Abstract

Stokes vector modulation and direct detection (SVM/DD) has immense potentiality to reduce the cost burden for the next-generation short-reach optical communication networks. In this paper, we propose and demonstrate an InGaAsP/InP waveguide-based polarization-analyzing circuit for an integrated Stokes vector (SV) receiver. By transforming the input state-of-polarization (SOP) and projecting its SV onto three different vectors on the Poincare sphere, we show that the actual SOP can be retrieved by simple calculation. We also reveal that this projection matrix has a flexibility and its deviation due to device imperfectness can be calibrated to a certain degree, so that the proposed device would be fundamentally robust against fabrication errors. A proof-of-concept photonic integrated circuit (PIC) is fabricated on InP by using half-ridge waveguides to successfully demonstrate detection of different SOPs scattered on the Poincare sphere.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Complete retrieval of multi-level Stokes vector signal by an InP-based photonic integrated circuit

Samir Ghosh, Takahiro Suganuma, Shota Ishimura, Yoshiaki Nakano, and Takuo Tanemura
Opt. Express 27(25) 36449-36458 (2019)

Experimental demonstration of self-aligned InP/InGaAsP polarization converter for polarization multiplexed photonic integrated circuits

Masaru Zaitsu, Takuo Tanemura, Akio Higo, and Yoshiaki Nakano
Opt. Express 21(6) 6910-6918 (2013)

InP-based photonic integrated circuit platform on SiC wafer

Mitsuru Takenaka and Shinichi Takagi
Opt. Express 25(24) 29993-30000 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: Performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
    [Crossref]
  2. E. Agrell and M. Karlsson, “Power-efficient modulation formats in coherent transmission systems,” J. Lightwave Technol. 27(22), 5115–5126 (2009).
    [Crossref]
  3. K. Kikuchi and S. Kawakami, “Multi-level signaling in the Stokes space and its application to large-capacity optical communications,” Opt. Express 22(7), 7374–7387 (2014).
    [Crossref] [PubMed]
  4. S. Betti, G. De Marchis, and E. Iannone, “Polarization modulated direct detection optical transmission systems,” J. Lightwave Technol. 10(12), 1985–1997 (1992).
    [Crossref]
  5. S. Benedetto, A. Djupsjobacka, B. Lagerstrom, R. Paoletti, P. Poggiolini, and G. Mijic, “Multilevel polarization modulation using a specifically designed LiNbO3 device,” IEEE Photonics Technol. Lett. 6(8), 949–951 (1994).
    [Crossref]
  6. S. Benedetto, R. Gaudino, and P. Poggiolini, “Direct detection of optical digital transmission based on polarization shift keying modulation,” IEEE J. Sel. Areas Comm. 13(3), 531–542 (1995).
    [Crossref]
  7. D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s stokes vector direct detection for short reach optical communication,” in Optical Fiber Communications Conference (Optical Society of America, 2014), paper Th5C.7.
    [Crossref]
  8. D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “Stokes vector direct detection for short-reach optical communication,” Opt. Lett. 39(11), 3110–3113 (2014).
    [Crossref] [PubMed]
  9. M. Chagnon, M. Morsy-Osman, and D. Plant, “Single wavelength multi-dimensional modulation with self-beating direct detection,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1A.1.
  10. Y. Kawabata, M. Zaitsu, T. Tanemura, and Y. Nakano, “Proposal and experimental demonstration of monolithic InP/InGaAsP polarization modulator,” in Proceedings of the European Conference on Optical Communications (IEEE, 2014), paper Tu.4.4.4.
    [Crossref]
  11. M. A. Naeem, M. Haji, B. M. Holmes, D. C. Hutchings, J. H. Marsh, and A. E. Kelly, “Generation of high speed polarization modulated data using a monolithically integrated device,” IEEE J. Sel. Top. Quantum Electron. 21(4), 207–211 (2015).
    [Crossref]
  12. P. Dong, X. Chen, K. Kim, S. Chandrasekhar, Y. K. Chen, and J. H. Sinsky, “128-Gb/s 100-km transmission with direct detection using silicon photonic Stokes vector receiver and I/Q modulator,” Opt. Express 24(13), 14208–14214 (2016).
    [Crossref] [PubMed]
  13. S. Ghosh, Y. Kawabata, T. Tanemura, and Y. Nakano, “Integrated Stokes vector analyzer on InP,” in Proceedings of the 21st Optoelectronics and Communications Conference / International Conference on Photonics in Switching (OECC-PS, 2016), paper WD4–4.
  14. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).
  15. H. E. Refaei, D. Yevick, and T. Jones, “Slanted-rib waveguide InGaAsP-InP polarization converters,” J. Lightwave Technol. 22(5), 1352–1357 (2004).
    [Crossref]
  16. B. M. Holmes and D. C. Hutchings, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photonics Technol. Lett. 18(1), 43–45 (2006).
    [Crossref]
  17. L. M. Augustin, J. J. G. M. van der Tol, E. J. Geluk, and M. K. Smit, “Short polarization converter optimized for active–passive integration in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19(20), 1673–1675 (2007).
    [Crossref]
  18. J. Pello, J. van der Tol, S. Keyvaninia, R. van Veldhoven, H. Ambrosius, G. Roelkens, and M. Smit, “High-efficiency ultrasmall polarization converter in InP membrane,” Opt. Lett. 37(17), 3711–3713 (2012).
    [Crossref] [PubMed]
  19. M. Zaitsu, T. Tanemura, A. Higo, and Y. Nakano, “Experimental demonstration of self-aligned InP/InGaAsP polarization converter for polarization multiplexed photonic integrated circuits,” Opt. Express 21(6), 6910–6918 (2013).
    [Crossref] [PubMed]
  20. R. Ulrich, “Representation of codirectional coupled waves,” Opt. Lett. 1(3), 109–111 (1977).
    [Crossref] [PubMed]
  21. J. N. Damask, Polarization Optics in Telecommunications (Springer, 2005).
  22. D. H. Goldstein, Polarized Light (CRC Press, 2016).
  23. M. Zaitsu, T. Tanemura, and Y. Nakano, “Numerical study on fabrication tolerance of half-ridge InP polarization converters,” IEICE Trans. Electron. 97(7), 731–735 (2014).
    [Crossref]

2016 (1)

2015 (2)

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: Performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

M. A. Naeem, M. Haji, B. M. Holmes, D. C. Hutchings, J. H. Marsh, and A. E. Kelly, “Generation of high speed polarization modulated data using a monolithically integrated device,” IEEE J. Sel. Top. Quantum Electron. 21(4), 207–211 (2015).
[Crossref]

2014 (3)

2013 (1)

2012 (1)

2009 (1)

2007 (1)

L. M. Augustin, J. J. G. M. van der Tol, E. J. Geluk, and M. K. Smit, “Short polarization converter optimized for active–passive integration in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19(20), 1673–1675 (2007).
[Crossref]

2006 (1)

B. M. Holmes and D. C. Hutchings, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photonics Technol. Lett. 18(1), 43–45 (2006).
[Crossref]

2004 (1)

1995 (1)

S. Benedetto, R. Gaudino, and P. Poggiolini, “Direct detection of optical digital transmission based on polarization shift keying modulation,” IEEE J. Sel. Areas Comm. 13(3), 531–542 (1995).
[Crossref]

1994 (1)

S. Benedetto, A. Djupsjobacka, B. Lagerstrom, R. Paoletti, P. Poggiolini, and G. Mijic, “Multilevel polarization modulation using a specifically designed LiNbO3 device,” IEEE Photonics Technol. Lett. 6(8), 949–951 (1994).
[Crossref]

1992 (1)

S. Betti, G. De Marchis, and E. Iannone, “Polarization modulated direct detection optical transmission systems,” J. Lightwave Technol. 10(12), 1985–1997 (1992).
[Crossref]

1977 (1)

Agrell, E.

Ambrosius, H.

Augustin, L. M.

L. M. Augustin, J. J. G. M. van der Tol, E. J. Geluk, and M. K. Smit, “Short polarization converter optimized for active–passive integration in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19(20), 1673–1675 (2007).
[Crossref]

Benedetto, S.

S. Benedetto, R. Gaudino, and P. Poggiolini, “Direct detection of optical digital transmission based on polarization shift keying modulation,” IEEE J. Sel. Areas Comm. 13(3), 531–542 (1995).
[Crossref]

S. Benedetto, A. Djupsjobacka, B. Lagerstrom, R. Paoletti, P. Poggiolini, and G. Mijic, “Multilevel polarization modulation using a specifically designed LiNbO3 device,” IEEE Photonics Technol. Lett. 6(8), 949–951 (1994).
[Crossref]

Betti, S.

S. Betti, G. De Marchis, and E. Iannone, “Polarization modulated direct detection optical transmission systems,” J. Lightwave Technol. 10(12), 1985–1997 (1992).
[Crossref]

Chandrasekhar, S.

Che, D.

Chen, X.

Chen, Y. K.

Cheng, Q.

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: Performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Cunningham, D. G.

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: Performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

De Marchis, G.

S. Betti, G. De Marchis, and E. Iannone, “Polarization modulated direct detection optical transmission systems,” J. Lightwave Technol. 10(12), 1985–1997 (1992).
[Crossref]

Djupsjobacka, A.

S. Benedetto, A. Djupsjobacka, B. Lagerstrom, R. Paoletti, P. Poggiolini, and G. Mijic, “Multilevel polarization modulation using a specifically designed LiNbO3 device,” IEEE Photonics Technol. Lett. 6(8), 949–951 (1994).
[Crossref]

Dong, P.

Gaudino, R.

S. Benedetto, R. Gaudino, and P. Poggiolini, “Direct detection of optical digital transmission based on polarization shift keying modulation,” IEEE J. Sel. Areas Comm. 13(3), 531–542 (1995).
[Crossref]

Geluk, E. J.

L. M. Augustin, J. J. G. M. van der Tol, E. J. Geluk, and M. K. Smit, “Short polarization converter optimized for active–passive integration in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19(20), 1673–1675 (2007).
[Crossref]

Haji, M.

M. A. Naeem, M. Haji, B. M. Holmes, D. C. Hutchings, J. H. Marsh, and A. E. Kelly, “Generation of high speed polarization modulated data using a monolithically integrated device,” IEEE J. Sel. Top. Quantum Electron. 21(4), 207–211 (2015).
[Crossref]

Higo, A.

Holmes, B. M.

M. A. Naeem, M. Haji, B. M. Holmes, D. C. Hutchings, J. H. Marsh, and A. E. Kelly, “Generation of high speed polarization modulated data using a monolithically integrated device,” IEEE J. Sel. Top. Quantum Electron. 21(4), 207–211 (2015).
[Crossref]

B. M. Holmes and D. C. Hutchings, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photonics Technol. Lett. 18(1), 43–45 (2006).
[Crossref]

Hu, Q.

Hutchings, D. C.

M. A. Naeem, M. Haji, B. M. Holmes, D. C. Hutchings, J. H. Marsh, and A. E. Kelly, “Generation of high speed polarization modulated data using a monolithically integrated device,” IEEE J. Sel. Top. Quantum Electron. 21(4), 207–211 (2015).
[Crossref]

B. M. Holmes and D. C. Hutchings, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photonics Technol. Lett. 18(1), 43–45 (2006).
[Crossref]

Iannone, E.

S. Betti, G. De Marchis, and E. Iannone, “Polarization modulated direct detection optical transmission systems,” J. Lightwave Technol. 10(12), 1985–1997 (1992).
[Crossref]

Jones, T.

Karlsson, M.

Kawakami, S.

Kelly, A. E.

M. A. Naeem, M. Haji, B. M. Holmes, D. C. Hutchings, J. H. Marsh, and A. E. Kelly, “Generation of high speed polarization modulated data using a monolithically integrated device,” IEEE J. Sel. Top. Quantum Electron. 21(4), 207–211 (2015).
[Crossref]

Keyvaninia, S.

Kikuchi, K.

Kim, K.

Lagerstrom, B.

S. Benedetto, A. Djupsjobacka, B. Lagerstrom, R. Paoletti, P. Poggiolini, and G. Mijic, “Multilevel polarization modulation using a specifically designed LiNbO3 device,” IEEE Photonics Technol. Lett. 6(8), 949–951 (1994).
[Crossref]

Li, A.

Marsh, J. H.

M. A. Naeem, M. Haji, B. M. Holmes, D. C. Hutchings, J. H. Marsh, and A. E. Kelly, “Generation of high speed polarization modulated data using a monolithically integrated device,” IEEE J. Sel. Top. Quantum Electron. 21(4), 207–211 (2015).
[Crossref]

Mijic, G.

S. Benedetto, A. Djupsjobacka, B. Lagerstrom, R. Paoletti, P. Poggiolini, and G. Mijic, “Multilevel polarization modulation using a specifically designed LiNbO3 device,” IEEE Photonics Technol. Lett. 6(8), 949–951 (1994).
[Crossref]

Naeem, M. A.

M. A. Naeem, M. Haji, B. M. Holmes, D. C. Hutchings, J. H. Marsh, and A. E. Kelly, “Generation of high speed polarization modulated data using a monolithically integrated device,” IEEE J. Sel. Top. Quantum Electron. 21(4), 207–211 (2015).
[Crossref]

Nakano, Y.

M. Zaitsu, T. Tanemura, and Y. Nakano, “Numerical study on fabrication tolerance of half-ridge InP polarization converters,” IEICE Trans. Electron. 97(7), 731–735 (2014).
[Crossref]

M. Zaitsu, T. Tanemura, A. Higo, and Y. Nakano, “Experimental demonstration of self-aligned InP/InGaAsP polarization converter for polarization multiplexed photonic integrated circuits,” Opt. Express 21(6), 6910–6918 (2013).
[Crossref] [PubMed]

Paoletti, R.

S. Benedetto, A. Djupsjobacka, B. Lagerstrom, R. Paoletti, P. Poggiolini, and G. Mijic, “Multilevel polarization modulation using a specifically designed LiNbO3 device,” IEEE Photonics Technol. Lett. 6(8), 949–951 (1994).
[Crossref]

Pello, J.

Penty, R. V.

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: Performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Poggiolini, P.

S. Benedetto, R. Gaudino, and P. Poggiolini, “Direct detection of optical digital transmission based on polarization shift keying modulation,” IEEE J. Sel. Areas Comm. 13(3), 531–542 (1995).
[Crossref]

S. Benedetto, A. Djupsjobacka, B. Lagerstrom, R. Paoletti, P. Poggiolini, and G. Mijic, “Multilevel polarization modulation using a specifically designed LiNbO3 device,” IEEE Photonics Technol. Lett. 6(8), 949–951 (1994).
[Crossref]

Refaei, H. E.

Roelkens, G.

Shieh, W.

Sinsky, J. H.

Smit, M.

Smit, M. K.

L. M. Augustin, J. J. G. M. van der Tol, E. J. Geluk, and M. K. Smit, “Short polarization converter optimized for active–passive integration in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19(20), 1673–1675 (2007).
[Crossref]

Tanemura, T.

M. Zaitsu, T. Tanemura, and Y. Nakano, “Numerical study on fabrication tolerance of half-ridge InP polarization converters,” IEICE Trans. Electron. 97(7), 731–735 (2014).
[Crossref]

M. Zaitsu, T. Tanemura, A. Higo, and Y. Nakano, “Experimental demonstration of self-aligned InP/InGaAsP polarization converter for polarization multiplexed photonic integrated circuits,” Opt. Express 21(6), 6910–6918 (2013).
[Crossref] [PubMed]

Ulrich, R.

van der Tol, J.

van der Tol, J. J. G. M.

L. M. Augustin, J. J. G. M. van der Tol, E. J. Geluk, and M. K. Smit, “Short polarization converter optimized for active–passive integration in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19(20), 1673–1675 (2007).
[Crossref]

van Veldhoven, R.

Wang, Y.

Wei, J.

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: Performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

White, I. H.

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: Performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Yevick, D.

Zaitsu, M.

M. Zaitsu, T. Tanemura, and Y. Nakano, “Numerical study on fabrication tolerance of half-ridge InP polarization converters,” IEICE Trans. Electron. 97(7), 731–735 (2014).
[Crossref]

M. Zaitsu, T. Tanemura, A. Higo, and Y. Nakano, “Experimental demonstration of self-aligned InP/InGaAsP polarization converter for polarization multiplexed photonic integrated circuits,” Opt. Express 21(6), 6910–6918 (2013).
[Crossref] [PubMed]

IEEE Commun. Mag. (1)

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: Performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

S. Benedetto, R. Gaudino, and P. Poggiolini, “Direct detection of optical digital transmission based on polarization shift keying modulation,” IEEE J. Sel. Areas Comm. 13(3), 531–542 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. A. Naeem, M. Haji, B. M. Holmes, D. C. Hutchings, J. H. Marsh, and A. E. Kelly, “Generation of high speed polarization modulated data using a monolithically integrated device,” IEEE J. Sel. Top. Quantum Electron. 21(4), 207–211 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (3)

S. Benedetto, A. Djupsjobacka, B. Lagerstrom, R. Paoletti, P. Poggiolini, and G. Mijic, “Multilevel polarization modulation using a specifically designed LiNbO3 device,” IEEE Photonics Technol. Lett. 6(8), 949–951 (1994).
[Crossref]

B. M. Holmes and D. C. Hutchings, “Realization of novel low-loss monolithically integrated passive waveguide mode converters,” IEEE Photonics Technol. Lett. 18(1), 43–45 (2006).
[Crossref]

L. M. Augustin, J. J. G. M. van der Tol, E. J. Geluk, and M. K. Smit, “Short polarization converter optimized for active–passive integration in InGaAsP–InP,” IEEE Photonics Technol. Lett. 19(20), 1673–1675 (2007).
[Crossref]

IEICE Trans. Electron. (1)

M. Zaitsu, T. Tanemura, and Y. Nakano, “Numerical study on fabrication tolerance of half-ridge InP polarization converters,” IEICE Trans. Electron. 97(7), 731–735 (2014).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (3)

Opt. Lett. (3)

Other (7)

M. Chagnon, M. Morsy-Osman, and D. Plant, “Single wavelength multi-dimensional modulation with self-beating direct detection,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1A.1.

Y. Kawabata, M. Zaitsu, T. Tanemura, and Y. Nakano, “Proposal and experimental demonstration of monolithic InP/InGaAsP polarization modulator,” in Proceedings of the European Conference on Optical Communications (IEEE, 2014), paper Tu.4.4.4.
[Crossref]

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s stokes vector direct detection for short reach optical communication,” in Optical Fiber Communications Conference (Optical Society of America, 2014), paper Th5C.7.
[Crossref]

J. N. Damask, Polarization Optics in Telecommunications (Springer, 2005).

D. H. Goldstein, Polarized Light (CRC Press, 2016).

S. Ghosh, Y. Kawabata, T. Tanemura, and Y. Nakano, “Integrated Stokes vector analyzer on InP,” in Proceedings of the 21st Optoelectronics and Communications Conference / International Conference on Photonics in Switching (OECC-PS, 2016), paper WD4–4.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic (a) layout of proposed integrated Stokes vector analyzer, cross-section view of (b) symmetric waveguide and (c) asymmetric waveguide (PC).
Fig. 2
Fig. 2 SEM images of PC section (a) angled top view and cross-section view of (b) symmetrical WG section and (c) asymmetrical half-ridge WG section.
Fig. 3
Fig. 3 Experimental setup. A polarization controller (Pol. Ctrl.) and optical power meter (OPM) at the input were used to maximize the power transmitted through the polarizer, whereas OPM at the output was used for alignment.
Fig. 4
Fig. 4 (a) Retrieved and input SOPs on Poincare sphere when HWP was rotated from 0 to 45°. (b) Stokes parameters plotted as a function of HWP angle for the same data.
Fig. 5
Fig. 5 (a) Retrieved and input SOPs on Poincare sphere, (b) scattered plot of retrieved (Sre) and input (Sin) Stokes parameters together with ideal case straight line, Sre = Sin (dotted line).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V [ V 1 V 2 V 3 ] = [ S 1 ' . S ref S 2 ' . S ref S 3 ' . S ref ] M P S,
S= M P 1 V.
M=[ cos 2 2θ+cos(ΔβL) sin 2 2θ {1cos(ΔβL)}cos2θsin2θ sin(ΔβL)sin2θ {1cos(ΔβL)}cos2θsin2θ sin 2 2θ+cos(ΔβL) cos 2 2θ sin(ΔβL)cos2θ sin(ΔβL)sin2θ sin(ΔβL)cos2θ cos(ΔβL) ]
M p =[ 0.98 -0.04 -0.13 0.10 0.37 0.93 0.44 -0.84 0.08 ],

Metrics