Abstract

An interferometric method using an optical comb is proposed and realized to measure the total physical thickness of a multi-layered wafer even if the refractive index of each layer is not given. For a feasibility test, two-layered and three-layered silicon-on-glass wafers were chosen as samples and were measured. An uncertainty evaluation was conducted to estimate the performance capabilities of the proposed method. To verify the measured values, the wafers were also measured by a contact-type standard instrument. For the three-layered wafer, the total physical thickness distribution was determined in a selected area.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thickness and refractive index measurement of a silicon wafer based on an optical comb

Jonghan Jin, Jae Wan Kim, Chu-Shik Kang, Jong-Ahn Kim, and Tae Bong Eom
Opt. Express 18(17) 18339-18346 (2010)

Fizeau-type interferometric probe to measure geometrical thickness of silicon wafers

Jonghan Jin, Saerom Maeng, Jungjae Park, Jong-Ahn Kim, and Jae Wan Kim
Opt. Express 22(19) 23427-23432 (2014)

Simultaneous measurement method of the physical thickness and group refractive index free from a non-measurable range

Jungjae Park, Hiroki Mori, and Jonghan Jin
Opt. Express 27(17) 24682-24692 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. K. Celler and S. Cristoloveanu, “Frontiers of silicon-on-insulator,” J. Appl. Phys. 93(9), 4955–4978 (2003).
    [Crossref]
  2. F. Boeuf, S. Cremer, E. Temporiti, M. Fere, M. Shaw, C. Baudot, N. Vulliet, T. Pinguet, A. Mekis, G. Masini, H. Petiton, P. Le Maitre, M. Traldi, and L. Maggi, “Silicon photonics R&D and manufacturing on 300-mm wafer platform,” J. Lightwave Technol. 34(2), 286–295 (2016).
    [Crossref]
  3. W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18(23), 23598–23607 (2010).
    [Crossref] [PubMed]
  4. M. Kimura, Y. Saito, H. Daio, and K. Yakushiji, “A new method for the precise measurement of wafer roll off of silicon polished wafer,” Jpn. J. Appl. Phys. 38(1), 38–39 (1999).
    [Crossref]
  5. J. Jin, “Dimensional metrology using the optical comb of a mode-locked laser,” Meas. Sci. Technol. 27(2), 1–17 (2016).
    [Crossref]
  6. J. Jin, J. W. Kim, C.-S. Kang, J.-A. Kim, and T. B. Eom, “Thickness and refractive index measurement of a silicon wafer based on an optical comb,” Opt. Express 18(17), 18339–18346 (2010).
    [Crossref] [PubMed]
  7. J. Jin, J. W. Kim, C.-S. Kang, J.-A. Kim, and S. Lee, “Precision depth measurement of through silicon vias (TSVs) on 3D semiconductor packaging process,” Opt. Express 20(5), 5011–5016 (2012).
    [Crossref] [PubMed]
  8. S. Maeng, J. Park, B. O, and J. Jin, “Uncertainty improvement of geometrical thickness and refractive index measurement of a silicon wafer using a femtosecond pulse laser,” Opt. Express 20(11), 12184–12190 (2012).
    [Crossref] [PubMed]
  9. J. Park, J. Jin, J. Wan Kim, and J.-A. Kim, “Measurement of thickness profile and refractive index variation of a silicon wafer using the optical comb of a femtosecond pulse laser,” Opt. Commun. 305(15), 170–174 (2013).
    [Crossref]
  10. J. Jin, S. Maeng, J. Park, J.-A. Kim, and J. W. Kim, “Fizeau-type interferometric probe to measure geometrical thickness of silicon wafers,” Opt. Express 22(19), 23427–23432 (2014).
    [Crossref] [PubMed]
  11. J. Park, J. Bae, J. Jin, J.-A. Kim, and J. W. Kim, “Vibration-insensitive measurements of the thickness profile of large glass panels,” Opt. Express 23(26), 32941–32949 (2015).
    [Crossref] [PubMed]
  12. J. Park, J. Jin, J.-A. Kim, and J. W. Kim, “Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser,” Appl. Phys. Lett. 109(24), 244103 (2016).
    [Crossref]
  13. H. Ahn, J. Park, J.-A. Kim, and J. Jin, “Optical fiber-based confocal and interferometric system for measuring the depth and diameter of through silicon vias,” J. Lightwave Technol. 34(23), 5462–5466 (2016).
    [Crossref]
  14. P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 094001 (2012).
    [Crossref]
  15. J. Na, H. Y. Choi, E. S. Choi, C. Lee, and B. H. Lee, “Self-referenced spectral interferometry for simultaneous measurements of thickness and refractive index,” Appl. Opt. 48(13), 2461–2467 (2009).
    [Crossref] [PubMed]
  16. K. Zhang, L. Tao, W. Cheng, J. Liu, and Z. Chen, “Air etalon facilitated simultaneous measurement of group refractive index and thickness using spectral interferometry,” Appl. Opt. 53(31), 7483–7486 (2014).
    [Crossref] [PubMed]
  17. H. Lee and K.-N. Joo, “Optical interferometric approach for measuring the geometrical dimension and refractive index profiles of a double-sided polished undoped Si wafer,” Meas. Sci. Technol. 25(7), 075202 (2014).
    [Crossref]
  18. S. C. Zilio, “Simultaneous thickness and group index measurement with a single arm low-coherence interferometer,” Opt. Express 22(22), 27392–27397 (2014).
    [Crossref] [PubMed]
  19. C. Moreno-Hernández, D. Monzón-Hernández, I. Hernández-Romano, and J. Villatoro, “Single tapered fiber tip for simultaneous measurements of thickness, refractive index and distance to a sample,” Opt. Express 23(17), 22141–22148 (2015).
    [Crossref] [PubMed]
  20. BIPM, “Guide to the expression of uncertainty in measurement,” (JCGM 100:2008), http://www.bipm.org/en/publications/guides/gum.html .

2016 (4)

F. Boeuf, S. Cremer, E. Temporiti, M. Fere, M. Shaw, C. Baudot, N. Vulliet, T. Pinguet, A. Mekis, G. Masini, H. Petiton, P. Le Maitre, M. Traldi, and L. Maggi, “Silicon photonics R&D and manufacturing on 300-mm wafer platform,” J. Lightwave Technol. 34(2), 286–295 (2016).
[Crossref]

J. Jin, “Dimensional metrology using the optical comb of a mode-locked laser,” Meas. Sci. Technol. 27(2), 1–17 (2016).
[Crossref]

J. Park, J. Jin, J.-A. Kim, and J. W. Kim, “Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser,” Appl. Phys. Lett. 109(24), 244103 (2016).
[Crossref]

H. Ahn, J. Park, J.-A. Kim, and J. Jin, “Optical fiber-based confocal and interferometric system for measuring the depth and diameter of through silicon vias,” J. Lightwave Technol. 34(23), 5462–5466 (2016).
[Crossref]

2015 (2)

2014 (4)

2013 (1)

J. Park, J. Jin, J. Wan Kim, and J.-A. Kim, “Measurement of thickness profile and refractive index variation of a silicon wafer using the optical comb of a femtosecond pulse laser,” Opt. Commun. 305(15), 170–174 (2013).
[Crossref]

2012 (3)

2010 (2)

2009 (1)

2003 (1)

G. K. Celler and S. Cristoloveanu, “Frontiers of silicon-on-insulator,” J. Appl. Phys. 93(9), 4955–4978 (2003).
[Crossref]

1999 (1)

M. Kimura, Y. Saito, H. Daio, and K. Yakushiji, “A new method for the precise measurement of wafer roll off of silicon polished wafer,” Jpn. J. Appl. Phys. 38(1), 38–39 (1999).
[Crossref]

Ahn, H.

Bae, J.

Balling, P.

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 094001 (2012).
[Crossref]

Baudot, C.

Boeuf, F.

Celler, G. K.

G. K. Celler and S. Cristoloveanu, “Frontiers of silicon-on-insulator,” J. Appl. Phys. 93(9), 4955–4978 (2003).
[Crossref]

Chen, Z.

Cheng, W.

Choi, E. S.

Choi, H. Y.

Cremer, S.

Cristoloveanu, S.

G. K. Celler and S. Cristoloveanu, “Frontiers of silicon-on-insulator,” J. Appl. Phys. 93(9), 4955–4978 (2003).
[Crossref]

Daio, H.

M. Kimura, Y. Saito, H. Daio, and K. Yakushiji, “A new method for the precise measurement of wafer roll off of silicon polished wafer,” Jpn. J. Appl. Phys. 38(1), 38–39 (1999).
[Crossref]

Doležal, M.

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 094001 (2012).
[Crossref]

Eom, T. B.

Fere, M.

Hernández-Romano, I.

Jin, J.

J. Jin, “Dimensional metrology using the optical comb of a mode-locked laser,” Meas. Sci. Technol. 27(2), 1–17 (2016).
[Crossref]

J. Park, J. Jin, J.-A. Kim, and J. W. Kim, “Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser,” Appl. Phys. Lett. 109(24), 244103 (2016).
[Crossref]

H. Ahn, J. Park, J.-A. Kim, and J. Jin, “Optical fiber-based confocal and interferometric system for measuring the depth and diameter of through silicon vias,” J. Lightwave Technol. 34(23), 5462–5466 (2016).
[Crossref]

J. Park, J. Bae, J. Jin, J.-A. Kim, and J. W. Kim, “Vibration-insensitive measurements of the thickness profile of large glass panels,” Opt. Express 23(26), 32941–32949 (2015).
[Crossref] [PubMed]

J. Jin, S. Maeng, J. Park, J.-A. Kim, and J. W. Kim, “Fizeau-type interferometric probe to measure geometrical thickness of silicon wafers,” Opt. Express 22(19), 23427–23432 (2014).
[Crossref] [PubMed]

J. Park, J. Jin, J. Wan Kim, and J.-A. Kim, “Measurement of thickness profile and refractive index variation of a silicon wafer using the optical comb of a femtosecond pulse laser,” Opt. Commun. 305(15), 170–174 (2013).
[Crossref]

S. Maeng, J. Park, B. O, and J. Jin, “Uncertainty improvement of geometrical thickness and refractive index measurement of a silicon wafer using a femtosecond pulse laser,” Opt. Express 20(11), 12184–12190 (2012).
[Crossref] [PubMed]

J. Jin, J. W. Kim, C.-S. Kang, J.-A. Kim, and S. Lee, “Precision depth measurement of through silicon vias (TSVs) on 3D semiconductor packaging process,” Opt. Express 20(5), 5011–5016 (2012).
[Crossref] [PubMed]

J. Jin, J. W. Kim, C.-S. Kang, J.-A. Kim, and T. B. Eom, “Thickness and refractive index measurement of a silicon wafer based on an optical comb,” Opt. Express 18(17), 18339–18346 (2010).
[Crossref] [PubMed]

Joo, K.-N.

H. Lee and K.-N. Joo, “Optical interferometric approach for measuring the geometrical dimension and refractive index profiles of a double-sided polished undoped Si wafer,” Meas. Sci. Technol. 25(7), 075202 (2014).
[Crossref]

Kang, C.-S.

Kim, J. W.

Kim, J.-A.

J. Park, J. Jin, J.-A. Kim, and J. W. Kim, “Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser,” Appl. Phys. Lett. 109(24), 244103 (2016).
[Crossref]

H. Ahn, J. Park, J.-A. Kim, and J. Jin, “Optical fiber-based confocal and interferometric system for measuring the depth and diameter of through silicon vias,” J. Lightwave Technol. 34(23), 5462–5466 (2016).
[Crossref]

J. Park, J. Bae, J. Jin, J.-A. Kim, and J. W. Kim, “Vibration-insensitive measurements of the thickness profile of large glass panels,” Opt. Express 23(26), 32941–32949 (2015).
[Crossref] [PubMed]

J. Jin, S. Maeng, J. Park, J.-A. Kim, and J. W. Kim, “Fizeau-type interferometric probe to measure geometrical thickness of silicon wafers,” Opt. Express 22(19), 23427–23432 (2014).
[Crossref] [PubMed]

J. Park, J. Jin, J. Wan Kim, and J.-A. Kim, “Measurement of thickness profile and refractive index variation of a silicon wafer using the optical comb of a femtosecond pulse laser,” Opt. Commun. 305(15), 170–174 (2013).
[Crossref]

J. Jin, J. W. Kim, C.-S. Kang, J.-A. Kim, and S. Lee, “Precision depth measurement of through silicon vias (TSVs) on 3D semiconductor packaging process,” Opt. Express 20(5), 5011–5016 (2012).
[Crossref] [PubMed]

J. Jin, J. W. Kim, C.-S. Kang, J.-A. Kim, and T. B. Eom, “Thickness and refractive index measurement of a silicon wafer based on an optical comb,” Opt. Express 18(17), 18339–18346 (2010).
[Crossref] [PubMed]

Kimura, M.

M. Kimura, Y. Saito, H. Daio, and K. Yakushiji, “A new method for the precise measurement of wafer roll off of silicon polished wafer,” Jpn. J. Appl. Phys. 38(1), 38–39 (1999).
[Crossref]

Kren, P.

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 094001 (2012).
[Crossref]

Le Maitre, P.

Lee, B. H.

Lee, C.

Lee, H.

H. Lee and K.-N. Joo, “Optical interferometric approach for measuring the geometrical dimension and refractive index profiles of a double-sided polished undoped Si wafer,” Meas. Sci. Technol. 25(7), 075202 (2014).
[Crossref]

Lee, S.

Liu, J.

Maeng, S.

Maggi, L.

Mašika, P.

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 094001 (2012).
[Crossref]

Masini, G.

Mekis, A.

Monzón-Hernández, D.

Moreno-Hernández, C.

Na, J.

O, B.

Park, J.

Petiton, H.

Pinguet, T.

Saito, Y.

M. Kimura, Y. Saito, H. Daio, and K. Yakushiji, “A new method for the precise measurement of wafer roll off of silicon polished wafer,” Jpn. J. Appl. Phys. 38(1), 38–39 (1999).
[Crossref]

Shaw, M.

Tao, L.

Temporiti, E.

Traldi, M.

Trotter, D. C.

Villatoro, J.

Vulliet, N.

Wan Kim, J.

J. Park, J. Jin, J. Wan Kim, and J.-A. Kim, “Measurement of thickness profile and refractive index variation of a silicon wafer using the optical comb of a femtosecond pulse laser,” Opt. Commun. 305(15), 170–174 (2013).
[Crossref]

Watts, M. R.

Yakushiji, K.

M. Kimura, Y. Saito, H. Daio, and K. Yakushiji, “A new method for the precise measurement of wafer roll off of silicon polished wafer,” Jpn. J. Appl. Phys. 38(1), 38–39 (1999).
[Crossref]

Zhang, K.

Zilio, S. C.

Zortman, W. A.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. Park, J. Jin, J.-A. Kim, and J. W. Kim, “Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser,” Appl. Phys. Lett. 109(24), 244103 (2016).
[Crossref]

J. Appl. Phys. (1)

G. K. Celler and S. Cristoloveanu, “Frontiers of silicon-on-insulator,” J. Appl. Phys. 93(9), 4955–4978 (2003).
[Crossref]

J. Lightwave Technol. (2)

Jpn. J. Appl. Phys. (1)

M. Kimura, Y. Saito, H. Daio, and K. Yakushiji, “A new method for the precise measurement of wafer roll off of silicon polished wafer,” Jpn. J. Appl. Phys. 38(1), 38–39 (1999).
[Crossref]

Meas. Sci. Technol. (3)

J. Jin, “Dimensional metrology using the optical comb of a mode-locked laser,” Meas. Sci. Technol. 27(2), 1–17 (2016).
[Crossref]

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 094001 (2012).
[Crossref]

H. Lee and K.-N. Joo, “Optical interferometric approach for measuring the geometrical dimension and refractive index profiles of a double-sided polished undoped Si wafer,” Meas. Sci. Technol. 25(7), 075202 (2014).
[Crossref]

Opt. Commun. (1)

J. Park, J. Jin, J. Wan Kim, and J.-A. Kim, “Measurement of thickness profile and refractive index variation of a silicon wafer using the optical comb of a femtosecond pulse laser,” Opt. Commun. 305(15), 170–174 (2013).
[Crossref]

Opt. Express (8)

J. Jin, S. Maeng, J. Park, J.-A. Kim, and J. W. Kim, “Fizeau-type interferometric probe to measure geometrical thickness of silicon wafers,” Opt. Express 22(19), 23427–23432 (2014).
[Crossref] [PubMed]

J. Park, J. Bae, J. Jin, J.-A. Kim, and J. W. Kim, “Vibration-insensitive measurements of the thickness profile of large glass panels,” Opt. Express 23(26), 32941–32949 (2015).
[Crossref] [PubMed]

W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics manufacturing,” Opt. Express 18(23), 23598–23607 (2010).
[Crossref] [PubMed]

J. Jin, J. W. Kim, C.-S. Kang, J.-A. Kim, and T. B. Eom, “Thickness and refractive index measurement of a silicon wafer based on an optical comb,” Opt. Express 18(17), 18339–18346 (2010).
[Crossref] [PubMed]

J. Jin, J. W. Kim, C.-S. Kang, J.-A. Kim, and S. Lee, “Precision depth measurement of through silicon vias (TSVs) on 3D semiconductor packaging process,” Opt. Express 20(5), 5011–5016 (2012).
[Crossref] [PubMed]

S. Maeng, J. Park, B. O, and J. Jin, “Uncertainty improvement of geometrical thickness and refractive index measurement of a silicon wafer using a femtosecond pulse laser,” Opt. Express 20(11), 12184–12190 (2012).
[Crossref] [PubMed]

S. C. Zilio, “Simultaneous thickness and group index measurement with a single arm low-coherence interferometer,” Opt. Express 22(22), 27392–27397 (2014).
[Crossref] [PubMed]

C. Moreno-Hernández, D. Monzón-Hernández, I. Hernández-Romano, and J. Villatoro, “Single tapered fiber tip for simultaneous measurements of thickness, refractive index and distance to a sample,” Opt. Express 23(17), 22141–22148 (2015).
[Crossref] [PubMed]

Other (1)

BIPM, “Guide to the expression of uncertainty in measurement,” (JCGM 100:2008), http://www.bipm.org/en/publications/guides/gum.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the total physical thickness measurement of a multi-layered specimen.
Fig. 2
Fig. 2 Measurement system of the total physical thickness of a SOG wafer: (a) optical configuration, (b) a photo of the experimental setup, (c) a cross-sectional image of a two-layered SOG wafer, and (d) a cross-sectional image of a three-layered SOG wafer (CL: collimating lens; BS1, BS2: beam splitter; M1, M2: mirror; FL: focusing lens).
Fig. 3
Fig. 3 Examples of the interference spectra and amplitude information in the Fourier domain: (a) interference spectrum obtained without a wafer, (b) interference spectrum obtained with a two-layered SOG wafer, (c) interference spectrum obtained with a three-layered SOG wafer, (d) Fourier transform of the interference spectrum (a), (e) Fourier transform of the interference spectrum (b), and (f) Fourier transform of the interference spectrum (c).
Fig. 4
Fig. 4 Measurement result of the total physical thickness of two SOG wafers: (a) repeated measurement result of the physical thickness of a two-layered SOG wafer at fixed point, (b) repeated measurement result of the physical thickness of a three-layered SOG wafer at a fixed point, and (c) total physical thickness distribution of the three-layered SOG wafer.
Fig. 5
Fig. 5 Comparative measurement results of the total physical thickness of the two SOG wafers studied here.

Tables (2)

Tables Icon

Table 1 Uncertainty budget for the total thickness measurement of a two-layered SOG wafer.

Tables Icon

Table 2 Uncertainty budget for the total thickness measurement of a three-layered SOG wafer.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I( f,l )= I 0 ( f ){ 1+cos( 2πf l c ) }.
OPD 1 = L 1 L 2 ,
OPD 2 = i=1 n 2( T i N i ) ,
OPD 3 = L 1 i=1 n T i + i=1 n T i N i L 2 ,
T total = i=1 n T i = OPD 2 2 OPD 3 + OPD 1

Metrics