. Kim, M. H. Shin, H. G. Hong, B. S. Song, S. K. Kim, W. H. Koo, J. G. Yoon, S. Y. Yoon, and Y. J. Kim, “Enhancement of optical efficiency in white OLED display using the patterned photoresist film dispersed with quantum dot nanocrystals,” J. Disp. Technol. 12(6), 526–531 (2016).
[Crossref]

J. Phys. Chem. B (1)

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, “(CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101(46), 9463–9475 (1997).
[Crossref]

J. Soc. Inf. Disp. (3)

Z. Luo, D. Xu, and S. T. Wu, “Emerging quantum-dots-enhanced LCDs,” J. Soc. Inf. Disp. 10(7), 526–539 (2014).

H. Zhan, Z. Xu, C. Tian, Y. Wang, M. Chen, W. Kim, Z. Bu, X. Shao, and S. Lee, “Achieving standard wide color gamut by tuning led backlight and color filter spectrum in LCD,” J. Soc. Inf. Disp. 22(11), 545–551 (2014).
[Crossref]

J. S. Steckel, J. Ho, C. Hamilton, J. Xi, C. Breen, W. Liu, P. Allen, and S. Coe-Sullivan, “Quantum dots: The ultimate down‐conversion material for LCD displays,” J. Soc. Inf. Disp. 23(7), 294–305 (2015).
[Crossref]

Jpn. J. Appl. Phys. (4)

N. Moriya, M. Sugawara, R. Harada, T. Kageyama, and K. Matsushima, “New color filter for light-emitting diode back light,” Jpn. J. Appl. Phys. 42(1), 1637–1641 (2003).
[Crossref]

K. Kakinuma, “Technology of wide color gamut backlight with light-emitting diode for liquid crystal display television,” Jpn. J. Appl. Phys. 45(5B), 4330–4334 (2006).
[Crossref]

H. J. Kim, M. H. Shin, and Y. J. Kim, “Optical efficiency enhancement in white organic light-emitting diode display with high color gamut using patterned quantum dot film and long pass filter,” Jpn. J. Appl. Phys. 55(8), 08RF01 (2016).

R. Butté, E. Feltin, J. Dorsaz, G. Christmann, J. F. Carlin, N. Grandjean, and M. Ilegems, “Recent progress in the growth of highly reflective nitride-based distributed Bragg reflectors and their use in microcavities,” Jpn. J. Appl. Phys. 44(1010R), 7207–7216 (2005).
[Crossref]

Nanoscale (1)

S. Kim, S. H. Im, and S. W. Kim, “Performance of light-emitting-diode based on quantum dots,” Nanoscale 5(12), 5205–5214 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Nat. Photonics (1)

S. Coe-Sullivan, “Optoelectronics: Quantum dot developments,” Nat. Photonics 3(6), 315–316 (2009).
[Crossref]

Opt. Express (10)

Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14(6), 2323–2334 (2006).
[Crossref] [PubMed]

Z. Y. Yang and Y. F. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Opt. Express 15(15), 9510–9519 (2007).
[Crossref] [PubMed]

Z. Luo, Y. Chen, and S. T. Wu, “Wide color gamut LCD with a quantum dot backlight,” Opt. Express 21(22), 26269–26284 (2013).
[Crossref] [PubMed]

B. C. Kim, Y. J. Lim, J. H. Song, J. H. Lee, K. U. Jeong, J. H. Lee, G. D. Lee, and S. H. Lee, “Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display,” Opt. Express 22(S7Suppl 7), A1725–A1730 (2014).
[Crossref] [PubMed]

J. H. Oh, H. Kang, M. Ko, and Y. R. Do, “Analysis of wide color gamut of green/red bilayered freestanding phosphor film-capped white LEDs for LCD backlight,” Opt. Express 23(15), A791–A804 (2015).
[Crossref] [PubMed]

J. H. Oh, H. Kang, M. Ko, and Y. R. Do, “Analysis of wide color gamut of green/red bilayered freestanding phosphor film-capped white LEDs for LCD backlight,” Opt. Express 23(15), A791–A804 (2015).
[Crossref] [PubMed]

R. Zhu, Z. Luo, H. Chen, Y. Dong, and S. T. Wu, “Realizing Rec. 2020 color gamut with quantum dot displays,” Opt. Express 23(18), 23680–23693 (2015).
[Crossref] [PubMed]

L. Wang, X. Wang, T. Kohsei, K. Yoshimura, M. Izumi, N. Hirosaki, and R. J. Xie, “Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays,” Opt. Express 23(22), 28707–28717 (2015).
[Crossref] [PubMed]

G. Mélen, W. Rosenfeld, and H. Weinfurter, “Impact of the slit geometry on the performance of wire-grid polarisers,” Opt. Express 23(25), 32171–32178 (2015).
[Crossref] [PubMed]

H. Chen, R. Zhu, G. Tan, M. C. Li, S. L. Lee, and S. T. Wu, “Enlarging the color gamut of liquid crystal displays with a functional reflective polarizer,” Opt. Express 25(1), 102–111 (2017).
[Crossref] [PubMed]

Other (1)

ITU-R Recommendation BT.2020, “Parameter values for ultra-high definition television systems for production and international programme exchange,” 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic illustration of (a) a conventional LCD with a mixed QD film, and (b) our proposed LCD with a patterned QD film and an SPF.
Fig. 2
Fig. 2 Transmittance of the SPF measured using a spectrophotometer and the normalized emission spectra of the blue LED, red QD film, and green QD film.
Fig. 3
Fig. 3 Schematic illustration of the operating mechanism of the proposed patterned-QD-LCD.
Fig. 4
Fig. 4 (a) Schematic illustration of the measurement configuration for optical intensity of an LCD with a mixed QD film (for reference) and that of an LCD with both a patterned QD film and an SPF and (b) real images of the components of the measurement system such as LGP with a reflector, a diffuser, a prism, a polarizer, an SPF, a CF array, and a patterned QD film.
Fig. 5
Fig. 5 Optical intensity spectra of light from an LCD with a mixed QD film (for reference), with a patterned QD film alone, and with both a patterned QD film and an SPF.
Fig. 6
Fig. 6 (a) Red, (b) green, and (c) blue spectra obtained from the LCD with a mixed QD film (solid line)) and from the LCD with both a patterned QD film and an SPF (dotted line).
Fig. 7
Fig. 7 Color gamut of an LCD with a mixed QD film and of an LCD with a patterned QD film and an SPF.
Fig. 8
Fig. 8 Schematic illustration of the cross-section of the wire-grid polarizer used in our simulation.
Fig. 9
Fig. 9 Transmittance of the TE and the TM mode, and the extinction ratio for (a) a commercial polarizer film (experimental results) and (b) a wire-grid polarizer (simulation results).

Tables (1)

Tables Icon

Table 1 Enhanced ratio of optical intensity and luminous efficacy for an LCD prepared using a mixed QD film (for reference) and for an LCD prepared using a patterned QD film and an SPF

Metrics