Abstract

Subwavelength grating (SWG) waveguides are integrated photonic structures with a pitch substantially smaller than wavelength for which they are designed, so that diffraction effects are suppressed. SWG operates as an artificial metamaterial with an equivalent refractive index which depends on the geometry of the structure and the polarization of the propagating wave. SWG waveguides have been advantageously used in silicon photonics, resulting in significant performance improvements for many practical devices, including highly efficient fiber-chip couplers, waveguide crossings, broadband multimode interference (MMI) couplers, evanescent field sensors and polarization beam splitters, to name a few. Here we present a theoretical and experimental study of the influence of disorder effects in SWG waveguides. We demonstrate via electromagnetic simulations and experimental measurements that even a comparatively small jitter (~5 nm) in the position and size of the SWG segments may cause a dramatic reduction in the transmittance for wide (multimode) SWG waveguides, while for narrow (single mode) waveguides this effect is negligible. Our study shows that the impact of the jitter on SWG waveguide performance is directly related to the modal confinement.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of narrowband Bragg spectral filters in subwavelength grating metamaterial waveguides

Jiří Čtyroký, Juan Gonzalo Wangüemert-Pérez, Pavel Kwiecien, Ivan Richter, Ján Litvik, Jens H. Schmid, Íñigo Molina-Fernández, Alejandro Ortega-Moñux, Milan Dado, and Pavel Cheben
Opt. Express 26(1) 179-194 (2018)

Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding

J. Soler Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich
Opt. Express 24(20) 22908-22916 (2016)

Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide

Przemek J. Bock, Pavel Cheben, Jens H. Schmid, Jean Lapointe, André Delâge, Siegfried Janz, Geof C. Aers, Dan-Xia Xu, Adam Densmore, and Trevor J. Hall
Opt. Express 18(19) 20251-20262 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Rytov, “The electromagnetic properties of finely layered medium,” Sov. Phys. JETP 2, 466–475 (1956).
  2. M. W. Farn, “Binary gratings with increased efficiency,” Appl. Opt. 31(22), 4453–4458 (1992).
    [Crossref] [PubMed]
  3. P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14(11), 4695–4702 (2006).
    [Crossref] [PubMed]
  4. P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
    [Crossref] [PubMed]
  5. P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
    [Crossref] [PubMed]
  6. D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
    [Crossref] [PubMed]
  7. D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
    [Crossref] [PubMed]
  8. X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012).
    [Crossref]
  9. A. Sánchez-Postigo, J. Gonzalo Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013–3016 (2016).
    [Crossref] [PubMed]
  10. J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D. X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
    [Crossref] [PubMed]
  11. J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
    [Crossref] [PubMed]
  12. H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. Jaeger, “Broadband 2 × 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
    [Crossref] [PubMed]
  13. R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
    [Crossref]
  14. Y. Xiong, J. G. Wangüemert-Pérez, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance,” Opt. Lett. 39(24), 6931–6934 (2014).
    [Crossref] [PubMed]
  15. L. Liu, Q. Deng, and Z. Zhou, “Manipulation of beat length and wavelength dependence of a polarization beam splitter using a subwavelength grating,” Opt. Lett. 41(21), 5126–5129 (2016).
    [Crossref] [PubMed]
  16. Y. Xu and J. Xiao, “Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler,” Sci. Rep. 6(1), 27949 (2016).
    [Crossref] [PubMed]
  17. D. Pérez-Galacho, D. Marris-Morini, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and L. Vivien, “Add/Drop Mode-Division Multiplexer Based on a Mach–Zehnder Interferometer and Periodic Waveguides,” IEEE Photonics J. 7(4), 7800907 (2015).
    [Crossref]
  18. J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
    [Crossref] [PubMed]
  19. P. J. Bock, P. Cheben, A. V. Velasco, J. H. Schmid, A. Delâge, M. Florjańczyk, J. Lapointe, D.-X. Xu, M. Vachon, S. Janz, and M. L. Calvo, “Subwavelength grating Fourier-transform interferometer array in silicon-on-insulator,” Laser Photonics Rev. 7(6), 67–70 (2013).
    [Crossref]
  20. J. S. Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24(20), 22908–22916 (2016).
    [Crossref] [PubMed]
  21. R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, I. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
    [Crossref]
  22. L. R. Chen, “Subwavelength grating waveguide devices in silicon-on-insulators for integrated microwave photonics (Invited Paper),” Chin. Opt. Lett. 15, 010004 (2017).
    [Crossref]
  23. D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides: guiding light through imperfections,” Adv. Opt. Photonics 6(2), 156–224 (2014).
    [Crossref]
  24. D. Pérez-Galacho, R. Halir, L. F. Zavargo-Peche, J. G. Wangüemert-Pérez, A. Ortega-Moñux, I. Molina-Fernández, and P. Cheben, “Adiabatic transitions for sub-wavelength grating waveguides,” Proceedings of the European Conference on Integrated Optics, Barcelona, Spain, 18–20 April 2012, paper 71.
  25. J. D. Sarmiento-Merenguel, A. Ortega-Moñux, J. M. Fédéli, J. G. Wangüemert-Pérez, C. Alonso-Ramos, E. Durán-Valdeiglesias, P. Cheben, Í. Molina-Fernández, and R. Halir, “Controlling leakage losses in subwavelength grating silicon metamaterial waveguides,” Opt. Lett. 41(15), 3443–3446 (2016).
    [Crossref] [PubMed]
  26. L. Zavargo-Peche, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagnetics Res. 123, 447–465 (2012).
    [Crossref]
  27. J. Čtyroký, “3-D bidirectional propagation algorithm based on Fourier series,” J. Lightwave Technol. 30(23), 3699–3708 (2012).
    [Crossref]
  28. T. Barwicz and H. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B 21(6), 2892–2896 (2003).
    [Crossref]
  29. C. L. Chen, Foundations for guide-wave optics, (Wiley-interscience, Hoboken, New Jersey, 2007).

2017 (1)

2016 (10)

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
[Crossref] [PubMed]

J. S. Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24(20), 22908–22916 (2016).
[Crossref] [PubMed]

J. D. Sarmiento-Merenguel, A. Ortega-Moñux, J. M. Fédéli, J. G. Wangüemert-Pérez, C. Alonso-Ramos, E. Durán-Valdeiglesias, P. Cheben, Í. Molina-Fernández, and R. Halir, “Controlling leakage losses in subwavelength grating silicon metamaterial waveguides,” Opt. Lett. 41(15), 3443–3446 (2016).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
[Crossref] [PubMed]

H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. Jaeger, “Broadband 2 × 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

A. Sánchez-Postigo, J. Gonzalo Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013–3016 (2016).
[Crossref] [PubMed]

L. Liu, Q. Deng, and Z. Zhou, “Manipulation of beat length and wavelength dependence of a polarization beam splitter using a subwavelength grating,” Opt. Lett. 41(21), 5126–5129 (2016).
[Crossref] [PubMed]

Y. Xu and J. Xiao, “Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler,” Sci. Rep. 6(1), 27949 (2016).
[Crossref] [PubMed]

2015 (4)

D. Pérez-Galacho, D. Marris-Morini, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and L. Vivien, “Add/Drop Mode-Division Multiplexer Based on a Mach–Zehnder Interferometer and Periodic Waveguides,” IEEE Photonics J. 7(4), 7800907 (2015).
[Crossref]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, I. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

2014 (3)

2013 (1)

P. J. Bock, P. Cheben, A. V. Velasco, J. H. Schmid, A. Delâge, M. Florjańczyk, J. Lapointe, D.-X. Xu, M. Vachon, S. Janz, and M. L. Calvo, “Subwavelength grating Fourier-transform interferometer array in silicon-on-insulator,” Laser Photonics Rev. 7(6), 67–70 (2013).
[Crossref]

2012 (3)

L. Zavargo-Peche, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagnetics Res. 123, 447–465 (2012).
[Crossref]

J. Čtyroký, “3-D bidirectional propagation algorithm based on Fourier series,” J. Lightwave Technol. 30(23), 3699–3708 (2012).
[Crossref]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012).
[Crossref]

2010 (1)

2006 (1)

2003 (1)

T. Barwicz and H. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B 21(6), 2892–2896 (2003).
[Crossref]

1992 (1)

1956 (1)

S. M. Rytov, “The electromagnetic properties of finely layered medium,” Sov. Phys. JETP 2, 466–475 (1956).

Adams, R.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
[Crossref] [PubMed]

Alonso-Ramos, C.

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

J. D. Sarmiento-Merenguel, A. Ortega-Moñux, J. M. Fédéli, J. G. Wangüemert-Pérez, C. Alonso-Ramos, E. Durán-Valdeiglesias, P. Cheben, Í. Molina-Fernández, and R. Halir, “Controlling leakage losses in subwavelength grating silicon metamaterial waveguides,” Opt. Lett. 41(15), 3443–3446 (2016).
[Crossref] [PubMed]

J. S. Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24(20), 22908–22916 (2016).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, I. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D. X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

Alonso-Ramos, C. A.

Ashrafi, R.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
[Crossref] [PubMed]

Barwicz, T.

T. Barwicz and H. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B 21(6), 2892–2896 (2003).
[Crossref]

Benedikovic, D.

Bock, P. J.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, I. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

P. J. Bock, P. Cheben, A. V. Velasco, J. H. Schmid, A. Delâge, M. Florjańczyk, J. Lapointe, D.-X. Xu, M. Vachon, S. Janz, and M. L. Calvo, “Subwavelength grating Fourier-transform interferometer array in silicon-on-insulator,” Laser Photonics Rev. 7(6), 67–70 (2013).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
[Crossref] [PubMed]

Calvo, M. L.

P. J. Bock, P. Cheben, A. V. Velasco, J. H. Schmid, A. Delâge, M. Florjańczyk, J. Lapointe, D.-X. Xu, M. Vachon, S. Janz, and M. L. Calvo, “Subwavelength grating Fourier-transform interferometer array in silicon-on-insulator,” Laser Photonics Rev. 7(6), 67–70 (2013).
[Crossref]

Capmany, J.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
[Crossref] [PubMed]

Cheben, P.

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

A. Sánchez-Postigo, J. Gonzalo Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013–3016 (2016).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

J. S. Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24(20), 22908–22916 (2016).
[Crossref] [PubMed]

J. D. Sarmiento-Merenguel, A. Ortega-Moñux, J. M. Fédéli, J. G. Wangüemert-Pérez, C. Alonso-Ramos, E. Durán-Valdeiglesias, P. Cheben, Í. Molina-Fernández, and R. Halir, “Controlling leakage losses in subwavelength grating silicon metamaterial waveguides,” Opt. Lett. 41(15), 3443–3446 (2016).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, I. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D. X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

Y. Xiong, J. G. Wangüemert-Pérez, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance,” Opt. Lett. 39(24), 6931–6934 (2014).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, A. V. Velasco, J. H. Schmid, A. Delâge, M. Florjańczyk, J. Lapointe, D.-X. Xu, M. Vachon, S. Janz, and M. L. Calvo, “Subwavelength grating Fourier-transform interferometer array in silicon-on-insulator,” Laser Photonics Rev. 7(6), 67–70 (2013).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
[Crossref] [PubMed]

P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14(11), 4695–4702 (2006).
[Crossref] [PubMed]

Chen, L. R.

L. R. Chen, “Subwavelength grating waveguide devices in silicon-on-insulators for integrated microwave photonics (Invited Paper),” Chin. Opt. Lett. 15, 010004 (2017).
[Crossref]

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
[Crossref] [PubMed]

Chen, R. T.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012).
[Crossref]

Cheung, K. C.

Chrostowski, L.

Covey, J.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012).
[Crossref]

Ctyroký, J.

Dado, M.

Delâge, A.

P. J. Bock, P. Cheben, A. V. Velasco, J. H. Schmid, A. Delâge, M. Florjańczyk, J. Lapointe, D.-X. Xu, M. Vachon, S. Janz, and M. L. Calvo, “Subwavelength grating Fourier-transform interferometer array in silicon-on-insulator,” Laser Photonics Rev. 7(6), 67–70 (2013).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
[Crossref] [PubMed]

Deng, Q.

Densmore, A.

Donzella, V.

Durán-Valdeiglesias, E.

Farn, M. W.

Fédéli, J. M.

Florjanczyk, M.

P. J. Bock, P. Cheben, A. V. Velasco, J. H. Schmid, A. Delâge, M. Florjańczyk, J. Lapointe, D.-X. Xu, M. Vachon, S. Janz, and M. L. Calvo, “Subwavelength grating Fourier-transform interferometer array in silicon-on-insulator,” Laser Photonics Rev. 7(6), 67–70 (2013).
[Crossref]

Flueckiger, J.

Gasulla, I.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
[Crossref] [PubMed]

Glesk, I.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
[Crossref] [PubMed]

Gonzalo Wangüemert-Pérez, J.

Halir, R.

A. Sánchez-Postigo, J. Gonzalo Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013–3016 (2016).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

J. D. Sarmiento-Merenguel, A. Ortega-Moñux, J. M. Fédéli, J. G. Wangüemert-Pérez, C. Alonso-Ramos, E. Durán-Valdeiglesias, P. Cheben, Í. Molina-Fernández, and R. Halir, “Controlling leakage losses in subwavelength grating silicon metamaterial waveguides,” Opt. Lett. 41(15), 3443–3446 (2016).
[Crossref] [PubMed]

J. S. Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24(20), 22908–22916 (2016).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, I. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D. X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

Hall, T. J.

Hosseini, A.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012).
[Crossref]

Jaeger, N. A.

Janz, S.

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, I. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

P. J. Bock, P. Cheben, A. V. Velasco, J. H. Schmid, A. Delâge, M. Florjańczyk, J. Lapointe, D.-X. Xu, M. Vachon, S. Janz, and M. L. Calvo, “Subwavelength grating Fourier-transform interferometer array in silicon-on-insulator,” Laser Photonics Rev. 7(6), 67–70 (2013).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
[Crossref] [PubMed]

P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14(11), 4695–4702 (2006).
[Crossref] [PubMed]

Khokhar, A. Z.

Kwong, D.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012).
[Crossref]

Lamontagne, B.

Lapointe, J.

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, I. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

P. J. Bock, P. Cheben, A. V. Velasco, J. H. Schmid, A. Delâge, M. Florjańczyk, J. Lapointe, D.-X. Xu, M. Vachon, S. Janz, and M. L. Calvo, “Subwavelength grating Fourier-transform interferometer array in silicon-on-insulator,” Laser Photonics Rev. 7(6), 67–70 (2013).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
[Crossref] [PubMed]

Lin, S.

Liu, L.

Lu, Z.

Luque-González, J. M.

A. Sánchez-Postigo, J. Gonzalo Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013–3016 (2016).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

Marris-Morini, D.

D. Pérez-Galacho, D. Marris-Morini, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and L. Vivien, “Add/Drop Mode-Division Multiplexer Based on a Mach–Zehnder Interferometer and Periodic Waveguides,” IEEE Photonics J. 7(4), 7800907 (2015).
[Crossref]

Mashanovich, G. Z.

Melati, D.

D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides: guiding light through imperfections,” Adv. Opt. Photonics 6(2), 156–224 (2014).
[Crossref]

Melloni, A.

D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides: guiding light through imperfections,” Adv. Opt. Photonics 6(2), 156–224 (2014).
[Crossref]

Molina-Fernández, I.

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

J. S. Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24(20), 22908–22916 (2016).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, I. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D. X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

L. Zavargo-Peche, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagnetics Res. 123, 447–465 (2012).
[Crossref]

Molina-Fernández, Í.

Morichetti, F.

D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides: guiding light through imperfections,” Adv. Opt. Photonics 6(2), 156–224 (2014).
[Crossref]

Nedeljkovic, M.

Ortega-Moñux, A.

J. S. Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24(20), 22908–22916 (2016).
[Crossref] [PubMed]

J. D. Sarmiento-Merenguel, A. Ortega-Moñux, J. M. Fédéli, J. G. Wangüemert-Pérez, C. Alonso-Ramos, E. Durán-Valdeiglesias, P. Cheben, Í. Molina-Fernández, and R. Halir, “Controlling leakage losses in subwavelength grating silicon metamaterial waveguides,” Opt. Lett. 41(15), 3443–3446 (2016).
[Crossref] [PubMed]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

A. Sánchez-Postigo, J. Gonzalo Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013–3016 (2016).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

D. Pérez-Galacho, D. Marris-Morini, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and L. Vivien, “Add/Drop Mode-Division Multiplexer Based on a Mach–Zehnder Interferometer and Periodic Waveguides,” IEEE Photonics J. 7(4), 7800907 (2015).
[Crossref]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, I. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D. X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

L. Zavargo-Peche, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagnetics Res. 123, 447–465 (2012).
[Crossref]

Painchaud, Y.

Penades, J. S.

Pérez-Galacho, D.

D. Pérez-Galacho, D. Marris-Morini, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and L. Vivien, “Add/Drop Mode-Division Multiplexer Based on a Mach–Zehnder Interferometer and Periodic Waveguides,” IEEE Photonics J. 7(4), 7800907 (2015).
[Crossref]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D. X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

Picard, M.-J.

Qu, Z.

Ratner, D. M.

Rytov, S. M.

S. M. Rytov, “The electromagnetic properties of finely layered medium,” Sov. Phys. JETP 2, 466–475 (1956).

Sánchez-Postigo, A.

Sarmiento-Merenguel, J. D.

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

J. D. Sarmiento-Merenguel, A. Ortega-Moñux, J. M. Fédéli, J. G. Wangüemert-Pérez, C. Alonso-Ramos, E. Durán-Valdeiglesias, P. Cheben, Í. Molina-Fernández, and R. Halir, “Controlling leakage losses in subwavelength grating silicon metamaterial waveguides,” Opt. Lett. 41(15), 3443–3446 (2016).
[Crossref] [PubMed]

Schmid, J. H.

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

A. Sánchez-Postigo, J. Gonzalo Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013–3016 (2016).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, I. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Y. Xiong, J. G. Wangüemert-Pérez, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance,” Opt. Lett. 39(24), 6931–6934 (2014).
[Crossref] [PubMed]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D. X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, A. V. Velasco, J. H. Schmid, A. Delâge, M. Florjańczyk, J. Lapointe, D.-X. Xu, M. Vachon, S. Janz, and M. L. Calvo, “Subwavelength grating Fourier-transform interferometer array in silicon-on-insulator,” Laser Photonics Rev. 7(6), 67–70 (2013).
[Crossref]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
[Crossref] [PubMed]

Schmidt, S.

Sherwali, A.

Smith, H.

T. Barwicz and H. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B 21(6), 2892–2896 (2003).
[Crossref]

Subbaraman, H.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012).
[Crossref]

Vachon, M.

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

P. J. Bock, P. Cheben, A. V. Velasco, J. H. Schmid, A. Delâge, M. Florjańczyk, J. Lapointe, D.-X. Xu, M. Vachon, S. Janz, and M. L. Calvo, “Subwavelength grating Fourier-transform interferometer array in silicon-on-insulator,” Laser Photonics Rev. 7(6), 67–70 (2013).
[Crossref]

Velasco, A. V.

P. J. Bock, P. Cheben, A. V. Velasco, J. H. Schmid, A. Delâge, M. Florjańczyk, J. Lapointe, D.-X. Xu, M. Vachon, S. Janz, and M. L. Calvo, “Subwavelength grating Fourier-transform interferometer array in silicon-on-insulator,” Laser Photonics Rev. 7(6), 67–70 (2013).
[Crossref]

Vivien, L.

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Pérez-Galacho, D. Marris-Morini, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and L. Vivien, “Add/Drop Mode-Division Multiplexer Based on a Mach–Zehnder Interferometer and Periodic Waveguides,” IEEE Photonics J. 7(4), 7800907 (2015).
[Crossref]

Wang, J.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
[Crossref] [PubMed]

Wang, S.

Wang, Y.

Wangüemert-Pérez, J. G.

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

J. D. Sarmiento-Merenguel, A. Ortega-Moñux, J. M. Fédéli, J. G. Wangüemert-Pérez, C. Alonso-Ramos, E. Durán-Valdeiglesias, P. Cheben, Í. Molina-Fernández, and R. Halir, “Controlling leakage losses in subwavelength grating silicon metamaterial waveguides,” Opt. Lett. 41(15), 3443–3446 (2016).
[Crossref] [PubMed]

J. S. Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24(20), 22908–22916 (2016).
[Crossref] [PubMed]

D. Pérez-Galacho, D. Marris-Morini, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and L. Vivien, “Add/Drop Mode-Division Multiplexer Based on a Mach–Zehnder Interferometer and Periodic Waveguides,” IEEE Photonics J. 7(4), 7800907 (2015).
[Crossref]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, I. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Y. Xiong, J. G. Wangüemert-Pérez, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance,” Opt. Lett. 39(24), 6931–6934 (2014).
[Crossref] [PubMed]

L. Zavargo-Peche, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagnetics Res. 123, 447–465 (2012).
[Crossref]

Xiao, J.

Y. Xu and J. Xiao, “Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler,” Sci. Rep. 6(1), 27949 (2016).
[Crossref] [PubMed]

Xiong, Y.

Xu, D.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, I. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

Xu, D. X.

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D. X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
[Crossref] [PubMed]

Xu, D.-X.

Xu, X.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012).
[Crossref]

Xu, Y.

Y. Xu and J. Xiao, “Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler,” Sci. Rep. 6(1), 27949 (2016).
[Crossref] [PubMed]

Ye, W. N.

Yun, H.

Zavargo-Peche, L.

L. Zavargo-Peche, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagnetics Res. 123, 447–465 (2012).
[Crossref]

Zhang, F.

Zhou, Z.

Adv. Opt. Photonics (1)

D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides: guiding light through imperfections,” Adv. Opt. Photonics 6(2), 156–224 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101(3), 031109 (2012).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Photonics J. (1)

D. Pérez-Galacho, D. Marris-Morini, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and L. Vivien, “Add/Drop Mode-Division Multiplexer Based on a Mach–Zehnder Interferometer and Periodic Waveguides,” IEEE Photonics J. 7(4), 7800907 (2015).
[Crossref]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. B (1)

T. Barwicz and H. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B 21(6), 2892–2896 (2003).
[Crossref]

Laser Photonics Rev. (3)

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. Xu, J. G. Wangüemert-Pérez, I. Molina-Fernández, and S. Janz, “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photonics Rev. 9(1), 25–49 (2015).
[Crossref]

P. J. Bock, P. Cheben, A. V. Velasco, J. H. Schmid, A. Delâge, M. Florjańczyk, J. Lapointe, D.-X. Xu, M. Vachon, S. Janz, and M. L. Calvo, “Subwavelength grating Fourier-transform interferometer array in silicon-on-insulator,” Laser Photonics Rev. 7(6), 67–70 (2013).
[Crossref]

R. Halir, P. Cheben, J. M. Luque-González, J. D. Sarmiento-Merenguel, J. H. Schmid, J. G. Wangüemert-Pérez, D. X. Xu, S. Wang, A. Ortega-Moñux, and I. Molina-Fernández, “Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial,” Laser Photonics Rev. 10(6), 1039–1046 (2016).
[Crossref]

Opt. Express (6)

J. S. Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24(20), 22908–22916 (2016).
[Crossref] [PubMed]

J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner, L. Chrostowski, and K. C. Cheung, “Sub-wavelength grating for enhanced ring resonator biosensor,” Opt. Express 24(14), 15672–15686 (2016).
[Crossref] [PubMed]

P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14(11), 4695–4702 (2006).
[Crossref] [PubMed]

P. Cheben, J. H. Schmid, S. Wang, D.-X. Xu, M. Vachon, S. Janz, J. Lapointe, Y. Painchaud, and M.-J. Picard, “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553–22563 (2015).
[Crossref] [PubMed]

D. Benedikovic, P. Cheben, J. H. Schmid, D. X. Xu, B. Lamontagne, S. Wang, J. Lapointe, R. Halir, A. Ortega-Moñux, S. Janz, and M. Dado, “Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides,” Opt. Express 23(17), 22628–22635 (2015).
[Crossref] [PubMed]

D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, R. Halir, A. Ortega-Moñux, D. X. Xu, L. Vivien, J. Lapointe, S. Janz, and M. Dado, “Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 µm datacom wavelength band,” Opt. Express 24(12), 12893–12904 (2016).
[Crossref] [PubMed]

Opt. Lett. (7)

P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
[Crossref] [PubMed]

H. Yun, Y. Wang, F. Zhang, Z. Lu, S. Lin, L. Chrostowski, and N. A. Jaeger, “Broadband 2 × 2 adiabatic 3 dB coupler using silicon-on-insulator sub-wavelength grating waveguides,” Opt. Lett. 41(13), 3041–3044 (2016).
[Crossref] [PubMed]

A. Sánchez-Postigo, J. Gonzalo Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, R. Halir, J. H. Schmid, and A. Ortega-Moñux, “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013–3016 (2016).
[Crossref] [PubMed]

J. Gonzalo Wangüemert-Pérez, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, D. Pérez-Galacho, R. Halir, I. Molina-Fernández, D. X. Xu, and J. H. Schmid, “Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator,” Opt. Lett. 39(15), 4442–4445 (2014).
[Crossref] [PubMed]

Y. Xiong, J. G. Wangüemert-Pérez, D.-X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance,” Opt. Lett. 39(24), 6931–6934 (2014).
[Crossref] [PubMed]

L. Liu, Q. Deng, and Z. Zhou, “Manipulation of beat length and wavelength dependence of a polarization beam splitter using a subwavelength grating,” Opt. Lett. 41(21), 5126–5129 (2016).
[Crossref] [PubMed]

J. D. Sarmiento-Merenguel, A. Ortega-Moñux, J. M. Fédéli, J. G. Wangüemert-Pérez, C. Alonso-Ramos, E. Durán-Valdeiglesias, P. Cheben, Í. Molina-Fernández, and R. Halir, “Controlling leakage losses in subwavelength grating silicon metamaterial waveguides,” Opt. Lett. 41(15), 3443–3446 (2016).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

L. Zavargo-Peche, A. Ortega-Moñux, J. G. Wangüemert-Pérez, and I. Molina-Fernández, “Fourier based combined techniques to design novel sub-wavelength optical integrated devices,” Prog. Electromagnetics Res. 123, 447–465 (2012).
[Crossref]

Sci. Rep. (2)

Y. Xu and J. Xiao, “Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler,” Sci. Rep. 6(1), 27949 (2016).
[Crossref] [PubMed]

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla, J. Capmany, and L. R. Chen, “Subwavelength grating enabled on-chip ultra-compact optical true time delay line,” Sci. Rep. 6(1), 30235 (2016).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

S. M. Rytov, “The electromagnetic properties of finely layered medium,” Sov. Phys. JETP 2, 466–475 (1956).

Other (2)

D. Pérez-Galacho, R. Halir, L. F. Zavargo-Peche, J. G. Wangüemert-Pérez, A. Ortega-Moñux, I. Molina-Fernández, and P. Cheben, “Adiabatic transitions for sub-wavelength grating waveguides,” Proceedings of the European Conference on Integrated Optics, Barcelona, Spain, 18–20 April 2012, paper 71.

C. L. Chen, Foundations for guide-wave optics, (Wiley-interscience, Hoboken, New Jersey, 2007).

Supplementary Material (1)

NameDescription
» Data File 1: CSV (71 KB)      Jitter induced to each period for all the fabricated structures

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 (a) Geometry of an ideal z-periodic subwavelength grating waveguide (light propagates along the z direction), as first demonstrated in ref [4]. (b) A subwavelength grating waveguide with random variations (jitter) in the positions and dimensions of the silicon segments due to fabrication imperfections.
Fig. 2
Fig. 2 Schematics of the nominal test structure. Light from an input silicon wire waveguide is coupled via an adiabatic taper into a wide SWG waveguide with a specifically engineered jitter distribution, and subsequently coupled via the second adiabatic taper to a silicon wire output waveguide. Segments with red contours represent jittered silicon strips. I, T and R denote the input, the transmitted and the reflected light, respectively. (a) Top view and (b) side view. Dimensions are not to scale.
Fig. 3
Fig. 3 (a)-(c) Jitter geometrical definition. (a) No jitter. The nominal period is symmetric with a duty cycle DC = 50%. (b) Even jitter. The period remains symmetric but the duty cycle fluctuates around 50%. For δ > 0 the Si stripe is longer than nominal, i.e. DC > 50%. (c) Odd jitter. The DC remains constant (50%) but the period is no longer symmetric. For δ > 0 the Si stripe shifts to the right. (d) Scanning electron microscope (SEM) image of a fabricated SWG waveguide structure (top view). The image shows the end of the wire-to-SWG taper (left) and the first 22 periods of the SWG waveguide, where the effect of the jitter (σ = 20 nm, intentionally generated) is clearly visible.
Fig. 4
Fig. 4 Calculated electric field distribution (xz plane) propagating through two adiabatic tapers arranged in a back-to-back configuration. Simulation was performed with a 3D full-vectorial analysis tool [27].
Fig. 5
Fig. 5 Calculated transmittance for SWG waveguide structures with odd jitter. (a) Transmittance (T) as directly calculated using 2D F-EEM, for jitter strengths σ = 2 nm, σ = 10 nm and σ = 20 nm. Two different realizations are shown for each value of σ (solid and double line with the same color). Results for σ = 5 nm are not shown here to simplify the visualization. (b) Wavelength averaged transmittance T λ for different realizations, with the jitter strength σ as a parameter. (c) Realization averaged transmittance T R wavelength dependence and (d) corresponding histogram for jitters strengths σ = 2 nm, 5 nm, 10 nm and 20 nm.
Fig. 6
Fig. 6 SWG waveguide transmittance, reflectance and radiation losses, as calculated by 2D and 3D simulations. (a)-(c) Odd jitter, (d)-(f) Even jitter. Each point of the 2D curves is calculated as the average of 200 different realizations for a single wavelength (realization averaged). Each point of the 3D curves is calculated as the average of 61 wavelengths for a single realization (wavelength averaged).
Fig. 7
Fig. 7 Measured transmittance for different jitter strengths (odd jitter). (a) Raw measurements for: σ = 0 nm, σ = 10 nm, σ = 20 nm. Curves for σ = 2 nm and σ = 5 nm have not been drawn for the sake of clarity. (b) Wavelength averaged transmittance T λ for different realizations. (c) Realization averaged transmittance T R as a function of wavelength. (d) Histograms of the realization averaged transmittance T R .
Fig. 8
Fig. 8 Jitter influence comparison of simulations and measurements. (a)-(c) Odd jitter. (d)-(f) Even jitter.
Fig. 9
Fig. 9 Analysis of the convergence for calculation of averaged values (odd jitter). (a) Averaged measured transmittance, for a single realization, as a function of the wavelength discretization used in the averages. (b) Averaged measured transmittance as a function of the number of realizations used in the averages.
Fig. 10
Fig. 10 (a) SWG waveguide with jitter is considered as a superposition of an ideal z-periodic SWG waveguide and a perturbation structure. (b) Detail schematic of one of the silicon segments of the structure with a perturbation sheet of length δp located at one of the segment sidewalls. The coupling strength of the field with the perturbation sheet increases with the waveguide width (W).
Fig. 11
Fig. 11 Simulated transmittance as a function of waveguide width W. Jitter strengths σ = 2.5 nm and 5 nm. The waveguide length is L = 40 µm (200 periods). Simulations were carried out with a 3D full-vectorial analysis tool [27].
Fig. 12
Fig. 12 Calculated electric field intensity distributions in an SWG waveguide with jitter. 3-μm-wide waveguide with odd jitter σ = 10 nm for (a) 1.485 µm wavelength yielding high transmittance and (c) 1.510 µm wavelength yielding high reflectance. (b), (d) Ideal SWG waveguide (without jitter) for the same wavelengths.
Fig. 13
Fig. 13 Analysis of the influence of the number of periods (odd jitter). (a) Simulated wavelength responses for different number of periods (N = 50, 100, 150, 200, 250, 300). (b) Averaged transmittance versus the number of periods. (c) Averaged reflectance versus the number of periods.
Fig. 14
Fig. 14 Simulated averaged values (odd jitter) as a function of (a) the duty cycle (Λ = 200 nm), (b), (c) the pitch (DC = 50%).
Fig. 15
Fig. 15 Simulated averaged transmittance for the four guided modes supported by a SWG waveguide with W = 3 μm (σ = 5 nm, even jitter). Simulations were carried out with a 3D full-vectorial analysis tool [27].

Tables (1)

Tables Icon

Table 1 Summary of specific jitter realizations utilized in the simulations and experimental studies

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T( realization m ) λ = 1 N λ · n=1 N λ T( λ n , realization m ) ,
T( λ n ) R = 1 N R · m=1 N R T( λ n , realization m ) .
| κ( z p ) | δ p Δ n 2 0 H W/2 W/2 E f (x,y, z p )· E b * (x,y, z p )dxdy = δ p Δ n 2 0 H W/2 W/2 | E f (x,y, z p ) | 2 dxdy ,
ϕ=d· β FB =d· n FB ( 2π λ ),

Metrics