Abstract

Fabricating metasurfaces over large areas at low costs remains a critical challenge to their practical implementation. This paper reports on the use of microsphere photolithography (MPL) to create infrared metasurfaces by changing the angle-of-incidence of the illumination to steer the photonic jet. The displacement of the photonic jet is shown to scale with the diameter of the microsphere while the exposure dose scales with the square of the microsphere diameter. This process is robust in the presence of local defects in the microsphere lattice. The paper demonstrates patterning split ring resonators and tripole based metasurfaces using MPL, which are fabricated and characterized with FTIR. The combination of bottom-up and top-down approaches in off-normal incidence microsphere photolithography technique provides cost-effective, flexible, and high-throughput fabrication of infrared metasurfaces.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polycrystalline metasurface perfect absorbers fabricated using microsphere photolithography

Chuang Qu and Edward C. Kinzel
Opt. Lett. 41(15) 3399-3402 (2016)

Photonic jets for highly efficient mid-IR focal plane arrays with large angle‐of‐view

Farzaneh Abolmaali, Aaron Brettin, Andrew Green, Nicholaos I. Limberopoulos, Augustine M. Urbas, and Vasily N. Astratov
Opt. Express 25(25) 31174-31185 (2017)

High-efficiency normal-incidence vertical p-i-n photodetectors on a germanium-on-insulator platform

Yiding Lin, Kwang Hong Lee, Shuyu Bao, Xin Guo, Hong Wang, Jurgen Michel, and Chuan Seng Tan
Photon. Res. 5(6) 702-709 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  2. L. Wang, S. Kruk, H. Tang, T. Li, I. Kravchenko, D. N. Neshev, and Y. S. Kivshar, “Grayscale transparent metasurface holograms,” Optica 3(12), 1504–1505 (2016).
    [Crossref] [PubMed]
  3. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
    [Crossref] [PubMed]
  4. C. Qu and E. C. Kinzel, “Polycrystalline metasurface perfect absorbers fabricated using microsphere photolithography,” Opt. Lett. 41(15), 3399–3402 (2016).
    [Crossref] [PubMed]
  5. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
    [Crossref] [PubMed]
  6. Y. Zhang, L. Zhou, J. Q. Li, Q. J. Wang, and C. P. Huang, “Ultra-broadband and strongly enhanced diffraction with metasurfaces,” Sci. Rep. 5(1), 10119 (2015).
    [Crossref] [PubMed]
  7. J. A. D’Archangel, D. J. Shelton, R. Hudgins, M. K. Poutous, and G. D. Boreman, “Large area infrared frequency selective surface with dimensions reproducible by optical lithography,” J. Vac. Sci. Technol. B 32(5), 051807 (2014).
    [Crossref]
  8. L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
    [Crossref]
  9. I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
    [Crossref]
  10. J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
    [Crossref]
  11. M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
    [Crossref] [PubMed]
  12. W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “Fabrication of large area periodic nanostructures using nanosphere photolithography,” Nanoscale Res. Lett. 3(10), 351–354 (2008).
    [Crossref]
  13. Z. Szabó, J. Volk, E. Fulop, A. Deak, and I. Barsony, “Regular ZnO nanopillar arrays by nanosphere photolithography,” Phot. Nano. Fund. Appl. 11(1), 1–7 (2013).
    [Crossref]
  14. Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, and S. H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano 6(4), 3390–3396 (2012).
    [Crossref] [PubMed]
  15. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
    [Crossref] [PubMed]
  16. M. S. Kim, T. Scharf, S. Mühlig, M. Fruhnert, C. Rockstuhl, R. Bitterli, W. Noell, R. Voelkel, and H. P. Herzig, “Refraction limit of miniaturized optical systems: a ball-lens example,” Opt. Express 24(7), 6996–7005 (2016).
    [Crossref] [PubMed]
  17. M. H. Wu, C. Park, and G. M. Whitesides, “Generation of submicrometer structures by photolithography using arrays of spherical microlenses,” J. Colloid Interface Sci. 265(2), 304–309 (2003).
    [Crossref] [PubMed]
  18. A. Bonakdar, S. J. Jang, and H. Mohseni, “Novel high-throughput and maskless photolithography to fabricate plasmonic molecules,” J. Vac. Sci. Technol. B 32(2), 020604 (2014).
    [Crossref]
  19. Y. Zhang, T. Wei, Z. Xiong, L. Shang, Y. Tian, Y. Zhao, P. Zhou, J. Wang, and J. Li, “Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography,” Appl. Phys. Lett. 105(1), 013108 (2014).
    [Crossref]
  20. A. Bonakdar, M. Rezaei, R. L. Brown, V. Fathipour, E. Dexheimer, S. J. Jang, and H. Mohseni, “Deep-UV microsphere projection lithography,” Opt. Lett. 40(11), 2537–2540 (2015).
    [Crossref] [PubMed]
  21. W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
    [Crossref]
  22. X. Meng and D. Qiu, “Gas-flow-induced reorientation to centimeter-sized two-dimensional colloidal single crystal of polystyrene particle,” Langmuir 30(11), 3019–3023 (2014).
    [Crossref] [PubMed]
  23. D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
    [Crossref] [PubMed]
  24. B. A. Munk, Frequency Selective Surfaces Theory and Design (John Wiley & Sons, 2000).
  25. J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Polarized infrared emission using frequency selective surfaces,” Opt. Express 18(5), 4557–4563 (2010).
    [Crossref] [PubMed]

2016 (3)

2015 (3)

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Y. Zhang, L. Zhou, J. Q. Li, Q. J. Wang, and C. P. Huang, “Ultra-broadband and strongly enhanced diffraction with metasurfaces,” Sci. Rep. 5(1), 10119 (2015).
[Crossref] [PubMed]

A. Bonakdar, M. Rezaei, R. L. Brown, V. Fathipour, E. Dexheimer, S. J. Jang, and H. Mohseni, “Deep-UV microsphere projection lithography,” Opt. Lett. 40(11), 2537–2540 (2015).
[Crossref] [PubMed]

2014 (4)

X. Meng and D. Qiu, “Gas-flow-induced reorientation to centimeter-sized two-dimensional colloidal single crystal of polystyrene particle,” Langmuir 30(11), 3019–3023 (2014).
[Crossref] [PubMed]

J. A. D’Archangel, D. J. Shelton, R. Hudgins, M. K. Poutous, and G. D. Boreman, “Large area infrared frequency selective surface with dimensions reproducible by optical lithography,” J. Vac. Sci. Technol. B 32(5), 051807 (2014).
[Crossref]

A. Bonakdar, S. J. Jang, and H. Mohseni, “Novel high-throughput and maskless photolithography to fabricate plasmonic molecules,” J. Vac. Sci. Technol. B 32(2), 020604 (2014).
[Crossref]

Y. Zhang, T. Wei, Z. Xiong, L. Shang, Y. Tian, Y. Zhao, P. Zhou, J. Wang, and J. Li, “Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography,” Appl. Phys. Lett. 105(1), 013108 (2014).
[Crossref]

2013 (1)

Z. Szabó, J. Volk, E. Fulop, A. Deak, and I. Barsony, “Regular ZnO nanopillar arrays by nanosphere photolithography,” Phot. Nano. Fund. Appl. 11(1), 1–7 (2013).
[Crossref]

2012 (1)

Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, and S. H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano 6(4), 3390–3396 (2012).
[Crossref] [PubMed]

2011 (1)

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17(2), 1107–1115 (2009).
[Crossref] [PubMed]

2008 (1)

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “Fabrication of large area periodic nanostructures using nanosphere photolithography,” Nanoscale Res. Lett. 3(10), 351–354 (2008).
[Crossref]

2007 (2)

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[Crossref]

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[Crossref]

2005 (1)

2003 (1)

M. H. Wu, C. Park, and G. M. Whitesides, “Generation of submicrometer structures by photolithography using arrays of spherical microlenses,” J. Colloid Interface Sci. 265(2), 304–309 (2003).
[Crossref] [PubMed]

2001 (1)

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1995 (1)

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[Crossref]

Backman, V.

Barsony, I.

Z. Szabó, J. Volk, E. Fulop, A. Deak, and I. Barsony, “Regular ZnO nanopillar arrays by nanosphere photolithography,” Phot. Nano. Fund. Appl. 11(1), 1–7 (2013).
[Crossref]

Bitterli, R.

Bonakdar, A.

A. Bonakdar, M. Rezaei, R. L. Brown, V. Fathipour, E. Dexheimer, S. J. Jang, and H. Mohseni, “Deep-UV microsphere projection lithography,” Opt. Lett. 40(11), 2537–2540 (2015).
[Crossref] [PubMed]

A. Bonakdar, S. J. Jang, and H. Mohseni, “Novel high-throughput and maskless photolithography to fabricate plasmonic molecules,” J. Vac. Sci. Technol. B 32(2), 020604 (2014).
[Crossref]

Boreman, G.

Boreman, G. D.

J. A. D’Archangel, D. J. Shelton, R. Hudgins, M. K. Poutous, and G. D. Boreman, “Large area infrared frequency selective surface with dimensions reproducible by optical lithography,” J. Vac. Sci. Technol. B 32(5), 051807 (2014).
[Crossref]

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Brener, I.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Brown, R. L.

Chang, S. H.

Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, and S. H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano 6(4), 3390–3396 (2012).
[Crossref] [PubMed]

Chang, Y. C.

Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, and S. H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano 6(4), 3390–3396 (2012).
[Crossref] [PubMed]

Chen, Z.

Chung, H. C.

Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, and S. H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano 6(4), 3390–3396 (2012).
[Crossref] [PubMed]

Coffey, K. R.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

D’Archangel, J. A.

J. A. D’Archangel, D. J. Shelton, R. Hudgins, M. K. Poutous, and G. D. Boreman, “Large area infrared frequency selective surface with dimensions reproducible by optical lithography,” J. Vac. Sci. Technol. B 32(5), 051807 (2014).
[Crossref]

De La Rue, R. M.

Deak, A.

Z. Szabó, J. Volk, E. Fulop, A. Deak, and I. Barsony, “Regular ZnO nanopillar arrays by nanosphere photolithography,” Phot. Nano. Fund. Appl. 11(1), 1–7 (2013).
[Crossref]

Dexheimer, E.

Dey, D.

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “Fabrication of large area periodic nanostructures using nanosphere photolithography,” Nanoscale Res. Lett. 3(10), 351–354 (2008).
[Crossref]

Divliansky, I. B.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

Fathipour, V.

Fruhnert, M.

Fu, L.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Fulop, E.

Z. Szabó, J. Volk, E. Fulop, A. Deak, and I. Barsony, “Regular ZnO nanopillar arrays by nanosphere photolithography,” Phot. Nano. Fund. Appl. 11(1), 1–7 (2013).
[Crossref]

Giersig, M.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Giessen, H.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Ginn, J.

Ginn, J. C.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Guo, L. J.

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[Crossref]

Guo, W.

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[Crossref]

Gwinner, M. C.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Herzig, H. P.

Huang, C. P.

Y. Zhang, L. Zhou, J. Q. Li, Q. J. Wang, and C. P. Huang, “Ultra-broadband and strongly enhanced diffraction with metasurfaces,” Sci. Rep. 5(1), 10119 (2015).
[Crossref] [PubMed]

Hudgins, R.

J. A. D’Archangel, D. J. Shelton, R. Hudgins, M. K. Poutous, and G. D. Boreman, “Large area infrared frequency selective surface with dimensions reproducible by optical lithography,” J. Vac. Sci. Technol. B 32(5), 051807 (2014).
[Crossref]

Hulteen, J. C.

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[Crossref]

Jang, S. J.

A. Bonakdar, M. Rezaei, R. L. Brown, V. Fathipour, E. Dexheimer, S. J. Jang, and H. Mohseni, “Deep-UV microsphere projection lithography,” Opt. Lett. 40(11), 2537–2540 (2015).
[Crossref] [PubMed]

A. Bonakdar, S. J. Jang, and H. Mohseni, “Novel high-throughput and maskless photolithography to fabricate plasmonic molecules,” J. Vac. Sci. Technol. B 32(2), 020604 (2014).
[Crossref]

Johnson, N. P.

Kandulski, W.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Katsnelson, A.

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “Fabrication of large area periodic nanostructures using nanosphere photolithography,” Nanoscale Res. Lett. 3(10), 351–354 (2008).
[Crossref]

Keating, C. D.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

Khokhar, A. Z.

Khoo, I.-C.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

Kim, M. S.

Kinzel, E. C.

Kivshar, Y. S.

Koroknay, E.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Kravchenko, I.

Krenz, P.

Kruk, S.

Lahiri, B.

Lail, B.

Li, J.

Y. Zhang, T. Wei, Z. Xiong, L. Shang, Y. Tian, Y. Zhao, P. Zhou, J. Wang, and J. Li, “Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography,” Appl. Phys. Lett. 105(1), 013108 (2014).
[Crossref]

Li, J. Q.

Y. Zhang, L. Zhou, J. Q. Li, Q. J. Wang, and C. P. Huang, “Ultra-broadband and strongly enhanced diffraction with metasurfaces,” Sci. Rep. 5(1), 10119 (2015).
[Crossref] [PubMed]

Li, L.

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[Crossref]

Li, T.

Li, X.

Liu, Z.

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[Crossref]

Luk’yanchuk, B. S.

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[Crossref]

Mallouk, T. E.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

Mayer, T. S.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

McMeekin, S. G.

Memis, O. G.

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “Fabrication of large area periodic nanostructures using nanosphere photolithography,” Nanoscale Res. Lett. 3(10), 351–354 (2008).
[Crossref]

Meng, X.

X. Meng and D. Qiu, “Gas-flow-induced reorientation to centimeter-sized two-dimensional colloidal single crystal of polystyrene particle,” Langmuir 30(11), 3019–3023 (2014).
[Crossref] [PubMed]

Mohseni, H.

A. Bonakdar, M. Rezaei, R. L. Brown, V. Fathipour, E. Dexheimer, S. J. Jang, and H. Mohseni, “Deep-UV microsphere projection lithography,” Opt. Lett. 40(11), 2537–2540 (2015).
[Crossref] [PubMed]

A. Bonakdar, S. J. Jang, and H. Mohseni, “Novel high-throughput and maskless photolithography to fabricate plasmonic molecules,” J. Vac. Sci. Technol. B 32(2), 020604 (2014).
[Crossref]

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “Fabrication of large area periodic nanostructures using nanosphere photolithography,” Nanoscale Res. Lett. 3(10), 351–354 (2008).
[Crossref]

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Mühlig, S.

Neshev, D. N.

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Nishimura, S.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

Noell, W.

Park, C.

M. H. Wu, C. Park, and G. M. Whitesides, “Generation of submicrometer structures by photolithography using arrays of spherical microlenses,” J. Colloid Interface Sci. 265(2), 304–309 (2003).
[Crossref] [PubMed]

Patoka, P.

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Pena, D.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Peters, D. W.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Poutous, M. K.

J. A. D’Archangel, D. J. Shelton, R. Hudgins, M. K. Poutous, and G. D. Boreman, “Large area infrared frequency selective surface with dimensions reproducible by optical lithography,” J. Vac. Sci. Technol. B 32(5), 051807 (2014).
[Crossref]

Qiu, D.

X. Meng and D. Qiu, “Gas-flow-induced reorientation to centimeter-sized two-dimensional colloidal single crystal of polystyrene particle,” Langmuir 30(11), 3019–3023 (2014).
[Crossref] [PubMed]

Qu, C.

Rezaei, M.

Rockstuhl, C.

Scharf, T.

Shang, L.

Y. Zhang, T. Wei, Z. Xiong, L. Shang, Y. Tian, Y. Zhao, P. Zhou, J. Wang, and J. Li, “Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography,” Appl. Phys. Lett. 105(1), 013108 (2014).
[Crossref]

Shelton, D.

Shelton, D. J.

J. A. D’Archangel, D. J. Shelton, R. Hudgins, M. K. Poutous, and G. D. Boreman, “Large area infrared frequency selective surface with dimensions reproducible by optical lithography,” J. Vac. Sci. Technol. B 32(5), 051807 (2014).
[Crossref]

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Shishido, A.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

Sinclair, M. B.

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Szabó, Z.

Z. Szabó, J. Volk, E. Fulop, A. Deak, and I. Barsony, “Regular ZnO nanopillar arrays by nanosphere photolithography,” Phot. Nano. Fund. Appl. 11(1), 1–7 (2013).
[Crossref]

Taflove, A.

Tang, H.

Tian, Y.

Y. Zhang, T. Wei, Z. Xiong, L. Shang, Y. Tian, Y. Zhao, P. Zhou, J. Wang, and J. Li, “Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography,” Appl. Phys. Lett. 105(1), 013108 (2014).
[Crossref]

Tseng, C. B.

Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, and S. H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano 6(4), 3390–3396 (2012).
[Crossref] [PubMed]

Van Duyne, R. P.

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[Crossref]

Voelkel, R.

Volk, J.

Z. Szabó, J. Volk, E. Fulop, A. Deak, and I. Barsony, “Regular ZnO nanopillar arrays by nanosphere photolithography,” Phot. Nano. Fund. Appl. 11(1), 1–7 (2013).
[Crossref]

Wang, J.

Y. Zhang, T. Wei, Z. Xiong, L. Shang, Y. Tian, Y. Zhao, P. Zhou, J. Wang, and J. Li, “Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography,” Appl. Phys. Lett. 105(1), 013108 (2014).
[Crossref]

Wang, L.

Wang, Q. J.

Y. Zhang, L. Zhou, J. Q. Li, Q. J. Wang, and C. P. Huang, “Ultra-broadband and strongly enhanced diffraction with metasurfaces,” Sci. Rep. 5(1), 10119 (2015).
[Crossref] [PubMed]

Wang, S. M.

Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, and S. H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano 6(4), 3390–3396 (2012).
[Crossref] [PubMed]

Wang, Y.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wang, Z. B.

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[Crossref]

Wei, T.

Y. Zhang, T. Wei, Z. Xiong, L. Shang, Y. Tian, Y. Zhao, P. Zhou, J. Wang, and J. Li, “Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography,” Appl. Phys. Lett. 105(1), 013108 (2014).
[Crossref]

Whitehead, D. J.

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[Crossref]

Whitesides, G. M.

M. H. Wu, C. Park, and G. M. Whitesides, “Generation of submicrometer structures by photolithography using arrays of spherical microlenses,” J. Colloid Interface Sci. 265(2), 304–309 (2003).
[Crossref] [PubMed]

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wu, M. H.

M. H. Wu, C. Park, and G. M. Whitesides, “Generation of submicrometer structures by photolithography using arrays of spherical microlenses,” J. Colloid Interface Sci. 265(2), 304–309 (2003).
[Crossref] [PubMed]

Wu, W.

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “Fabrication of large area periodic nanostructures using nanosphere photolithography,” Nanoscale Res. Lett. 3(10), 351–354 (2008).
[Crossref]

Xiong, Z.

Y. Zhang, T. Wei, Z. Xiong, L. Shang, Y. Tian, Y. Zhao, P. Zhou, J. Wang, and J. Li, “Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography,” Appl. Phys. Lett. 105(1), 013108 (2014).
[Crossref]

Zhang, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, L. Zhou, J. Q. Li, Q. J. Wang, and C. P. Huang, “Ultra-broadband and strongly enhanced diffraction with metasurfaces,” Sci. Rep. 5(1), 10119 (2015).
[Crossref] [PubMed]

Y. Zhang, T. Wei, Z. Xiong, L. Shang, Y. Tian, Y. Zhao, P. Zhou, J. Wang, and J. Li, “Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography,” Appl. Phys. Lett. 105(1), 013108 (2014).
[Crossref]

Zhao, Y.

Y. Zhang, T. Wei, Z. Xiong, L. Shang, Y. Tian, Y. Zhao, P. Zhou, J. Wang, and J. Li, “Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography,” Appl. Phys. Lett. 105(1), 013108 (2014).
[Crossref]

Zhou, L.

Y. Zhang, L. Zhou, J. Q. Li, Q. J. Wang, and C. P. Huang, “Ultra-broadband and strongly enhanced diffraction with metasurfaces,” Sci. Rep. 5(1), 10119 (2015).
[Crossref] [PubMed]

Zhou, P.

Y. Zhang, T. Wei, Z. Xiong, L. Shang, Y. Tian, Y. Zhao, P. Zhou, J. Wang, and J. Li, “Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography,” Appl. Phys. Lett. 105(1), 013108 (2014).
[Crossref]

ACS Nano (1)

Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, and S. H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano 6(4), 3390–3396 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

L. J. Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater. 19(4), 495–513 (2007).
[Crossref]

Appl. Phys. Lett. (3)

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

Y. Zhang, T. Wei, Z. Xiong, L. Shang, Y. Tian, Y. Zhao, P. Zhou, J. Wang, and J. Li, “Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography,” Appl. Phys. Lett. 105(1), 013108 (2014).
[Crossref]

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[Crossref]

J. Colloid Interface Sci. (1)

M. H. Wu, C. Park, and G. M. Whitesides, “Generation of submicrometer structures by photolithography using arrays of spherical microlenses,” J. Colloid Interface Sci. 265(2), 304–309 (2003).
[Crossref] [PubMed]

J. Vac. Sci. Technol. A (1)

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[Crossref]

J. Vac. Sci. Technol. B (2)

J. A. D’Archangel, D. J. Shelton, R. Hudgins, M. K. Poutous, and G. D. Boreman, “Large area infrared frequency selective surface with dimensions reproducible by optical lithography,” J. Vac. Sci. Technol. B 32(5), 051807 (2014).
[Crossref]

A. Bonakdar, S. J. Jang, and H. Mohseni, “Novel high-throughput and maskless photolithography to fabricate plasmonic molecules,” J. Vac. Sci. Technol. B 32(2), 020604 (2014).
[Crossref]

Langmuir (1)

X. Meng and D. Qiu, “Gas-flow-induced reorientation to centimeter-sized two-dimensional colloidal single crystal of polystyrene particle,” Langmuir 30(11), 3019–3023 (2014).
[Crossref] [PubMed]

Nano Lett. (1)

D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong coupling between nanoscale metamaterials and phonons,” Nano Lett. 11(5), 2104–2108 (2011).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “Fabrication of large area periodic nanostructures using nanosphere photolithography,” Nanoscale Res. Lett. 3(10), 351–354 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Phot. Nano. Fund. Appl. (1)

Z. Szabó, J. Volk, E. Fulop, A. Deak, and I. Barsony, “Regular ZnO nanopillar arrays by nanosphere photolithography,” Phot. Nano. Fund. Appl. 11(1), 1–7 (2013).
[Crossref]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Sci. Rep. (1)

Y. Zhang, L. Zhou, J. Q. Li, Q. J. Wang, and C. P. Huang, “Ultra-broadband and strongly enhanced diffraction with metasurfaces,” Sci. Rep. 5(1), 10119 (2015).
[Crossref] [PubMed]

Science (1)

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Small (1)

M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, “Periodic Large-Area Metallic Split-Ring Resonator Metamaterial Fabrication Based on Shadow Nanosphere Lithography,” Small 5(3), 400–406 (2009).
[Crossref] [PubMed]

Other (1)

B. A. Munk, Frequency Selective Surfaces Theory and Design (John Wiley & Sons, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Illustration of fabrication procedure (a) directional illumination of self-assembled microspheres from polar angle, θ, and azimuthal angle, φ, (b) pattern revealed in photoresist after exposure and development (c) final metal split-ring resonators after lift-off.
Fig. 2
Fig. 2 Simulation of off-axis exposure of different sized microspheres. Normalized electric field energy distribution (a) 1 µm (b) 2 µm and (c) 3 µm for −20° off normal illumination and (d) response at 0, 240 and 480 nm depths into the photoresist under different angles of incidence for 3 µm microspheres.
Fig. 3
Fig. 3 SEM images taken from 52° of hole-pairs after FIB cross sectioning (a) 1.44 mJ/cm2, ± 10°; (b) 3.6 mJ/cm2, ± 10°; (c) 3.6 mJ/cm2, ± 25°. Au/Pd was sputtered onto the photoresist prior to imaging to avoid charging.
Fig. 4
Fig. 4 (a)-(c) SEM images of disks pairs (E = 7.2 mJ/cm2, θ = ± 35°, p = 3 µm) after lift-off (a) φ = 13°, (b) φ = 52°, and (c) φ = 22° resulting from different orientations of the microsphere lattice relative to the illumination directions.
Fig. 5
Fig. 5 Measured disk displacement normalized to sphere diameter for deposited disks produced with different incident angles. Dashed lines show simulated displacement at the top and bottom of the photoresist.
Fig. 6
Fig. 6 Reflectance spectra of split ring resonator sample shown in the SEM image. Red and blue lines represent the response for incident radiation polarized parallel and perpendicular to the SRR gap. The solid and dashed lines show FTIR and simulation results, respectively. Field distributions (normal component of E-field at λ = 4.8 and 7.8 μm) are shown for the two primary resonances.
Fig. 7
Fig. 7 Absorption spectra of tripole FSS shown in the inset (SEM image). The solid and dashed lines show FTIR and simulation results, respectively.

Metrics