Abstract

A continuous-wave 1.6 µm-emitting InAs Quantum Dash-based Optically-Pumped Vertical-External-Cavity Surface-Emitting Laser on InP is demonstrated. The laser emits in the L-band with a stable linear polarization. Up to 163 mW output power has been obtained in multi-transverse mode regime. Single-frequency regime is achieved in the 1609-1622 nm range, with an estimated linewidth of 22 kHz in a 49 mm cavity, and a maximum emitted power of 7.9 mW at 1611 nm. In such conditions, the laser exhibits a Class-A behavior, with a cut-off frequency of 800 kHz and a shot-noise floor of −158 dB/Hz for 2 mA of detected photocurrent.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1-W antimonide-based vertical external cavity surface emitting laser operating at 2-µm

A. Härkönen, M. Guina, O. Okhotnikov, K. Rößner, M. Hümmer, T. Lehnhardt, M. Müller, A. Forchel, and M. Fischer
Opt. Express 14(14) 6479-6484 (2006)

Enhancement of the polarization stability of a 1.55 µm emitting vertical-cavity surface-emitting laser under modulation using quantum dashes

J.-P. Gauthier, C. Paranthoën, C. Levallois, A. Shuaib, J.-M. Lamy, H. Folliot, M. Perrin, O. Dehaese, N. Chevalier, O. Durand, and A. Le Corre
Opt. Express 20(15) 16832-16837 (2012)

Multiwatt—power highly—coherent compact single—frequency tunable Vertical—External—Cavity—Surface—Emitting—Semiconductor—Laser

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache
Opt. Express 18(14) 14627-14636 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
    [Crossref]
  2. O. G. Okhotnikov, Semiconductor Disk Lasers (Wiley-VCH, 2010).
  3. A. Rahimi-Iman, “Recent advances in VECSELs,” J. Opt. 18(9), 093003 (2016).
    [Crossref]
  4. F. Zhang, B. Heinen, M. Wichmann, C. Möller, B. Kunert, A. Rahimi-Iman, W. Stolz, and M. Koch, “A 23-watt single-frequency vertical-external-cavity surface-emitting laser,” Opt. Express 22(11), 12817–12822 (2014).
    [Crossref] [PubMed]
  5. L. Chaccour, G. Aubin, K. Merghem, J.-L. Oudar, A. Khadour, P. Chatellier, and S. Bouchoule, “Cross-Polarized Dual-Frequency VECSEL at 1.5 μm for Fiber-Based Sensing Applications,” IEEE Photonics J. 8(6), 1–10 (2016).
    [Crossref]
  6. D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
    [Crossref]
  7. P. Cermak, M. Triki, A. Garnache, L. Cerutti, and D. Romanini, “Optical-Feedback Cavity-Enhanced Absorption Spectroscopy Using a Short-Cavity Vertical-External-Cavity Surface-Emitting Laser,” IEEE Photonics Technol. Lett. 22(21), 1607–1609 (2010).
    [Crossref]
  8. E. J. Saarinen, J. Lyytikäinen, S. Ranta, A. Rantamäki, A. Sirbu, V. Iakovlev, E. Kapon, and O. G. Okhotnikov, “750 nm 1.5 W frequency-doubled semiconductor disk laser with a 44 nm tuning range,” Opt. Lett. 40(19), 4380–4383 (2015).
    [Crossref] [PubMed]
  9. P. Dumont, F. Camargo, J.-M. Danet, D. Holleville, S. Guerandel, G. Pillet, G. Baili, L. Morvan, D. Dolfi, I. Gozhyk, G. Beaudoin, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Low-Noise Dual-Frequency Laser for Compact Cs Atomic Clocks,” J. Lightwave Technol. 32(20), 3817–3823 (2014).
    [Crossref]
  10. S. De, G. Baili, M. Alouini, J. C. Harmand, S. Bouchoule, and F. Bretenaker, “Class-A dual-frequency VECSEL at telecom wavelength,” Opt. Lett. 39(19), 5586–5589 (2014).
    [Crossref] [PubMed]
  11. G. Baili, L. Morvan, G. Pillet, S. Bouchoule, Z. Zhao, J. Oudar, L. Ménager, S. Formont, F. Van Dijk, M. Faugeron, M. Alouini, F. Bretenaker, and D. Dolfi, “Ultralow Noise and High-Power VECSEL for High Dynamic Range and Broadband RF/Optical Links,” J. Lightwave Technol. 32(20), 3489–3494 (2014).
    [Crossref]
  12. G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications,” Opt. Lett. 32(6), 650–652 (2007).
    [Crossref] [PubMed]
  13. M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices,” Prog. Quantum Electron. 38(6), 237–313 (2014).
    [Crossref]
  14. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
    [Crossref]
  15. J. M. Lamy, C. Paranthoën, C. Levallois, A. Nakkar, H. Folliot, J. P. Gauthier, O. Dehaese, A. Le Corre, and S. Loualiche, “Polarization control of 1.6μm vertical-cavity surface-emitting lasers using InAs quantum dashes on InP(001),” Appl. Phys. Lett. 95(1), 011117 (2009).
    [Crossref]
  16. J.-P. Gauthier, C. Paranthoën, C. Levallois, A. Shuaib, J.-M. Lamy, H. Folliot, M. Perrin, O. Dehaese, N. Chevalier, O. Durand, and A. Le Corre, “Enhancement of the polarization stability of a 1.55 µm emitting vertical-cavity surface-emitting laser under modulation using quantum dashes,” Opt. Express 20(15), 16832–16837 (2012).
    [Crossref]
  17. F. Taleb, C. Levallois, C. Paranthoën, J.-P. Gauthier, N. Chevalier, M. Perrin, Y. Léger, O. De Sagazan, and A. Le Corre, “VCSEL Based on InAs Quantum-Dashes With a Lasing Operation Over a 117-nm Wavelength Span,” IEEE Photonics Technol. Lett. 25(21), 2126–2128 (2013).
    [Crossref]
  18. J. Boucart, F. Gaborit, C. Fortin, L. Goldstein, J. Jacquet, and K. Leifer, “Optimization of the metamorphic growth of GaAs for long wavelength VCSELs,” J. Cryst. Growth 201–202, 1015–1019 (1999).
    [Crossref]
  19. Z. Zhao, S. Bouchoule, J. Song, E. Galopin, J.-C. Harmand, J. Decobert, G. Aubin, and J.-L. Oudar, “Subpicosecond pulse generation from a 1.56 μm mode-locked VECSEL,” Opt. Lett. 36(22), 4377–4379 (2011).
    [Crossref] [PubMed]
  20. L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
    [Crossref]
  21. B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Tunable single-longitudinal-mode ErYb:glass laser locked by a bulk glass Bragg grating,” Opt. Lett. 31(11), 1663–1665 (2006).
    [Crossref] [PubMed]
  22. A. Rantamäki, J. Rautiainen, A. Sirbu, A. Mereuta, E. Kapon, and O. G. Okhotnikov, “1.56 µm 1 watt single frequency semiconductor disk laser,” Opt. Express 21(2), 2355–2360 (2013).
    [Crossref] [PubMed]
  23. R. Nagarajan, S. Levy, A. Mar, and J. E. Bowers, “Resonantly enhanced semiconductor lasers for efficient transmission of millimeter wave modulated light,” IEEE Photonics Technol. Lett. 5(1), 4–6 (1993).
    [Crossref]
  24. G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87(4), 44005 (2009).
    [Crossref]

2016 (3)

A. Rahimi-Iman, “Recent advances in VECSELs,” J. Opt. 18(9), 093003 (2016).
[Crossref]

L. Chaccour, G. Aubin, K. Merghem, J.-L. Oudar, A. Khadour, P. Chatellier, and S. Bouchoule, “Cross-Polarized Dual-Frequency VECSEL at 1.5 μm for Fiber-Based Sensing Applications,” IEEE Photonics J. 8(6), 1–10 (2016).
[Crossref]

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100 fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

2015 (1)

2014 (5)

2013 (2)

F. Taleb, C. Levallois, C. Paranthoën, J.-P. Gauthier, N. Chevalier, M. Perrin, Y. Léger, O. De Sagazan, and A. Le Corre, “VCSEL Based on InAs Quantum-Dashes With a Lasing Operation Over a 117-nm Wavelength Span,” IEEE Photonics Technol. Lett. 25(21), 2126–2128 (2013).
[Crossref]

A. Rantamäki, J. Rautiainen, A. Sirbu, A. Mereuta, E. Kapon, and O. G. Okhotnikov, “1.56 µm 1 watt single frequency semiconductor disk laser,” Opt. Express 21(2), 2355–2360 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

2010 (1)

P. Cermak, M. Triki, A. Garnache, L. Cerutti, and D. Romanini, “Optical-Feedback Cavity-Enhanced Absorption Spectroscopy Using a Short-Cavity Vertical-External-Cavity Surface-Emitting Laser,” IEEE Photonics Technol. Lett. 22(21), 1607–1609 (2010).
[Crossref]

2009 (2)

J. M. Lamy, C. Paranthoën, C. Levallois, A. Nakkar, H. Folliot, J. P. Gauthier, O. Dehaese, A. Le Corre, and S. Loualiche, “Polarization control of 1.6μm vertical-cavity surface-emitting lasers using InAs quantum dashes on InP(001),” Appl. Phys. Lett. 95(1), 011117 (2009).
[Crossref]

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87(4), 44005 (2009).
[Crossref]

2007 (2)

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications,” Opt. Lett. 32(6), 650–652 (2007).
[Crossref] [PubMed]

2006 (1)

1999 (1)

J. Boucart, F. Gaborit, C. Fortin, L. Goldstein, J. Jacquet, and K. Leifer, “Optimization of the metamorphic growth of GaAs for long wavelength VCSELs,” J. Cryst. Growth 201–202, 1015–1019 (1999).
[Crossref]

1997 (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

1993 (1)

R. Nagarajan, S. Levy, A. Mar, and J. E. Bowers, “Resonantly enhanced semiconductor lasers for efficient transmission of millimeter wave modulated light,” IEEE Photonics Technol. Lett. 5(1), 4–6 (1993).
[Crossref]

1986 (1)

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Accard, A.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Alfieri, C. G. E.

Alouini, M.

Aubin, G.

L. Chaccour, G. Aubin, K. Merghem, J.-L. Oudar, A. Khadour, P. Chatellier, and S. Bouchoule, “Cross-Polarized Dual-Frequency VECSEL at 1.5 μm for Fiber-Based Sensing Applications,” IEEE Photonics J. 8(6), 1–10 (2016).
[Crossref]

Z. Zhao, S. Bouchoule, J. Song, E. Galopin, J.-C. Harmand, J. Decobert, G. Aubin, and J.-L. Oudar, “Subpicosecond pulse generation from a 1.56 μm mode-locked VECSEL,” Opt. Lett. 36(22), 4377–4379 (2011).
[Crossref] [PubMed]

Baili, G.

Beaudoin, G.

Boucart, J.

J. Boucart, F. Gaborit, C. Fortin, L. Goldstein, J. Jacquet, and K. Leifer, “Optimization of the metamorphic growth of GaAs for long wavelength VCSELs,” J. Cryst. Growth 201–202, 1015–1019 (1999).
[Crossref]

Bouchoule, S.

Bowers, J. E.

R. Nagarajan, S. Levy, A. Mar, and J. E. Bowers, “Resonantly enhanced semiconductor lasers for efficient transmission of millimeter wave modulated light,” IEEE Photonics Technol. Lett. 5(1), 4–6 (1993).
[Crossref]

Brenot, R.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Bretenaker, F.

Camargo, F.

Cermak, P.

P. Cermak, M. Triki, A. Garnache, L. Cerutti, and D. Romanini, “Optical-Feedback Cavity-Enhanced Absorption Spectroscopy Using a Short-Cavity Vertical-External-Cavity Surface-Emitting Laser,” IEEE Photonics Technol. Lett. 22(21), 1607–1609 (2010).
[Crossref]

Cerutti, L.

P. Cermak, M. Triki, A. Garnache, L. Cerutti, and D. Romanini, “Optical-Feedback Cavity-Enhanced Absorption Spectroscopy Using a Short-Cavity Vertical-External-Cavity Surface-Emitting Laser,” IEEE Photonics Technol. Lett. 22(21), 1607–1609 (2010).
[Crossref]

Chaccour, L.

L. Chaccour, G. Aubin, K. Merghem, J.-L. Oudar, A. Khadour, P. Chatellier, and S. Bouchoule, “Cross-Polarized Dual-Frequency VECSEL at 1.5 μm for Fiber-Based Sensing Applications,” IEEE Photonics J. 8(6), 1–10 (2016).
[Crossref]

Chatellier, P.

L. Chaccour, G. Aubin, K. Merghem, J.-L. Oudar, A. Khadour, P. Chatellier, and S. Bouchoule, “Cross-Polarized Dual-Frequency VECSEL at 1.5 μm for Fiber-Based Sensing Applications,” IEEE Photonics J. 8(6), 1–10 (2016).
[Crossref]

Chevalier, N.

F. Taleb, C. Levallois, C. Paranthoën, J.-P. Gauthier, N. Chevalier, M. Perrin, Y. Léger, O. De Sagazan, and A. Le Corre, “VCSEL Based on InAs Quantum-Dashes With a Lasing Operation Over a 117-nm Wavelength Span,” IEEE Photonics Technol. Lett. 25(21), 2126–2128 (2013).
[Crossref]

J.-P. Gauthier, C. Paranthoën, C. Levallois, A. Shuaib, J.-M. Lamy, H. Folliot, M. Perrin, O. Dehaese, N. Chevalier, O. Durand, and A. Le Corre, “Enhancement of the polarization stability of a 1.55 µm emitting vertical-cavity surface-emitting laser under modulation using quantum dashes,” Opt. Express 20(15), 16832–16837 (2012).
[Crossref]

Dagens, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Danet, J.-M.

De, S.

De Sagazan, O.

F. Taleb, C. Levallois, C. Paranthoën, J.-P. Gauthier, N. Chevalier, M. Perrin, Y. Léger, O. De Sagazan, and A. Le Corre, “VCSEL Based on InAs Quantum-Dashes With a Lasing Operation Over a 117-nm Wavelength Span,” IEEE Photonics Technol. Lett. 25(21), 2126–2128 (2013).
[Crossref]

Decobert, J.

Dehaese, O.

J.-P. Gauthier, C. Paranthoën, C. Levallois, A. Shuaib, J.-M. Lamy, H. Folliot, M. Perrin, O. Dehaese, N. Chevalier, O. Durand, and A. Le Corre, “Enhancement of the polarization stability of a 1.55 µm emitting vertical-cavity surface-emitting laser under modulation using quantum dashes,” Opt. Express 20(15), 16832–16837 (2012).
[Crossref]

J. M. Lamy, C. Paranthoën, C. Levallois, A. Nakkar, H. Folliot, J. P. Gauthier, O. Dehaese, A. Le Corre, and S. Loualiche, “Polarization control of 1.6μm vertical-cavity surface-emitting lasers using InAs quantum dashes on InP(001),” Appl. Phys. Lett. 95(1), 011117 (2009).
[Crossref]

Derouin, E.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Dijk, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Dolfi, D.

Drisse, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Duan, G. H.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Dumont, P.

Durand, O.

Faugeron, M.

Folliot, H.

J.-P. Gauthier, C. Paranthoën, C. Levallois, A. Shuaib, J.-M. Lamy, H. Folliot, M. Perrin, O. Dehaese, N. Chevalier, O. Durand, and A. Le Corre, “Enhancement of the polarization stability of a 1.55 µm emitting vertical-cavity surface-emitting laser under modulation using quantum dashes,” Opt. Express 20(15), 16832–16837 (2012).
[Crossref]

J. M. Lamy, C. Paranthoën, C. Levallois, A. Nakkar, H. Folliot, J. P. Gauthier, O. Dehaese, A. Le Corre, and S. Loualiche, “Polarization control of 1.6μm vertical-cavity surface-emitting lasers using InAs quantum dashes on InP(001),” Appl. Phys. Lett. 95(1), 011117 (2009).
[Crossref]

Formont, S.

Fortin, C.

J. Boucart, F. Gaborit, C. Fortin, L. Goldstein, J. Jacquet, and K. Leifer, “Optimization of the metamorphic growth of GaAs for long wavelength VCSELs,” J. Cryst. Growth 201–202, 1015–1019 (1999).
[Crossref]

Gaborit, F.

J. Boucart, F. Gaborit, C. Fortin, L. Goldstein, J. Jacquet, and K. Leifer, “Optimization of the metamorphic growth of GaAs for long wavelength VCSELs,” J. Cryst. Growth 201–202, 1015–1019 (1999).
[Crossref]

Galopin, E.

Garnache, A.

P. Cermak, M. Triki, A. Garnache, L. Cerutti, and D. Romanini, “Optical-Feedback Cavity-Enhanced Absorption Spectroscopy Using a Short-Cavity Vertical-External-Cavity Surface-Emitting Laser,” IEEE Photonics Technol. Lett. 22(21), 1607–1609 (2010).
[Crossref]

G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications,” Opt. Lett. 32(6), 650–652 (2007).
[Crossref] [PubMed]

Gauthier, J. P.

J. M. Lamy, C. Paranthoën, C. Levallois, A. Nakkar, H. Folliot, J. P. Gauthier, O. Dehaese, A. Le Corre, and S. Loualiche, “Polarization control of 1.6μm vertical-cavity surface-emitting lasers using InAs quantum dashes on InP(001),” Appl. Phys. Lett. 95(1), 011117 (2009).
[Crossref]

Gauthier, J.-P.

F. Taleb, C. Levallois, C. Paranthoën, J.-P. Gauthier, N. Chevalier, M. Perrin, Y. Léger, O. De Sagazan, and A. Le Corre, “VCSEL Based on InAs Quantum-Dashes With a Lasing Operation Over a 117-nm Wavelength Span,” IEEE Photonics Technol. Lett. 25(21), 2126–2128 (2013).
[Crossref]

J.-P. Gauthier, C. Paranthoën, C. Levallois, A. Shuaib, J.-M. Lamy, H. Folliot, M. Perrin, O. Dehaese, N. Chevalier, O. Durand, and A. Le Corre, “Enhancement of the polarization stability of a 1.55 µm emitting vertical-cavity surface-emitting laser under modulation using quantum dashes,” Opt. Express 20(15), 16832–16837 (2012).
[Crossref]

Georges, P.

Gini, E.

Goldstein, L.

J. Boucart, F. Gaborit, C. Fortin, L. Goldstein, J. Jacquet, and K. Leifer, “Optimization of the metamorphic growth of GaAs for long wavelength VCSELs,” J. Cryst. Growth 201–202, 1015–1019 (1999).
[Crossref]

Golling, M.

Gouezigou, O. L.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Gozhyk, I.

Guerandel, S.

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Harmand, J. C.

Harmand, J.-C.

Heinen, B.

Holleville, D.

Iakovlev, V.

Jacobsson, B.

Jacquet, J.

J. Boucart, F. Gaborit, C. Fortin, L. Goldstein, J. Jacquet, and K. Leifer, “Optimization of the metamorphic growth of GaAs for long wavelength VCSELs,” J. Cryst. Growth 201–202, 1015–1019 (1999).
[Crossref]

Kapon, E.

Keller, U.

Khadour, A.

L. Chaccour, G. Aubin, K. Merghem, J.-L. Oudar, A. Khadour, P. Chatellier, and S. Bouchoule, “Cross-Polarized Dual-Frequency VECSEL at 1.5 μm for Fiber-Based Sensing Applications,” IEEE Photonics J. 8(6), 1–10 (2016).
[Crossref]

Khan, M. Z. M.

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices,” Prog. Quantum Electron. 38(6), 237–313 (2014).
[Crossref]

Koch, M.

Kruger, M.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Kunert, B.

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Lamy, J. M.

J. M. Lamy, C. Paranthoën, C. Levallois, A. Nakkar, H. Folliot, J. P. Gauthier, O. Dehaese, A. Le Corre, and S. Loualiche, “Polarization control of 1.6μm vertical-cavity surface-emitting lasers using InAs quantum dashes on InP(001),” Appl. Phys. Lett. 95(1), 011117 (2009).
[Crossref]

Lamy, J.-M.

Landreau, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Laurell, F.

Le Corre, A.

F. Taleb, C. Levallois, C. Paranthoën, J.-P. Gauthier, N. Chevalier, M. Perrin, Y. Léger, O. De Sagazan, and A. Le Corre, “VCSEL Based on InAs Quantum-Dashes With a Lasing Operation Over a 117-nm Wavelength Span,” IEEE Photonics Technol. Lett. 25(21), 2126–2128 (2013).
[Crossref]

J.-P. Gauthier, C. Paranthoën, C. Levallois, A. Shuaib, J.-M. Lamy, H. Folliot, M. Perrin, O. Dehaese, N. Chevalier, O. Durand, and A. Le Corre, “Enhancement of the polarization stability of a 1.55 µm emitting vertical-cavity surface-emitting laser under modulation using quantum dashes,” Opt. Express 20(15), 16832–16837 (2012).
[Crossref]

J. M. Lamy, C. Paranthoën, C. Levallois, A. Nakkar, H. Folliot, J. P. Gauthier, O. Dehaese, A. Le Corre, and S. Loualiche, “Polarization control of 1.6μm vertical-cavity surface-emitting lasers using InAs quantum dashes on InP(001),” Appl. Phys. Lett. 95(1), 011117 (2009).
[Crossref]

Léger, Y.

F. Taleb, C. Levallois, C. Paranthoën, J.-P. Gauthier, N. Chevalier, M. Perrin, Y. Léger, O. De Sagazan, and A. Le Corre, “VCSEL Based on InAs Quantum-Dashes With a Lasing Operation Over a 117-nm Wavelength Span,” IEEE Photonics Technol. Lett. 25(21), 2126–2128 (2013).
[Crossref]

Leifer, K.

J. Boucart, F. Gaborit, C. Fortin, L. Goldstein, J. Jacquet, and K. Leifer, “Optimization of the metamorphic growth of GaAs for long wavelength VCSELs,” J. Cryst. Growth 201–202, 1015–1019 (1999).
[Crossref]

Lelarge, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Levallois, C.

F. Taleb, C. Levallois, C. Paranthoën, J.-P. Gauthier, N. Chevalier, M. Perrin, Y. Léger, O. De Sagazan, and A. Le Corre, “VCSEL Based on InAs Quantum-Dashes With a Lasing Operation Over a 117-nm Wavelength Span,” IEEE Photonics Technol. Lett. 25(21), 2126–2128 (2013).
[Crossref]

J.-P. Gauthier, C. Paranthoën, C. Levallois, A. Shuaib, J.-M. Lamy, H. Folliot, M. Perrin, O. Dehaese, N. Chevalier, O. Durand, and A. Le Corre, “Enhancement of the polarization stability of a 1.55 µm emitting vertical-cavity surface-emitting laser under modulation using quantum dashes,” Opt. Express 20(15), 16832–16837 (2012).
[Crossref]

J. M. Lamy, C. Paranthoën, C. Levallois, A. Nakkar, H. Folliot, J. P. Gauthier, O. Dehaese, A. Le Corre, and S. Loualiche, “Polarization control of 1.6μm vertical-cavity surface-emitting lasers using InAs quantum dashes on InP(001),” Appl. Phys. Lett. 95(1), 011117 (2009).
[Crossref]

Levy, S.

R. Nagarajan, S. Levy, A. Mar, and J. E. Bowers, “Resonantly enhanced semiconductor lasers for efficient transmission of millimeter wave modulated light,” IEEE Photonics Technol. Lett. 5(1), 4–6 (1993).
[Crossref]

Link, S. M.

Loualiche, S.

J. M. Lamy, C. Paranthoën, C. Levallois, A. Nakkar, H. Folliot, J. P. Gauthier, O. Dehaese, A. Le Corre, and S. Loualiche, “Polarization control of 1.6μm vertical-cavity surface-emitting lasers using InAs quantum dashes on InP(001),” Appl. Phys. Lett. 95(1), 011117 (2009).
[Crossref]

Lucas-Leclin, G.

Lyytikäinen, J.

Make, D.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Malherbe, T.

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87(4), 44005 (2009).
[Crossref]

Mandelberg, H.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Mangold, M.

Mar, A.

R. Nagarajan, S. Levy, A. Mar, and J. E. Bowers, “Resonantly enhanced semiconductor lasers for efficient transmission of millimeter wave modulated light,” IEEE Photonics Technol. Lett. 5(1), 4–6 (1993).
[Crossref]

McGrath, P.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Ménager, L.

Mereuta, A.

Merghem, K.

L. Chaccour, G. Aubin, K. Merghem, J.-L. Oudar, A. Khadour, P. Chatellier, and S. Bouchoule, “Cross-Polarized Dual-Frequency VECSEL at 1.5 μm for Fiber-Based Sensing Applications,” IEEE Photonics J. 8(6), 1–10 (2016).
[Crossref]

Möller, C.

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Morvan, L.

Nagarajan, R.

R. Nagarajan, S. Levy, A. Mar, and J. E. Bowers, “Resonantly enhanced semiconductor lasers for efficient transmission of millimeter wave modulated light,” IEEE Photonics Technol. Lett. 5(1), 4–6 (1993).
[Crossref]

Nakkar, A.

J. M. Lamy, C. Paranthoën, C. Levallois, A. Nakkar, H. Folliot, J. P. Gauthier, O. Dehaese, A. Le Corre, and S. Loualiche, “Polarization control of 1.6μm vertical-cavity surface-emitting lasers using InAs quantum dashes on InP(001),” Appl. Phys. Lett. 95(1), 011117 (2009).
[Crossref]

Ng, T. K.

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices,” Prog. Quantum Electron. 38(6), 237–313 (2014).
[Crossref]

Okhotnikov, O. G.

Ooi, B. S.

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices,” Prog. Quantum Electron. 38(6), 237–313 (2014).
[Crossref]

Oudar, J.

Oudar, J.-L.

L. Chaccour, G. Aubin, K. Merghem, J.-L. Oudar, A. Khadour, P. Chatellier, and S. Bouchoule, “Cross-Polarized Dual-Frequency VECSEL at 1.5 μm for Fiber-Based Sensing Applications,” IEEE Photonics J. 8(6), 1–10 (2016).
[Crossref]

Z. Zhao, S. Bouchoule, J. Song, E. Galopin, J.-C. Harmand, J. Decobert, G. Aubin, and J.-L. Oudar, “Subpicosecond pulse generation from a 1.56 μm mode-locked VECSEL,” Opt. Lett. 36(22), 4377–4379 (2011).
[Crossref] [PubMed]

Paranthoën, C.

F. Taleb, C. Levallois, C. Paranthoën, J.-P. Gauthier, N. Chevalier, M. Perrin, Y. Léger, O. De Sagazan, and A. Le Corre, “VCSEL Based on InAs Quantum-Dashes With a Lasing Operation Over a 117-nm Wavelength Span,” IEEE Photonics Technol. Lett. 25(21), 2126–2128 (2013).
[Crossref]

J.-P. Gauthier, C. Paranthoën, C. Levallois, A. Shuaib, J.-M. Lamy, H. Folliot, M. Perrin, O. Dehaese, N. Chevalier, O. Durand, and A. Le Corre, “Enhancement of the polarization stability of a 1.55 µm emitting vertical-cavity surface-emitting laser under modulation using quantum dashes,” Opt. Express 20(15), 16832–16837 (2012).
[Crossref]

J. M. Lamy, C. Paranthoën, C. Levallois, A. Nakkar, H. Folliot, J. P. Gauthier, O. Dehaese, A. Le Corre, and S. Loualiche, “Polarization control of 1.6μm vertical-cavity surface-emitting lasers using InAs quantum dashes on InP(001),” Appl. Phys. Lett. 95(1), 011117 (2009).
[Crossref]

Pasiskevicius, V.

Perrin, M.

F. Taleb, C. Levallois, C. Paranthoën, J.-P. Gauthier, N. Chevalier, M. Perrin, Y. Léger, O. De Sagazan, and A. Le Corre, “VCSEL Based on InAs Quantum-Dashes With a Lasing Operation Over a 117-nm Wavelength Span,” IEEE Photonics Technol. Lett. 25(21), 2126–2128 (2013).
[Crossref]

J.-P. Gauthier, C. Paranthoën, C. Levallois, A. Shuaib, J.-M. Lamy, H. Folliot, M. Perrin, O. Dehaese, N. Chevalier, O. Durand, and A. Le Corre, “Enhancement of the polarization stability of a 1.55 µm emitting vertical-cavity surface-emitting laser under modulation using quantum dashes,” Opt. Express 20(15), 16832–16837 (2012).
[Crossref]

Pillet, G.

Poingt, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Pommereau, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Provost, J. G.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Rahimi-Iman, A.

Ranta, S.

Rantamäki, A.

Rautiainen, J.

Renaudier, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Richter, L.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Romanini, D.

P. Cermak, M. Triki, A. Garnache, L. Cerutti, and D. Romanini, “Optical-Feedback Cavity-Enhanced Absorption Spectroscopy Using a Short-Cavity Vertical-External-Cavity Surface-Emitting Laser,” IEEE Photonics Technol. Lett. 22(21), 1607–1609 (2010).
[Crossref]

Rousseau, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

Saarinen, E. J.

Sagnes, I.

Shuaib, A.

Sirbu, A.

Song, J.

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Stolz, W.

Taleb, F.

F. Taleb, C. Levallois, C. Paranthoën, J.-P. Gauthier, N. Chevalier, M. Perrin, Y. Léger, O. De Sagazan, and A. Le Corre, “VCSEL Based on InAs Quantum-Dashes With a Lasing Operation Over a 117-nm Wavelength Span,” IEEE Photonics Technol. Lett. 25(21), 2126–2128 (2013).
[Crossref]

Tilma, B. W.

Triki, M.

P. Cermak, M. Triki, A. Garnache, L. Cerutti, and D. Romanini, “Optical-Feedback Cavity-Enhanced Absorption Spectroscopy Using a Short-Cavity Vertical-External-Cavity Surface-Emitting Laser,” IEEE Photonics Technol. Lett. 22(21), 1607–1609 (2010).
[Crossref]

Van Dijk, F.

Waldburger, D.

Wichmann, M.

Zhang, F.

Zhao, Z.

Appl. Phys. Lett. (1)

J. M. Lamy, C. Paranthoën, C. Levallois, A. Nakkar, H. Folliot, J. P. Gauthier, O. Dehaese, A. Le Corre, and S. Loualiche, “Polarization control of 1.6μm vertical-cavity surface-emitting lasers using InAs quantum dashes on InP(001),” Appl. Phys. Lett. 95(1), 011117 (2009).
[Crossref]

Europhys. Lett. (1)

G. Baili, M. Alouini, T. Malherbe, D. Dolfi, I. Sagnes, and F. Bretenaker, “Direct observation of the class-B to class-A transition in the dynamical behavior of a semiconductor laser,” Europhys. Lett. 87(4), 44005 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J. G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G. H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[Crossref]

IEEE Photonics J. (1)

L. Chaccour, G. Aubin, K. Merghem, J.-L. Oudar, A. Khadour, P. Chatellier, and S. Bouchoule, “Cross-Polarized Dual-Frequency VECSEL at 1.5 μm for Fiber-Based Sensing Applications,” IEEE Photonics J. 8(6), 1–10 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (4)

P. Cermak, M. Triki, A. Garnache, L. Cerutti, and D. Romanini, “Optical-Feedback Cavity-Enhanced Absorption Spectroscopy Using a Short-Cavity Vertical-External-Cavity Surface-Emitting Laser,” IEEE Photonics Technol. Lett. 22(21), 1607–1609 (2010).
[Crossref]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

F. Taleb, C. Levallois, C. Paranthoën, J.-P. Gauthier, N. Chevalier, M. Perrin, Y. Léger, O. De Sagazan, and A. Le Corre, “VCSEL Based on InAs Quantum-Dashes With a Lasing Operation Over a 117-nm Wavelength Span,” IEEE Photonics Technol. Lett. 25(21), 2126–2128 (2013).
[Crossref]

R. Nagarajan, S. Levy, A. Mar, and J. E. Bowers, “Resonantly enhanced semiconductor lasers for efficient transmission of millimeter wave modulated light,” IEEE Photonics Technol. Lett. 5(1), 4–6 (1993).
[Crossref]

J. Cryst. Growth (1)

J. Boucart, F. Gaborit, C. Fortin, L. Goldstein, J. Jacquet, and K. Leifer, “Optimization of the metamorphic growth of GaAs for long wavelength VCSELs,” J. Cryst. Growth 201–202, 1015–1019 (1999).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

A. Rahimi-Iman, “Recent advances in VECSELs,” J. Opt. 18(9), 093003 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Optica (1)

Prog. Quantum Electron. (1)

M. Z. M. Khan, T. K. Ng, and B. S. Ooi, “Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices,” Prog. Quantum Electron. 38(6), 237–313 (2014).
[Crossref]

Other (1)

O. G. Okhotnikov, Semiconductor Disk Lasers (Wiley-VCH, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) OP-QDH-VECSEL structure and internal optical field intensity. (b) 2x2 µm2 AFM image of the last uncapped plane from a set of six QDH layers. (c) Normalized room-temperature polarization-resolved PL spectra of SQW-based and QDH-based active regions (6 planes each). (d) Cavity setup (L: lens, E: etalon, OC: output coupler, OI: optical isolator).
Fig. 2
Fig. 2 Output power vs incident pump power characteristics (left) and emission spectra (right) of the OP-QDH-VECSEL in the case of (a) the multi-longitudinal mode and (b) the single-frequency operation.
Fig. 3
Fig. 3 (a) OP-QDH-VECSEL delayed self-heterodyne linewidth and (b) phase noise.
Fig. 4
Fig. 4 RIN spectra of the OP-QDH-VECSEL (black curve) and the pump (red curve) with (a) and without (b) the FBG. (c) OP-QDH-VECSEL transfer function. RBW = 10 kHz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H ( f ) = γ c a v 2 [ γ c a v ( r 1 r ) ] 2 + [ 2 π f ] 2 .

Metrics