Abstract

We report for the first time that transmission of optical pulses centered at a wavelength of 1550 nm through a tapered dual-core As2Se3-PMMA fiber inscribes an antisymmetric long-period grating. The pulse power is equally divided between even and odd modes that superpose along the dual-core fiber to form an antisymmetric intensity distribution. A permanent refractive-index change that matches the antisymmetric intensity distribution is inscribed due to photosensitivity at the pulse central wavelength. The evolution of the transmission spectrum of the dual-core fiber is experimentally measured as the accumulated time that the fiber is exposed to the pulse is increased. A theoretical model of an antisymmetric long-period grating in a dual-core fiber computationally reproduces the experimentally observed evolution of the transmission spectrum. Experimental results indicate that antisymmetric long-period gratings induce effective group-velocity matching between the even and odd modes of the dual-core fiber, and reveal for the first time that long-period gratings can lead to slow light propagation velocities.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear switching using long-period gratings in As2Se3 chalcogenide fiber

Hong C. Nguyen, Dong-Il Yeom, Eric C. Mägi, Boris T. Kuhlmey, C. Martijn de Sterke, and Benjamin J. Eggleton
J. Opt. Soc. Am. B 25(8) 1393-1401 (2008)

High order resonances between core mode and cladding supermodes in long period fiber gratings inscribed in photonic bandgap fibers

Boyin Tai, Zhi Wang, Yange Liu, Jianbo Xu, Bo Liu, Huifeng Wei, and Weijun Tong
Opt. Express 18(15) 15361-15370 (2010)

Origin of coupling to antisymmetric modes in arc-induced long-period fiber gratings

O. V. Ivanov and G. Rego
Opt. Express 15(21) 13936-13941 (2007)

References

  • View by:
  • |
  • |
  • |

  1. C. Baker and M. Rochette, “Highly nonlinear hybrid AsSe-PMMA microtapers,” Opt. Express 18, 12391–12398 (2010).
    [Crossref] [PubMed]
  2. R. Ahmad and M. Rochette, “High efficiency and ultra broadband optical parametric four-wave mixing in chalcogenide-pmma hybrid microwires,” Opt. Express 20, 9572–9580 (2012).
    [Crossref] [PubMed]
  3. C. Baker and M. Rochette, “High nonlinearity and single-mode transmission in tapered multi-mode As2Se3-PMMA fibers,” J. IEEE Photon. 4, 960–969 (2012).
    [Crossref]
  4. A. Al-Kadry, M. E. Amraoui, Y. Messaddeq, and M. Rochette, “Mode-locked fiber laser based on chalcogenide microwires,” Opt. Lett. 40, 4309–4312 (2015).
    [Crossref] [PubMed]
  5. J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990).
    [Crossref] [PubMed]
  6. S. Jensen, “The nonlinear coherent coupler,” J. Quantum Electron. 18, 1580–1583 (1982).
    [Crossref]
  7. F. Setzpfandt, A. S. Solntsev, J. Titchener, C. W. Wu, C. Xiong, R. Schiek, T. Pertsch, D. N. Neshev, and A. A. Sukhorukov, “Tunable generation of entangled photons in a nonlinear directional coupler,” Laser Photon. Rev. 10, 131–136 (2016).
    [Crossref]
  8. R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and bragg grating inscription in As2Se3 chalcogenide microwires,” App. Phys. Lett. 99, 061109 (2011).
    [Crossref]
  9. F. Bilodeau, K. O. Hill, D. C. Johnson, and S. Faucher, “Compact, low-loss, fused biconical taper couplers: over-coupled operation and antisymmetric supermode cutoff,” Opt. Lett. 12, 634–636 (1987).
    [Crossref] [PubMed]
  10. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
    [Crossref]
  11. C. Baker and M. Rochette, “A generalized heat-brush approach for precise control of the waist profile in fiber tapers,” Opt. Mater. Express 1, 1065–1076 (2011).
    [Crossref]
  12. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62, 1267–1277 (1972).
    [Crossref]
  13. F. Gonthier, S. Lacroix, and J. Bures, “Numerical calculations of modes of optical waveguides with two-dimensional refractive index profiles by a field correction method,” Opt. Quantum Electron. 26, S135–S149 (1994).
    [Crossref]
  14. S. Lacroix, F. Gonthier, and J. Bures, “Modeling of symmetric 2 × 2 fused-fiber couplers,” Appl. Opt. 33, 8361–8369 (1994).
    [Crossref] [PubMed]
  15. R. W. Boyd, “Material slow light and structural slow light: similarities and differences for nonlinear optics,” J. Opt. Soc. Am. B 28, A38–A44 (2011).
    [Crossref]

2016 (1)

F. Setzpfandt, A. S. Solntsev, J. Titchener, C. W. Wu, C. Xiong, R. Schiek, T. Pertsch, D. N. Neshev, and A. A. Sukhorukov, “Tunable generation of entangled photons in a nonlinear directional coupler,” Laser Photon. Rev. 10, 131–136 (2016).
[Crossref]

2015 (1)

2012 (2)

R. Ahmad and M. Rochette, “High efficiency and ultra broadband optical parametric four-wave mixing in chalcogenide-pmma hybrid microwires,” Opt. Express 20, 9572–9580 (2012).
[Crossref] [PubMed]

C. Baker and M. Rochette, “High nonlinearity and single-mode transmission in tapered multi-mode As2Se3-PMMA fibers,” J. IEEE Photon. 4, 960–969 (2012).
[Crossref]

2011 (3)

2010 (1)

1994 (2)

F. Gonthier, S. Lacroix, and J. Bures, “Numerical calculations of modes of optical waveguides with two-dimensional refractive index profiles by a field correction method,” Opt. Quantum Electron. 26, S135–S149 (1994).
[Crossref]

S. Lacroix, F. Gonthier, and J. Bures, “Modeling of symmetric 2 × 2 fused-fiber couplers,” Appl. Opt. 33, 8361–8369 (1994).
[Crossref] [PubMed]

1992 (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

1990 (1)

J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990).
[Crossref] [PubMed]

1987 (1)

1982 (1)

S. Jensen, “The nonlinear coherent coupler,” J. Quantum Electron. 18, 1580–1583 (1982).
[Crossref]

1972 (1)

Ahmad, R.

R. Ahmad and M. Rochette, “High efficiency and ultra broadband optical parametric four-wave mixing in chalcogenide-pmma hybrid microwires,” Opt. Express 20, 9572–9580 (2012).
[Crossref] [PubMed]

R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and bragg grating inscription in As2Se3 chalcogenide microwires,” App. Phys. Lett. 99, 061109 (2011).
[Crossref]

Al-Kadry, A.

Amraoui, M. E.

Baker, C.

Bilodeau, F.

Birks, T. A.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

Boyd, R. W.

Bures, J.

F. Gonthier, S. Lacroix, and J. Bures, “Numerical calculations of modes of optical waveguides with two-dimensional refractive index profiles by a field correction method,” Opt. Quantum Electron. 26, S135–S149 (1994).
[Crossref]

S. Lacroix, F. Gonthier, and J. Bures, “Modeling of symmetric 2 × 2 fused-fiber couplers,” Appl. Opt. 33, 8361–8369 (1994).
[Crossref] [PubMed]

Faucher, S.

Gonthier, F.

S. Lacroix, F. Gonthier, and J. Bures, “Modeling of symmetric 2 × 2 fused-fiber couplers,” Appl. Opt. 33, 8361–8369 (1994).
[Crossref] [PubMed]

F. Gonthier, S. Lacroix, and J. Bures, “Numerical calculations of modes of optical waveguides with two-dimensional refractive index profiles by a field correction method,” Opt. Quantum Electron. 26, S135–S149 (1994).
[Crossref]

Hill, K. O.

Jensen, S.

S. Jensen, “The nonlinear coherent coupler,” J. Quantum Electron. 18, 1580–1583 (1982).
[Crossref]

Johnson, D. C.

Lacroix, S.

S. Lacroix, F. Gonthier, and J. Bures, “Modeling of symmetric 2 × 2 fused-fiber couplers,” Appl. Opt. 33, 8361–8369 (1994).
[Crossref] [PubMed]

F. Gonthier, S. Lacroix, and J. Bures, “Numerical calculations of modes of optical waveguides with two-dimensional refractive index profiles by a field correction method,” Opt. Quantum Electron. 26, S135–S149 (1994).
[Crossref]

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

Messaddeq, Y.

Neshev, D. N.

F. Setzpfandt, A. S. Solntsev, J. Titchener, C. W. Wu, C. Xiong, R. Schiek, T. Pertsch, D. N. Neshev, and A. A. Sukhorukov, “Tunable generation of entangled photons in a nonlinear directional coupler,” Laser Photon. Rev. 10, 131–136 (2016).
[Crossref]

Pertsch, T.

F. Setzpfandt, A. S. Solntsev, J. Titchener, C. W. Wu, C. Xiong, R. Schiek, T. Pertsch, D. N. Neshev, and A. A. Sukhorukov, “Tunable generation of entangled photons in a nonlinear directional coupler,” Laser Photon. Rev. 10, 131–136 (2016).
[Crossref]

Rochette, M.

Rothenberg, J. E.

J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990).
[Crossref] [PubMed]

Schiek, R.

F. Setzpfandt, A. S. Solntsev, J. Titchener, C. W. Wu, C. Xiong, R. Schiek, T. Pertsch, D. N. Neshev, and A. A. Sukhorukov, “Tunable generation of entangled photons in a nonlinear directional coupler,” Laser Photon. Rev. 10, 131–136 (2016).
[Crossref]

Setzpfandt, F.

F. Setzpfandt, A. S. Solntsev, J. Titchener, C. W. Wu, C. Xiong, R. Schiek, T. Pertsch, D. N. Neshev, and A. A. Sukhorukov, “Tunable generation of entangled photons in a nonlinear directional coupler,” Laser Photon. Rev. 10, 131–136 (2016).
[Crossref]

Snyder, A. W.

Solntsev, A. S.

F. Setzpfandt, A. S. Solntsev, J. Titchener, C. W. Wu, C. Xiong, R. Schiek, T. Pertsch, D. N. Neshev, and A. A. Sukhorukov, “Tunable generation of entangled photons in a nonlinear directional coupler,” Laser Photon. Rev. 10, 131–136 (2016).
[Crossref]

Sukhorukov, A. A.

F. Setzpfandt, A. S. Solntsev, J. Titchener, C. W. Wu, C. Xiong, R. Schiek, T. Pertsch, D. N. Neshev, and A. A. Sukhorukov, “Tunable generation of entangled photons in a nonlinear directional coupler,” Laser Photon. Rev. 10, 131–136 (2016).
[Crossref]

Titchener, J.

F. Setzpfandt, A. S. Solntsev, J. Titchener, C. W. Wu, C. Xiong, R. Schiek, T. Pertsch, D. N. Neshev, and A. A. Sukhorukov, “Tunable generation of entangled photons in a nonlinear directional coupler,” Laser Photon. Rev. 10, 131–136 (2016).
[Crossref]

Wu, C. W.

F. Setzpfandt, A. S. Solntsev, J. Titchener, C. W. Wu, C. Xiong, R. Schiek, T. Pertsch, D. N. Neshev, and A. A. Sukhorukov, “Tunable generation of entangled photons in a nonlinear directional coupler,” Laser Photon. Rev. 10, 131–136 (2016).
[Crossref]

Xiong, C.

F. Setzpfandt, A. S. Solntsev, J. Titchener, C. W. Wu, C. Xiong, R. Schiek, T. Pertsch, D. N. Neshev, and A. A. Sukhorukov, “Tunable generation of entangled photons in a nonlinear directional coupler,” Laser Photon. Rev. 10, 131–136 (2016).
[Crossref]

App. Phys. Lett. (1)

R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and bragg grating inscription in As2Se3 chalcogenide microwires,” App. Phys. Lett. 99, 061109 (2011).
[Crossref]

Appl. Opt. (1)

J. IEEE Photon. (1)

C. Baker and M. Rochette, “High nonlinearity and single-mode transmission in tapered multi-mode As2Se3-PMMA fibers,” J. IEEE Photon. 4, 960–969 (2012).
[Crossref]

J. Lightwave Technol. (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Quantum Electron. (1)

S. Jensen, “The nonlinear coherent coupler,” J. Quantum Electron. 18, 1580–1583 (1982).
[Crossref]

Laser Photon. Rev. (1)

F. Setzpfandt, A. S. Solntsev, J. Titchener, C. W. Wu, C. Xiong, R. Schiek, T. Pertsch, D. N. Neshev, and A. A. Sukhorukov, “Tunable generation of entangled photons in a nonlinear directional coupler,” Laser Photon. Rev. 10, 131–136 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

F. Gonthier, S. Lacroix, and J. Bures, “Numerical calculations of modes of optical waveguides with two-dimensional refractive index profiles by a field correction method,” Opt. Quantum Electron. 26, S135–S149 (1994).
[Crossref]

Phys. Rev. A (1)

J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) Schematic of the setup for inscription and characterization of an antisymmetric grating in a tapered dual-core As2Se3-PMMA fiber. b) Initial growth of the transmission spectrum as the cumulative exposure time is increased from 0 s to 50 s in steps of 10 s. c) Evolution of the transmission spectrum as the cumulative exposure time is increased from 10 s to 610 s in steps of 20 s. EDFA: Erbium-doped fiber amplifier, LP: linear polarizer, PC: polarization Controller, OSA: optical spectrum analyzer, FUT: fiber under test.
Fig. 2
Fig. 2 Illustration of spatial power distribution in a dual-core fiber when light is launched into core 1.
Fig. 3
Fig. 3 Evolution of the theoretically calculated transmission spectrum of core 1 of a dual-core fiber with an antisymmetric long-period grating as the amplitude of the refractive-index change aq is increased from 0 to 4.0 × 10−5 in steps of 1.33 × 10−6.
Fig. 4
Fig. 4 Illustration of the difference between the phases of even and odd modes before and after inscription of the antisymmetric long-period grating.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A ˜ e z = i ( β e β e , 0 ) A ˜ e + i exp [ i ( q 2 π Λ ( β e , 0 β o , 0 ) ) z ] κ e , o A ˜ o
A ˜ o z = i ( β o β o , 0 ) A ˜ o + i exp [ i ( q 2 π Λ + ( β e , 0 β o , 0 ) ) z ] κ o , e A ˜ e
κ e , o = κ o , e = a q ω 0 ε 0 2 N o N e n [ u 1 u 2 ] F e F o d x d y
A ˜ e z = i ( β e β e , r ) A ˜ e + i κ e , o A ˜ o A ˜ o z = i ( β o β o , r ) A ˜ o + i κ o , e A ˜ e
( A ˜ e A ˜ o ) = exp ( i ( β e β e , r ) z i κ e , o z i κ o , e z i ( β o β o , r ) z ) ( A ˜ e , 0 A ˜ o , 0 ) .

Metrics