Abstract

Three-dimensional displacement in multi-colored objects is measured by combining fringe projection (FP) and digital image correlation (DIC). Simultaneity of measurements through both techniques is warranted by encoding their signals on the RGB channels of color images. By separating the illuminating sources for each technique and by using ultraviolet light for DIC, contrast and amplitude of the registered signals are enhanced, enabling displacement measurement of multi-colored objects in dynamic events. The objects may even present a relatively large dynamic range of intensity levels. Proper selection of the light sources is supported by spectral analyses of the components of the system and by evaluation of the contrast of the registered images. Experimental results reveal that displacement measurements with relatively high accuracy can be obtained.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of transient deformation by color encoding

C. Mares, B. Barrientos, and A. Blanco
Opt. Express 19(25) 25712-25722 (2011)

Three-dimensional measurement of object surfaces with complex shape and color distribution based on projection of color fringe patterns

Ke Chen, Jiangtao Xi, Yanguang Yu, Sheng Tong, and Qinghua Guo
Appl. Opt. 52(30) 7360-7366 (2013)

Transferring color between three-dimensional objects

Hui-Liang Shen and John H. Xin
Appl. Opt. 44(10) 1969-1976 (2005)

References

  • View by:
  • |
  • |
  • |

  1. H. Weber, R. Lichtenberger, and T. Wolf, “The combination of speckle correlation and fringe projection for the measurement of dynamic 3-D deformations of airbags caps,” in Proceedings of IUTAM Symposyum on Advanced Optical Methods and Applications in Solid Mechanics, A. Lagarde, ed. (Kluwer Akademic Publishers, 2000), pp. 619–626.
  2. P. Siegmann, V. Álvarez-Fernández, F. Díaz-Garrido, and E. A. Patterson, “A simultaneous in- and out-of-plane displacement measurement method,” Opt. Lett. 36(1), 10–12 (2011).
    [Crossref] [PubMed]
  3. C. Mares, B. Barrientos, and A. Blanco, “Measurement of transient deformation by color encoding,” Opt. Express 19(25), 25712–25722 (2011).
    [Crossref] [PubMed]
  4. C. Wust and D. W. Capson, “Surface profile measurement using color fringe projection,” Mach. Vis. Appl. 4(3), 193–203 (1991).
    [Crossref]
  5. P. S. Huang, Q. Hu, F. Jin, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38(6), 1065–1071 (1999).
    [Crossref]
  6. J. L. Flores, J. A. Ferrari, G. García Torales, R. Legarda-Saenz, and A. Silva, “Color-fringe pattern profilometry using a generalized phase-shifting algorithm,” Appl. Opt. 54(30), 8827–8834 (2015).
    [Crossref] [PubMed]
  7. M. Padilla, M. Servin, and G. Garnica, “Fourier analysis of RGB fringe-projection profilometry and robust phase-demodulation methods against crosstalk distortion,” Opt. Express 24(14), 15417–15428 (2016).
    [Crossref] [PubMed]
  8. I. Trumper, H. Choi, and D. W. Kim, “Instantaneous phase shifting deflectometry,” Opt. Express 24(24), 27993–28007 (2016).
    [Crossref] [PubMed]
  9. M. Ota, K. Hamada, H. Kato, and K. Maeno, “Computed-tomographic density measurement of supersonic flow field by colored-grid background oriented schlieren (CGBOS) technique,” Meas. Sci. Technol. 22(10), 104011 (2011).
    [Crossref]
  10. A. Blanco, B. Barrientos, and C. Mares, “Performance comparison of background-oriented schlieren and fringe deflection in temperature measurement, part 2: experimental evaluation,” Opt. Eng. 55(6), 064104 (2016).
    [Crossref]
  11. L. F. Sesé, P. Siegmann, and E. A. Patterson, “Integrating fringe projection and digital image correlation for high quality measurements of shape changes,” Opt. Eng. 53(4), 044106 (2014).
    [Crossref]
  12. M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46(10), 746–757 (2008).
    [Crossref]
  13. L. F. Sesé, P. Siegmann, F. A. Diaz, and E. A. Patterson, “Simultaneous in-and-out-of-plane displacement measurement using fringe projection and digital image correlation,” Opt. Lasers Eng. 52, 66–74 (2014).
    [Crossref]
  14. D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20(5), 470–480 (1998).
    [Crossref]
  15. Z. Zhang, C. E. Towers, and D. P. Towers, “Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency Selection,” Opt. Express 14(14), 6444–6455 (2006).
    [Crossref] [PubMed]
  16. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982).
    [Crossref]
  17. K. J. Gasvik, Optical Metrology (John Wiley and Sons, 2003).
  18. E. Stoykova, G. Minchev, and V. Sainov, “Fringe projection with a sinusoidal phase grating,” Appl. Opt. 48(24), 4774–4784 (2009).
    [Crossref] [PubMed]
  19. E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7(10), 2032–2040 (1990).
    [Crossref] [PubMed]
  20. CMOSIS image sensors, “CMV2000 Datasheet v3.2,” 2012.
  21. Z. Zhang, C. E. Towers, and D. P. Towers, “Robust color and shape measurement of full color artifacts by RGB fringe projection,” Opt. Eng. 51(2), 021109 (2012).
    [Crossref]
  22. B. Barrientos, M. Cerca, J. Garcia-Marquez, and C. Hernandez-Bernal, “Three-dimensional displacement fields measured in a deforming granular-media surface by combined fringe projection and speckle photography,” J. Opt. A, Pure Appl. Opt. 10(10), 104027 (2008).
    [Crossref]
  23. A. R. Varkonyi-Koczy, A. R. Rovid, and T. Hashimoto, “Gradient based synthesized multiple exposure time color HDR image,” IEEE Trans. Instrum. Meas. 57(8), 1779–1785 (2008).
    [Crossref]
  24. D. Skocaj and A. Leonardis, “Range image acquisition of objects with non-uniform albedo using structured light range sensor,” in Proceedings of IEEE 15th International Conference on Pattern Recognition (IEEE, 2000), pp. 778–781.
    [Crossref]
  25. B. Chen and S. Zhang, “High-quality 3D shape measurement using saturated fringe patterns,” Opt. Lasers Eng. 87, 83–89 (2016).
    [Crossref]

2016 (4)

M. Padilla, M. Servin, and G. Garnica, “Fourier analysis of RGB fringe-projection profilometry and robust phase-demodulation methods against crosstalk distortion,” Opt. Express 24(14), 15417–15428 (2016).
[Crossref] [PubMed]

I. Trumper, H. Choi, and D. W. Kim, “Instantaneous phase shifting deflectometry,” Opt. Express 24(24), 27993–28007 (2016).
[Crossref] [PubMed]

A. Blanco, B. Barrientos, and C. Mares, “Performance comparison of background-oriented schlieren and fringe deflection in temperature measurement, part 2: experimental evaluation,” Opt. Eng. 55(6), 064104 (2016).
[Crossref]

B. Chen and S. Zhang, “High-quality 3D shape measurement using saturated fringe patterns,” Opt. Lasers Eng. 87, 83–89 (2016).
[Crossref]

2015 (1)

2014 (2)

L. F. Sesé, P. Siegmann, and E. A. Patterson, “Integrating fringe projection and digital image correlation for high quality measurements of shape changes,” Opt. Eng. 53(4), 044106 (2014).
[Crossref]

L. F. Sesé, P. Siegmann, F. A. Diaz, and E. A. Patterson, “Simultaneous in-and-out-of-plane displacement measurement using fringe projection and digital image correlation,” Opt. Lasers Eng. 52, 66–74 (2014).
[Crossref]

2012 (1)

Z. Zhang, C. E. Towers, and D. P. Towers, “Robust color and shape measurement of full color artifacts by RGB fringe projection,” Opt. Eng. 51(2), 021109 (2012).
[Crossref]

2011 (3)

2009 (1)

2008 (3)

B. Barrientos, M. Cerca, J. Garcia-Marquez, and C. Hernandez-Bernal, “Three-dimensional displacement fields measured in a deforming granular-media surface by combined fringe projection and speckle photography,” J. Opt. A, Pure Appl. Opt. 10(10), 104027 (2008).
[Crossref]

A. R. Varkonyi-Koczy, A. R. Rovid, and T. Hashimoto, “Gradient based synthesized multiple exposure time color HDR image,” IEEE Trans. Instrum. Meas. 57(8), 1779–1785 (2008).
[Crossref]

M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46(10), 746–757 (2008).
[Crossref]

2006 (1)

1999 (1)

P. S. Huang, Q. Hu, F. Jin, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38(6), 1065–1071 (1999).
[Crossref]

1998 (1)

D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20(5), 470–480 (1998).
[Crossref]

1991 (1)

C. Wust and D. W. Capson, “Surface profile measurement using color fringe projection,” Mach. Vis. Appl. 4(3), 193–203 (1991).
[Crossref]

1990 (1)

1982 (1)

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982).
[Crossref]

Álvarez-Fernández, V.

Barrientos, B.

A. Blanco, B. Barrientos, and C. Mares, “Performance comparison of background-oriented schlieren and fringe deflection in temperature measurement, part 2: experimental evaluation,” Opt. Eng. 55(6), 064104 (2016).
[Crossref]

C. Mares, B. Barrientos, and A. Blanco, “Measurement of transient deformation by color encoding,” Opt. Express 19(25), 25712–25722 (2011).
[Crossref] [PubMed]

B. Barrientos, M. Cerca, J. Garcia-Marquez, and C. Hernandez-Bernal, “Three-dimensional displacement fields measured in a deforming granular-media surface by combined fringe projection and speckle photography,” J. Opt. A, Pure Appl. Opt. 10(10), 104027 (2008).
[Crossref]

Blanco, A.

A. Blanco, B. Barrientos, and C. Mares, “Performance comparison of background-oriented schlieren and fringe deflection in temperature measurement, part 2: experimental evaluation,” Opt. Eng. 55(6), 064104 (2016).
[Crossref]

C. Mares, B. Barrientos, and A. Blanco, “Measurement of transient deformation by color encoding,” Opt. Express 19(25), 25712–25722 (2011).
[Crossref] [PubMed]

Capson, D. W.

C. Wust and D. W. Capson, “Surface profile measurement using color fringe projection,” Mach. Vis. Appl. 4(3), 193–203 (1991).
[Crossref]

Caspi, D.

D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20(5), 470–480 (1998).
[Crossref]

Cerca, M.

B. Barrientos, M. Cerca, J. Garcia-Marquez, and C. Hernandez-Bernal, “Three-dimensional displacement fields measured in a deforming granular-media surface by combined fringe projection and speckle photography,” J. Opt. A, Pure Appl. Opt. 10(10), 104027 (2008).
[Crossref]

Chen, B.

B. Chen and S. Zhang, “High-quality 3D shape measurement using saturated fringe patterns,” Opt. Lasers Eng. 87, 83–89 (2016).
[Crossref]

Chiang, F. P.

P. S. Huang, Q. Hu, F. Jin, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38(6), 1065–1071 (1999).
[Crossref]

Choi, H.

Diaz, F. A.

L. F. Sesé, P. Siegmann, F. A. Diaz, and E. A. Patterson, “Simultaneous in-and-out-of-plane displacement measurement using fringe projection and digital image correlation,” Opt. Lasers Eng. 52, 66–74 (2014).
[Crossref]

Díaz-Garrido, F.

Ferrari, J. A.

Flores, J. L.

García Torales, G.

Garcia-Marquez, J.

B. Barrientos, M. Cerca, J. Garcia-Marquez, and C. Hernandez-Bernal, “Three-dimensional displacement fields measured in a deforming granular-media surface by combined fringe projection and speckle photography,” J. Opt. A, Pure Appl. Opt. 10(10), 104027 (2008).
[Crossref]

Garnica, G.

Hamada, K.

M. Ota, K. Hamada, H. Kato, and K. Maeno, “Computed-tomographic density measurement of supersonic flow field by colored-grid background oriented schlieren (CGBOS) technique,” Meas. Sci. Technol. 22(10), 104011 (2011).
[Crossref]

Hashimoto, T.

A. R. Varkonyi-Koczy, A. R. Rovid, and T. Hashimoto, “Gradient based synthesized multiple exposure time color HDR image,” IEEE Trans. Instrum. Meas. 57(8), 1779–1785 (2008).
[Crossref]

Hernandez-Bernal, C.

B. Barrientos, M. Cerca, J. Garcia-Marquez, and C. Hernandez-Bernal, “Three-dimensional displacement fields measured in a deforming granular-media surface by combined fringe projection and speckle photography,” J. Opt. A, Pure Appl. Opt. 10(10), 104027 (2008).
[Crossref]

Hu, Q.

P. S. Huang, Q. Hu, F. Jin, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38(6), 1065–1071 (1999).
[Crossref]

Huang, P. S.

P. S. Huang, Q. Hu, F. Jin, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38(6), 1065–1071 (1999).
[Crossref]

Ina, H.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982).
[Crossref]

Jin, F.

P. S. Huang, Q. Hu, F. Jin, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38(6), 1065–1071 (1999).
[Crossref]

Kato, H.

M. Ota, K. Hamada, H. Kato, and K. Maeno, “Computed-tomographic density measurement of supersonic flow field by colored-grid background oriented schlieren (CGBOS) technique,” Meas. Sci. Technol. 22(10), 104011 (2011).
[Crossref]

Kim, D. W.

Kiryati, N.

D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20(5), 470–480 (1998).
[Crossref]

Kobayashi, S.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982).
[Crossref]

Legarda-Saenz, R.

Leonardis, A.

D. Skocaj and A. Leonardis, “Range image acquisition of objects with non-uniform albedo using structured light range sensor,” in Proceedings of IEEE 15th International Conference on Pattern Recognition (IEEE, 2000), pp. 778–781.
[Crossref]

Maeno, K.

M. Ota, K. Hamada, H. Kato, and K. Maeno, “Computed-tomographic density measurement of supersonic flow field by colored-grid background oriented schlieren (CGBOS) technique,” Meas. Sci. Technol. 22(10), 104011 (2011).
[Crossref]

Mares, C.

A. Blanco, B. Barrientos, and C. Mares, “Performance comparison of background-oriented schlieren and fringe deflection in temperature measurement, part 2: experimental evaluation,” Opt. Eng. 55(6), 064104 (2016).
[Crossref]

C. Mares, B. Barrientos, and A. Blanco, “Measurement of transient deformation by color encoding,” Opt. Express 19(25), 25712–25722 (2011).
[Crossref] [PubMed]

Minchev, G.

Orteu, J. J.

M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46(10), 746–757 (2008).
[Crossref]

Ota, M.

M. Ota, K. Hamada, H. Kato, and K. Maeno, “Computed-tomographic density measurement of supersonic flow field by colored-grid background oriented schlieren (CGBOS) technique,” Meas. Sci. Technol. 22(10), 104011 (2011).
[Crossref]

Padilla, M.

Patterson, E. A.

L. F. Sesé, P. Siegmann, and E. A. Patterson, “Integrating fringe projection and digital image correlation for high quality measurements of shape changes,” Opt. Eng. 53(4), 044106 (2014).
[Crossref]

L. F. Sesé, P. Siegmann, F. A. Diaz, and E. A. Patterson, “Simultaneous in-and-out-of-plane displacement measurement using fringe projection and digital image correlation,” Opt. Lasers Eng. 52, 66–74 (2014).
[Crossref]

P. Siegmann, V. Álvarez-Fernández, F. Díaz-Garrido, and E. A. Patterson, “A simultaneous in- and out-of-plane displacement measurement method,” Opt. Lett. 36(1), 10–12 (2011).
[Crossref] [PubMed]

Peli, E.

Rovid, A. R.

A. R. Varkonyi-Koczy, A. R. Rovid, and T. Hashimoto, “Gradient based synthesized multiple exposure time color HDR image,” IEEE Trans. Instrum. Meas. 57(8), 1779–1785 (2008).
[Crossref]

Sainov, V.

Schreier, H. W.

M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46(10), 746–757 (2008).
[Crossref]

Servin, M.

Sesé, L. F.

L. F. Sesé, P. Siegmann, F. A. Diaz, and E. A. Patterson, “Simultaneous in-and-out-of-plane displacement measurement using fringe projection and digital image correlation,” Opt. Lasers Eng. 52, 66–74 (2014).
[Crossref]

L. F. Sesé, P. Siegmann, and E. A. Patterson, “Integrating fringe projection and digital image correlation for high quality measurements of shape changes,” Opt. Eng. 53(4), 044106 (2014).
[Crossref]

Shamir, J.

D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20(5), 470–480 (1998).
[Crossref]

Siegmann, P.

L. F. Sesé, P. Siegmann, F. A. Diaz, and E. A. Patterson, “Simultaneous in-and-out-of-plane displacement measurement using fringe projection and digital image correlation,” Opt. Lasers Eng. 52, 66–74 (2014).
[Crossref]

L. F. Sesé, P. Siegmann, and E. A. Patterson, “Integrating fringe projection and digital image correlation for high quality measurements of shape changes,” Opt. Eng. 53(4), 044106 (2014).
[Crossref]

P. Siegmann, V. Álvarez-Fernández, F. Díaz-Garrido, and E. A. Patterson, “A simultaneous in- and out-of-plane displacement measurement method,” Opt. Lett. 36(1), 10–12 (2011).
[Crossref] [PubMed]

Silva, A.

Skocaj, D.

D. Skocaj and A. Leonardis, “Range image acquisition of objects with non-uniform albedo using structured light range sensor,” in Proceedings of IEEE 15th International Conference on Pattern Recognition (IEEE, 2000), pp. 778–781.
[Crossref]

Stoykova, E.

Sutton, M. A.

M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46(10), 746–757 (2008).
[Crossref]

Takeda, M.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982).
[Crossref]

Tiwari, V.

M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46(10), 746–757 (2008).
[Crossref]

Towers, C. E.

Z. Zhang, C. E. Towers, and D. P. Towers, “Robust color and shape measurement of full color artifacts by RGB fringe projection,” Opt. Eng. 51(2), 021109 (2012).
[Crossref]

Z. Zhang, C. E. Towers, and D. P. Towers, “Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency Selection,” Opt. Express 14(14), 6444–6455 (2006).
[Crossref] [PubMed]

Towers, D. P.

Z. Zhang, C. E. Towers, and D. P. Towers, “Robust color and shape measurement of full color artifacts by RGB fringe projection,” Opt. Eng. 51(2), 021109 (2012).
[Crossref]

Z. Zhang, C. E. Towers, and D. P. Towers, “Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency Selection,” Opt. Express 14(14), 6444–6455 (2006).
[Crossref] [PubMed]

Trumper, I.

Varkonyi-Koczy, A. R.

A. R. Varkonyi-Koczy, A. R. Rovid, and T. Hashimoto, “Gradient based synthesized multiple exposure time color HDR image,” IEEE Trans. Instrum. Meas. 57(8), 1779–1785 (2008).
[Crossref]

Wust, C.

C. Wust and D. W. Capson, “Surface profile measurement using color fringe projection,” Mach. Vis. Appl. 4(3), 193–203 (1991).
[Crossref]

Yan, J. H.

M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46(10), 746–757 (2008).
[Crossref]

Zhang, S.

B. Chen and S. Zhang, “High-quality 3D shape measurement using saturated fringe patterns,” Opt. Lasers Eng. 87, 83–89 (2016).
[Crossref]

Zhang, Z.

Z. Zhang, C. E. Towers, and D. P. Towers, “Robust color and shape measurement of full color artifacts by RGB fringe projection,” Opt. Eng. 51(2), 021109 (2012).
[Crossref]

Z. Zhang, C. E. Towers, and D. P. Towers, “Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency Selection,” Opt. Express 14(14), 6444–6455 (2006).
[Crossref] [PubMed]

Appl. Opt. (2)

IEEE Trans. Instrum. Meas. (1)

A. R. Varkonyi-Koczy, A. R. Rovid, and T. Hashimoto, “Gradient based synthesized multiple exposure time color HDR image,” IEEE Trans. Instrum. Meas. 57(8), 1779–1785 (2008).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20(5), 470–480 (1998).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

B. Barrientos, M. Cerca, J. Garcia-Marquez, and C. Hernandez-Bernal, “Three-dimensional displacement fields measured in a deforming granular-media surface by combined fringe projection and speckle photography,” J. Opt. A, Pure Appl. Opt. 10(10), 104027 (2008).
[Crossref]

J. Opt. Soc. Am. A (2)

E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7(10), 2032–2040 (1990).
[Crossref] [PubMed]

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. A 72(1), 156–160 (1982).
[Crossref]

Mach. Vis. Appl. (1)

C. Wust and D. W. Capson, “Surface profile measurement using color fringe projection,” Mach. Vis. Appl. 4(3), 193–203 (1991).
[Crossref]

Meas. Sci. Technol. (1)

M. Ota, K. Hamada, H. Kato, and K. Maeno, “Computed-tomographic density measurement of supersonic flow field by colored-grid background oriented schlieren (CGBOS) technique,” Meas. Sci. Technol. 22(10), 104011 (2011).
[Crossref]

Opt. Eng. (4)

A. Blanco, B. Barrientos, and C. Mares, “Performance comparison of background-oriented schlieren and fringe deflection in temperature measurement, part 2: experimental evaluation,” Opt. Eng. 55(6), 064104 (2016).
[Crossref]

L. F. Sesé, P. Siegmann, and E. A. Patterson, “Integrating fringe projection and digital image correlation for high quality measurements of shape changes,” Opt. Eng. 53(4), 044106 (2014).
[Crossref]

P. S. Huang, Q. Hu, F. Jin, and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38(6), 1065–1071 (1999).
[Crossref]

Z. Zhang, C. E. Towers, and D. P. Towers, “Robust color and shape measurement of full color artifacts by RGB fringe projection,” Opt. Eng. 51(2), 021109 (2012).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (3)

M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46(10), 746–757 (2008).
[Crossref]

L. F. Sesé, P. Siegmann, F. A. Diaz, and E. A. Patterson, “Simultaneous in-and-out-of-plane displacement measurement using fringe projection and digital image correlation,” Opt. Lasers Eng. 52, 66–74 (2014).
[Crossref]

B. Chen and S. Zhang, “High-quality 3D shape measurement using saturated fringe patterns,” Opt. Lasers Eng. 87, 83–89 (2016).
[Crossref]

Opt. Lett. (1)

Other (4)

H. Weber, R. Lichtenberger, and T. Wolf, “The combination of speckle correlation and fringe projection for the measurement of dynamic 3-D deformations of airbags caps,” in Proceedings of IUTAM Symposyum on Advanced Optical Methods and Applications in Solid Mechanics, A. Lagarde, ed. (Kluwer Akademic Publishers, 2000), pp. 619–626.

K. J. Gasvik, Optical Metrology (John Wiley and Sons, 2003).

CMOSIS image sensors, “CMV2000 Datasheet v3.2,” 2012.

D. Skocaj and A. Leonardis, “Range image acquisition of objects with non-uniform albedo using structured light range sensor,” in Proceedings of IEEE 15th International Conference on Pattern Recognition (IEEE, 2000), pp. 778–781.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Optical layout for FP-DIC technique.
Fig. 2
Fig. 2 (a) Spectral response –quantum efficiency, QE– of each RGB color channel of camera sensor; (b) spectral reflectance of various pigments (primary RGB colors, yellow Y, black K, white W, gray Gy, and gold Gd); (c) spectral distribution of FP light sources (in legend, words starting with “p” stand for projector, and the second letter indicates primary RGB color or secondary CMY color; also lasB designates the blue laser); (d) spectral distribution of DIC light sources (led denotes a matrix of LEDs; R for red and IR for infrared; UV stands for ultraviolet LEDs matrix; and Na is sodium lamp); (e) Superposition of Figs. 2(a) and 2(d); (f) nonlinear behavior of FP projector (solid lines) and of projector-camera combination (dotted lines with markers); c designates camera. GL and au correspond to gray levels and arbitrary units, respectively.
Fig. 3
Fig. 3 Relative coupling values. For (a) FP projector; (b) UV (U), blue laser (L), IR (I); (c) Dependence of coupling on instructed RGB value to FP projector.
Fig. 4
Fig. 4 Exemplary zoomed-in processed images for each neutral-colored object (we show only cases of optimal illumination for maximum FP contrast). (a) Black pigment. (b) Red pigment. (c) Green pigment. (d) Blue pigment. (e) Yellow pigment.
Fig. 5
Fig. 5 Plots of contrast. (a) FP, (b) DIC. Legend is common to both plots, and notation is as follows: first part of name refers to DIC light source, and last part to FP light source; “p” stands for projector; (1p) means that only one projector (FP projector) is used for both FP and DIC, and (2p) denotes that two different projectors are used (one projector for FP and another for DIC). An instance of light combination is UV-pR –a matrix of UV LEDs is used for DIC and light by red channel of FP projector for FP (red fringes on a black background)-. More details are given in text.
Fig. 6
Fig. 6 Exemplary zoomed-in processed images for each multi-colored object (we show only cases using optimal illumination). (a) 5-color object. (b) 6-color object. (c) 4-color object.
Fig. 7
Fig. 7 Typical measurement of three-dimensional displacement in multi-colored objects (instructed displacement is 1.0 mm). (a) Out-of-plane component. (b) Horizontal cross-section at center of Fig. 7(a). (c) In-plane component. (d) Horizontal cross-section at center of Fig. 7(c).
Fig. 8
Fig. 8 Accuracy of displacement measurement in multi-colored objects. Percentage absolute relative error, (a) out-of-plane (FP) –bars indicate standard deviation– and (b) in-plane (DIC). (c) Contrast evaluation (arbitrary units). The minimum and maximum standard deviations for (a) and (b) are given in the text.
Fig. 9
Fig. 9 Absolute percentage relative error of three-dimensional displacement in multi-colored objects. (a) Out-of-plane (OP) displacement from FP; minimum and maximum values of standard deviations are 0.012 mm (for W, displacement step of 1.0 mm) and 0.28 mm (R, 6 colors, displacement step of 1.0 mm); and (b) in-plane (IP) displacement from DIC –standard deviation is within 0.008 mm (for W, displacement step of 1.0 mm) and 0.1 mm (K, 6 colors, displacement step of 0.25 mm).
Fig. 10
Fig. 10 Three-dimensional displacement in a geological model. (a) Real specimen. (b) Specimen illuminated by UV-pB. From Fig. 10(b), (c) FP image and (d) DIC image. (e) Three-dimensional displacement at length shortening of 9.7%. (f) Three-dimensional displacement at length shortening of 21.6%. Cross-sections of Figs. 10(e) and 10(f): (g) Out-of-plane component and (h) horizontal in-plane component.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

[ R(x,y) G(x,y) B(x,y) ]=[ 0 r C (λ)O(x,y,λ)I(x,y,λ)dλ 0 g C (λ)O(x,y,λ)I(x,y,λ)dλ 0 b C (λ)O(x,y,λ)I(x,y,λ)dλ ].
I(x,y,λ)= r P (x,y) I PR (λ)+ g P (x,y) I PG (λ)+ b P (x,y) I PB (λ),
[ R G B ]=[ 0 r C O I PR dλ 0 r C O I PG dλ 0 r C O I PB dλ 0 g C O I PR dλ 0 g C O I PG dλ 0 g C O I PB dλ 0 b C O I PR dλ 0 b C O I PG dλ 0 b C O I PB dλ ][ r P g P b P ],
[ R G B ]=[ a rR a rG a rB a gR a gG a gB a bR a bG a bB ][ r P g P b P ],
I(x,y)=a(x,y)+b(x,y)cos[ ϕ(x,y)+2π f 0 x ],
Δz= Δϕ 2π P'cosα sinα+(dlcosα)x/(ld) ,
C FP = b(x,y)/a(x,y) ( w F,MIN / w F ) ( K MIN /K ) 1/3 ,
C DIC = σ local I local Γ MAX /Γ ( K MIN /K ),

Metrics